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ABSTRACT 
 

Many optimization techniques have been proposed since the inception of engineering 

optimization in 1960s. Traditional mathematical modeling-based approaches are 

incompetent to solve the engineering optimization problems, as these problems have 

complex system that involves large number of design variables as well as equality or 

inequality constraints. In order to overcome the various difficulties encountered in 

obtaining the solution of these problems, new techniques called metaheuristic algorithms 

are suggested. These techniques are numerical optimization algorithms that are based on a 

natural phenomenon. In this study, a state-of-art improved harmony search method with a 

new adaptive error strategy is proposed to handle the design constraints. Number of 

numerical examples is presented to demonstrate the efficiency of the proposed algorithm 

in solving engineering optimization problems. 
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1. INTRODUCTION 
 

The improvements in the performance of high-speed computing systems and the progress 

taken place in computational methods of optimization, the meta-heuristic techniques which 

are computationally intensive have become practical and used widely in obtaining the 
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solution of engineering design optimization problems in recent years. These techniques 

simulate the paradigm of a biological, chemical or social system to develop a numerical 

optimizations method. Depending on what they simulate they are named accordingly such 

as evolutionary algorithms that mimic survival of the fittest, ant colony or particle swarm 

optimizations which are based on swarm intelligence or simulated annealing that imitates 

the cooling of molten metals through annealing [1-6]. It is generally accepted that stochastic 

approaches can handle engineering optimization problems more efficiently and easily than 

deterministic algorithms. In addition to their robustness with respect to the growth of 

problem size, other significant advantages of these methods are related to their relative 

simplicity and suitability for problems where the implementation of the optimization 

process is complicated by complexity and differentiability of design domain [7]. These 

heuristic algorithms are now becoming very popular in many disciplines of science and 

engineering [8-13]. 

In this study an improved harmony search optimum design algorithm is proposed for 

solving engineering design optimization problems. The classical harmony search method is 

improved by including some new strategies and then used to determine the solution of 

optimum design problem. The benchmark design examples taken from literature and the 

structural design examples are considered to demonstrate the effectiveness and robustness of 

the improvements suggested in the harmony search technique. The novelty of this study not 

only lies in the improvement suggested for the classical harmony search method, but also 

lies in the new error adaptive strategy suggested for constraint handling. 

 

 

2. STATEMENT OF AN OPTIMIZATION PROBLEM 
 

A general engineering optimization problem can be defined as follows [14]; 

 

Minimize; 

 

 }X,...,X,X{X),X(f Nd21  (1) 

 

which is subjected to 

 

 p,...,,i,)X(gi 210   (2) 

 

and 

 

 m,...,,j,)X(hi 210   (3) 

 

where 

 

 dkUkL N,...,,k,XXX 21  (4) 
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Here, )X(f  is the objective function, X  denotes the decision solution vector, dN  is 

the number of decision variables, kL X  and  kU X , are the lower and the upper bound of  

each decision variable, respectively. p  is the number of inequality constraints and m is the 

number of equality constraints. One of the most difficult parts encountered in practical 

engineering design optimization is the constraint handling. Real-world limitations 

frequently introduce multiple, non-linear and non-trivial constraints on a design. 

 

 

3. HARMONY SEARCH OPTIMIZATION (HSO) 
 

This meta-heuristic method imitates the improvisation process of a musician seeking a 

pleasing harmony. Musician can play a note from existing memory or perform variations on 

an existing piece or create an entirely new piece. These actions represent the basic three 

operations of the harmony search method. A note can be played from pleasing songs stored 

in memory or a note can be played close in pitch to one that is in the memory or a note can 

be played totally randomly from the entire range of the instrument. Harmony search method 

follows the same logic. The algorithm consists of five steps that are given in the following. 

The detailed explanation of the method can be found in [15] which is summarized in the 

following. 

Step 1. Initialization. Initialize the optimization operators of HS algorithm includes the 

harmony memory (hm), the harmony memory size (hms), the harmony memory considering 

rate (hmcr), and the pitch adjusting rate (par). 

Step 2. Harmony memory matrix is initialized. Each row of harmony memory matrix 

contains the values of design variables which are randomly selected feasible solutions from 

the design pool for that particular design variable. 

Step 3. New harmony memory matrix is improvised. Generate a new harmony vector 

from the hm, based on memory considerations, pitch adjustments, and randomization. 

Step 4. Harmony Memory matrix is updated. If a new harmony vector is better than the 

worst harmony in the hm, judging in terms of the objective function value, the new harmony 

is included in the hm and the existing worst harmony is excluded from the hm. 

Step 5. Termination. Repeat steps 2 and 3 until the terminating criterion is satisfied. 

 

3.1 Improved Harmony Search Optimization (IHSO) 

In classical harmony search method the parameters hmcr and par are selected prior to the 

application of the method and they are kept constant until the end of the iterations. The 

numerical applications have shown that the selection of values for hmcr and par is problem 

dependent and the initial values selected affect the performance of the algorithm. Hence, in 

order to determine the optimum solution it is necessary to solve the optimization problem 

several times with different values of these parameters and select the solution with 

minimum weight. It is apparent that such application devaluates the efficiency of the 

algorithm. In order to overcome this discrepancy, numbers of improvements are suggested 

in the literature [16-21]. In this study, different strategies are proposed for hmcr and par 

[22]. par is updated using the concept suggested by Coelho and Bernert [23] as follows: 
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 par(i)= par min+( par max- par min)×degree(i) (5) 

 

where, par(i) is the pitch adjusting rate for generation i, parmin is the minimum adjusting 

rate, parmax is the maximum adjusting rate, and i is the generation number. The degree is 

updated according to the following expression: 

 

  
  
    

max mean

max min

HCost HCost
 

HCost  HCost

i
degree i

i i





 (6) 

 

where, HCostmax(i) and HCostmin(i) are the maximum and minimum function objective 

values in generation i, respectively; HCostmean is the mean of objective function value of the 

harmony memory. The improvisation of hmcr is carried out using the newly-coined 

following expression; 

 

 hmcr (i)= hmcr max-( hmcr max- hmcr min).degree(i) (7) 

 

where, hmcr(i) is the harmony memory considering rate for generation i, hmcrmax is the 

maximum considering rate, hmcrmin is the minimum considering rate, and i is the generation 

number. 

 

3.2 Adaptive Constraint Handling 

Once the new harmony vector is obtained using the above-mentioned rules, it is then 

checked whether it violates problem constraints. If the new harmony vector is severely 

infeasible, it is discarded. If it is slightly infeasible, it is included in the harmony memory 

matrix. In this way the violated harmony vector which may be infeasible slightly in one or 

more constraints is used as a base in the pitch adjustment operation to provide a new 

harmony vector that may be feasible[11]. This is carried out by using larger error value 

initially and then this value is adjusted during the design cycles according to the expression 

given below; 

 

 

max

minmax
max

iter

i).TolTol(
Tol)i(Tol


  (8) 

 

where, )i(Tol  is the error value in iteration i, maxTol  and minTol  are the maximum and 

the minimum error values defined in the algorithm respectively, maxiter  is the maximum 

iteration number until which tolerance minimization procedure continues. Equation (8) 

provides larger error values in the beginning of the design cycles and quite small error 

values towards the final design cycles. Hence when the maximum design cycles are reached 

the acceptable design vectors remain in the harmony memory matrix and the ones which do 

not satisfy one or more design constraints smaller than the error tolerance would be pushed 

out during the design iterations. 
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4. NUMERICAL EXAMPLES 

 
As numerical examples, three well-known benchmark optimization problems as well as 

optimum topology design of a latticed geodesic dome and a optimum design of a steel rigid 

frame are used to demonstrate the performance effectiveness of the IHSO algorithm. Here, 

the main control parameters, hmcr and par, in IHSO algorithm are dynamically changed 

during optimization process by the use of Equations (5) and (7). The values of parmax and 

hmcrmax are taken as 0.99 and the 0.01 is assigned to parmin and hmcrmin. The maximum 

number of searches is taken as 30000 in each design case. This number is determined after 

carrying out several designs with a larger number of iterations and it is noticed that the 

result obtained within the 30000 iterations remains the same even if the iterations continued 

further. The optimum solution located using the IHSO algorithm in each benchmark design 

example is compared to the previously reported results in the literature. 

 
4.1 Himmelblau’s Nonlinear Optimization Problem 

The first problem, called Himmelblau’s function [24], is a commonly used benchmark 

function for nonlinear constrained optimization problems. This problem is adopted to test 

the performance of proposed IHSO technique. Problem has five design variables and three 

constraints. Problem definition and optimum design results are as in the following; 

 

Minimize; 

 1414079229323937835689103585475 151
2
3 .x.xx.x.)x(f   (9) 

which is subjected to 

 
 

1 2 30 ( ) 92, 90 ( ) 110, 20 ( ) 25g x g x g x       (10) 

and side constraints are 

 
 452745274527453310278 54321  x,x,x,x,x  (11) 

 

where 

 

 

1 2 5 1 4 3 5

2

2 2 5 1 2 3

3 3 5 1 3 3 4

( ) 85.334407 0.0056858 0.0006262 0.0022053

( ) 80.51249 0.0071317 0.0029955 0.0021813

( ) 9.300961 0.0047026 0.0012547 0.0019085

g x x x x x x x

g x x x x x x

g x x x x x x x

   

   

   

 (12) 

 

 Himmelblau [24] first solved this problem by using the generalized reduced gradient 

(GRG) method. Then it is studied by Gen and Cheng [25] using genetic algorithms (GAs). 

Runarsson and Yao [26] proposed an evolutionary strategies (ES) algorithm with stochastic 

ranking for the solution of this problem. Wu et. al. [27] used the Particle Swarm Optimizer 

(PSO) in order to obtain the optimum solution of this problem. The classical Harmony Search 

Optimization (HSO) solution tabulated in Table 1 is as given by Lee and Geem [28]. The HSO 

algorithm-based method found a best solution vector of x = (78.0000, 33.0000, 29.9950, 
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45.0000, 36.7760) with a function value equal to f(x) = −30665.50. The optimal solution of the 

same problem is obtained as x = (78.0000, 33.27773, 27.22356, 44.99983, 44.49837) with 

corresponding function value equal to f(x) = −31011.87 by the IHSO as shown in Table 1. 

 
Table 1: Optimum results for Himmelblau’s nonlinear optimization problem. 

Optimum solutions obtained by different methods 

Design    

variables 
IHSO PSO HSO ES GRG GAs 

x1 78.0000 78.0000 78.0000 78.0000 78.6200 81.4900 

x2 33.27773 33.0000 33.0000 33.0000 33.4400 34.0900 

x3 27.22356 29.9952 29.9950 29.9953 31.0700 31.2400 

x4 44.99983 45.0000 45.0000 45.0000 44.1800 42.2000 

x5 44.49837 36.7758 36.7760 36.7758 35.2200 34.3700 

g1(x) 91.99505 92.0000 91.7147 92.0000 91.7927 91.7819 

g2(x) 100.46506 98.8405 98.8405 98.8405 98.8929 99.3188 

g3(x) 20.00000 20.0000 19.9999 20.0000 20.1316 20.0604 

f(x) −31011.87 −30665.39 −30665.50 −30665.54 −30373.95 −30183.58 

 
4.2 Welded Beam Design 

A rectangular beam, designed as a cantilever beam, is selected as second numerical 

example. The geometric view and the dimensions of the beam are illustrated in Figure. 1 

The beam is designed to carry a certain load with minimum overall cost of fabrication. The 

optimization problem has four design variables; h=x1 : the thickness of the weld, l=x2 : the 

length of the welded joints,  t=x3 : the width of the beam, b=x4 : the thickness of the beam 

[29]. 

 

Minimize; 

 

 )0.14(04811.010471.1)( 2432

2

1 xxxxxxf   (13) 

 

which is subjected to 

 

 0)()( max1   xxg  as shear stress (14) 

 

 0)()( max2   xxg  as bending stress in the beam, (15) 

 

0)( 413  xxxg , 

(16) 05)0.14(04811.010471.0)( 243

2

14  xxxxxg , 

0125.0)( 15  xxg  as side constraints, 
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 0)()( max6   xxg  as end deflection of the beam, (17) 

 

 0)()(7  xPPxg c
as buckling load on the bar (18) 

 

and also, design variables of the problems are limited as; 

 

 
1 2 3 40.1 2.0, 0.1 10, 0.1 10, 0.1 2.0x x x x         (19) 
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  
 

 

 
Figure 1. Welded beam structure. 

 

The same problem was also solved by Gandomi et. al. [30] using a Firely Algorithm 

(FA). Deb [31] used a simple genetic algorithm (GAs) with traditional penalty function to 

solve the same problem. Coello [32] solved this problem by using a self-adaptive penalty 

approach (SAPA). The optimum solutions obtained using classical HSO and PSO are taken 

from references [27] and [28], respectively. The optimum solutions and comparison of 

results for this problem are tabulated in Table 2.  
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Table 2: Optimum results for welded beam design. 

Optimum solutions obtained by different methods 

Design    

variables 
IHSO FA SAPA HSO PSO GAs 

x1 (h) 0.203907 0.2015 0.20880 0.24420 0.244369 0.2489 

x2 (l) 3.499898 3.5620 3.42050 6.22310 6.217519 6.1730 

x3 (t) 9.063898 9.0414 8.99750 8.29150 8.291471 8.1789 

x4 (b) 0.205594 0.2057 0.21000 0.24430 0.244369 0.2533 

f(x) 1.729664 1.73121 1.74830 2.38075 2.38075 2.4331 

 

4.3 Pressure Vessel Design 

The optimum design of the cylindrical pressure vessel capped at both ends by hemispherical 

heads shown in Figure. 2 is considered as the third numerical example [33]. This problem 

has four design variables, such as; Ts (thickness of the shell, x1), Th (thickness of the head, 

x2), R (inner radius, x3) and L (length of cylindrical section of the vessel, not including the 

head, x4).  Ts and Th are integer multiples of 0.0625 inch, which are the available thickness 

of rolled steel plates, and R and L are continuous.  

 

Minimize 

 
2 2 2

1 3 4 2 3 1 4 1 3( ) 0.6224 1.7781 3.1661 19.84f x x x x x x x x x x     (20) 

 

which is subjected to 

 1 1 3( ) 0.0193 0g x x x     (21) 

 

 2 2 3( ) 0.00954 0g x x x     (22) 

 

 
2 3

3 3 4 3

4
( ) 1296000 0

3
g x x x x       (23) 

 

 4 4( ) 240 0g x x    (24) 

 

where the design variables have to be in the following ranges 

 

 0.0625 ≤ x1 ≤ 6.1875, 0.0625 ≤ x2 ≤ 6.1875, 10 ≤ x3 ≤ 200, 10 ≤ x4 ≤ 200 (25) 
 

This problem solved by Coello and Montes [34] by using genetic algorithms (GAs) with 

a dominance-based tournament selection scheme (GADTS) to handle constraints. Deb [35] 

investigated same problem previously by using Geneas. It has also been dealt by Cao and 

Wu [36] by using a mixed variable evolutionary programming (MVEP). A PSO solution is 

given in [27]. All the optimum solutions attained by different algorithms are tabulated in 
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Table 3.  

 

 
 

Figure 2. Pressure vessel design. 

 

 
Table 3: Optimum results for pressure vessel design. 

Optimum solutions obtained by different methods 

Design   

 variables 
IHSO PSO GADTS Geneas MVEP 

x1 ( ) 0.8125 0.8125 0.8125 0.9345 1.0000 

x2 ( ) 0.4375 0.4375 0.4375 0.5000 0.6250 

x3 (R) 42.0991013 42.0984456 40.097398 48.3290 51.1958 

x4 (L) 176.6285002 176.6365956 176.654405 112.6790 90.7821 

g1 (x) 0.0000012 0.0000000 -0.000020 -0.004750 -0.0119 

g2 (x) -0.0358746 -0.0358808 -0.035891 -0.038941 -0.1366 

g3 (x) -0.1647335 0.0000000 -27.886075 -3652.87684 -13584.5631 

g4 (x) -63.3714998 -63.3634042 -63.345953 -127.321000 -149.2179 

f (x) 6059.63511 6059.71430 6059.94634 6410.38110 7108.61600 

 

4.4 Latticed Geodesic Dome Design  

The improved harmony search algorithm is used to determine the optimum topology of a 

single layer geodesic dome as shown in Figure 3. In this type of dome, it is possible to 

generate the structural data for the geometry if three parameters are known. These 

parameters are the diameter of the dome, the total number of rings, and the height of the 

crown. Once the values of these parameters are decided, the total number of members, 

member incidences, total number of joints, and joint coordinates of the dome can be 

obtained automatically [22].  
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Figure 3. Plan view of a geodesic dome. 

 

The design pool for the total number of rings for this dome contains 3 values that are 3, 

4, and 5. For the crown height, a list is prepared starting from 1m to 8.75 m with the 

increment of 0.25 m. There are 32 values altogether for the harmony search algorithm to 

choose from. Among the steel tubular sections given in LRFD-AISC [37], 37 steel tubular 

sections are selected as the standard list. The sectional designations selected vary from 

PIPST13 to PIPDEST203 where abbreviations ST, EST, and DEST stands for standard 

weight, extra strong, and double-extra strong respectively. The yield strength is taken as  

250 MPa. The modulus of elasticity for the steel is taken as 205 kN/mm
2
. The diameter of 

the dome is taken as 20 m. The limitations imposed on the joint displacements are given in 

Table 4. It is apparent from the table that both upper and lower bound limitations on the 

restricted joint displacements are assumed as the same value. However it should be noticed 

that while the upper bound values are applied to those joint displacements which are on the 

negative direction of global Y-axis, the lower bound values are applied to the joint 

displacements that may be on the positive direction of the same global axis. Geodesic dome 

is subjected to 25 kN of concentrated loads which are applied on each joint of the dome. 

The sandwich type aluminum cladding is used. The load of this cladding (including frame 

elements to be used for the girts) is taken as 200 N/m
2
. Dead load is converted into 

equivalent point load for each joint for the sake of simplicity. For this conversion distributed 

load is multiplied by projected area of the dome and then this result is divided by joint 

number of the dome which gives the load acting on each joint. The loading of the dome is 

shown in Figure 4. 
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Figure 4. Loading of geodesic dome. 

 
Table 4: Displacement restrictions of a single layer geodesic dome. 

 

The optimum steel tubular designations for each member group obtained by the classical 

and the improved HS algorithms, the height of the dome and the maximum values of 

restricted displacements for both algorithms are given in Table 5. The optimum geodesic 

dome obtained by both the classical and improved HS algorithm has 3 rings. They have the 

minimum weights of 2124.2 kg and 2089.1 kg respectively. The maximum values of 

restricted displacements of geodesic dome obtained by the improved and classical HS 

algorithms are -2.76 mm and -2.41 mm. Under the equipment loading, the improved 

harmony search technique for geodesic dome has provided 1.68% lighter optimum design 

than those of classical one. It is noticed that the strength limitations are dominant in the 

design problem. In the optimum dome the strength ratios are very close to 1. 

Joint 

number 

Displacement limitations (mm) 

X-direction Upperbound 

  Lowerbound 

Y-direction Upperbound 

  Lowerbound 

Z-direction Upperbound 

  Lowerbound 

1 -                        - -                        - 28                    -28 

2 33                    -33 33                     -33 28                    -28 

3 33                    -33 33                     -33 28                    -28 
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Table 5: Optimum designs for single layer geodesic dome with classical and improved 

harmony search algorithms for unsymmetrical loading. 

Algorithm Used 
Classical Harmony 

Search Algorithm 

Improved Harmony 

Search Algorithm 

Optimum number of rings 3 3 

Optimum height of crown (m) 5.25 4.50 

Optimum   tubular 

section 

designations 

1puorG  

2puorG  

3puorG  

4puorG  

5puorG  

6puorG  

PIPST 64 PIPST 64 

PIPST 51 PIPST 51 

PIPST 64 PIPST 64 

PIPST 32 PIPST 38 

PIPST 64 PIPST 64 

PIPST 13 PIPST 13 

Maximum displacement (mm) -2.41 -2.76 

Maximum strength ratio 0.90 0.99 

Weight (kg) 2124.2 2089.1 

 

 

4.5 Rigid Steel Frame Design 

The four-storey, three-bay rigid steel frame shown in Figure 5 is designed as a last 

numerical example. The dimensions of the frame and the loadings are shown in the figure. 

The frame is subjected to gravity loading of 2.0 kN/m on the beams of roof level and 2.4 

kN/m on the beams of each floor. The lateral loading of 15 kN is applied to each floor. The 

modulus of elasticity is 200 kN/mm2. The frame consists of 28 members that are collected 

in 6 groups. The beams of roof and intermediate floors are considered to be two different 

groups as shown in the figure. 

 

 
Figure 5. Four-storey, three-bay frame 
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Table 6: Optimum designs for four-storey, three-bay rigid steel frame. 

Group 

No 
Member Type 

Classical Harmony 

Search Algorithm 

Improved Harmony 

Search Algorithm 

1 Beam W150X13.5 W200X15 

2 Beam W310X23.8 W310X21 

3 Column W250X17.9 W250X17.9 

4 Column W310X21 W200X15 

5 Column W310X21 W310X21 

6 Column W310X28.3 W360X32.9 

Weight (kg)  2556.74 2434.38 

 

Also the outer and the inner columns of the frame are considered to be two different 

groups in each two storey. The allowable inter-storey drift is taken into account as height of 

a column/300 in each storey which is equal to 1.17 cm while the lateral displacement of the 

top storey is limited to total height of the frame/300 which is equal to 4.84 cm. The strength 

capacities of steel members are computed according to LRFD-AISC [37]. The wide-flange 

(W) profile list consisting of 272 ready sections is used to size column and beam members. 

Besides, the column to column and the beam to column compatibilities of the frame 

members are checked during the optimum design process.   

The optimum steel section designations obtained by both improved harmony search and 

classical harmony search methods are given in Table 6. The improved harmony search 

algorithm yields the minimum weight of the frame as 2434.38 kg. The same frame is also 

designed using the classical harmony search algorithm under the same loading conditions 

and the optimum design achieved in that study is 2556.74 kg. The design obtained by the 

classical harmony search algorithm is 5.03% heavier than the one obtained by the improved 

harmony search algorithm.  

 

 

5. CONCLUSIONS 
 

In this study, the Improved Harmony Search Optimization (IHSO) algorithm with new 

adaptive error approach of constraint handling is proposed which can be used in obtaining 

optimum solution of engineering design optimization problems. The improved HS algorithm 

does not need initialization of harmony search parameters. The values of control parameters 

for harmony memory considering rate (hmcr) and pitch-adjusting rate (par) are 

automatically adjusted by the proposed algorithm during optimization cycles. It is important 

to note that the initial values selected have a significant effect on the optimum solution 

obtained and their value change depending on the optimization problem considered. In the 

classical harmony search algorithm the values of these parameters remain unchanged during 

the iterations. The algorithm developed is used to find the optimum solutions of 



Serdar Carbas and Mehmet Polat Saka 

 

112 

Himmelblau’s nonlinear optimization problem, a welded beam design, design optimization 

of a pressure vessel as well as optimum topology design of a latticed geodesic dome and the 

optimum design of a rigid steel frame. The optimum results obtained for benchmark 

problems are compared to those previously reported in the literature. The results reveal that 

proposed IHSO algorithm not only decreases the computational cost, but also determines the 

best optimum among all the other techniques considered in this study. It is also shown that 

the new adaptive error strategy approach for constraint handling is reliable and efficient. It 

is obvious from results that the combination of new strategies for harmony search algorithm 

and constraint handling creates a robust and versatile tool for obtaining the optimum 

solutions of engineering design optimization problems. 
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