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ABSTRACT 
 

In this study, efficient methods for optimal sensor placement (OSP) based on a new 

geometrical viewpoint for damage detection in structures is presented. The purpose is to 

minimize the effects of noise on the damage detection process. In the geometrical 

viewpoint, a sensor location is equivalent to projecting the elliptical noise on to a face of 

response space which is corresponding to the sensor. The large diameters of elliptical noise 

make the damage detection process problematic. To overcome this problem, the diameters 

of the elliptical noise are scaled by filter factor to obtain an elliptical called equivalent 

elliptical noise. Based on the geometrical viewpoint, six simple forward algorithms are 

introduced to find the OSP. To evaluate the merits of the proposed method, a two-

dimensional truss, under both static and dynamic loads, is studied. Numerical results 

demonstrate the efficiency of the proposed method. 
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1. INTRODUCTION 
 

All engineering structures are especially susceptible to random vibrations, whether they are 

due to large ground accelerations, strong wind forces, or abnormal loads such as explosions 
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[1]. Research activities have concentrated on making use of the important technological 

advances in sensing and communication technology to raise safe measures in these 

structures. Structural health monitoring (SHM) research represents the integration domain of 

these efforts striving to enhance the safety and extend the service life of infrastructures [2]. 

In general, an SHM system includes three major components: a sensor system, a data 

processing system, and a health evaluation system [3]. Since a large number of sensors are 

involved in an SHM system, it is challenging to optimally arrange sensors strategically in a 

large structure in order to obtain data from those locations which will result in the best 

identification of structural characteristics [4]. The problem of OSP on structure arises from 

the following considerations: using a small number of sensors in order to reduce the cost of 

instrumentation and data processing; obtaining good appraises of model parameters from 

noisy data; improving structural control by using valid models; determining the structural 

properties for health monitoring of structure efficiently; and ensuring visibility of modeling 

errors [5]. Finding the optimal sensor locations for a structure which has a smaller number 

of degrees of freedom (DOF), the experience and a trial-and-error approach may suffice to 

solve the problem. For a large-scale structure, whose finite element (FE) model may have 

tens of thousands of DOFs a systematic approach is needed to solve such a computationally 

demanding problem [4]. Many authors have researched the OSP in the past few years. Yi et 

al. [4] used a generalized genetic algorithm (GGA) to optimize sensors location and 

compared it with that of the existing genetic algorithm. The results showed that the GGA 

obtained the better placement scheme. Lie et al. [6] introduced an improved genetic 

algorithm to find the optimized location of sensors. The result shows that it improves 

convergence of the algorithm. Li et al. [7] used the OSP for measurement of structure 

vibration and introduced an efficient method based on the uniform design method for sensor 

placement optimization. Worden and Burrows [8] used a neural network for OSP. Kang et 

al. [9] used a combination algorithm (VEPGA) which combined a partheno-genetic 

algorithm (PGA) with virus evolutionary theory for sensor placement optimization on a 

large space structure for modal identification detection. Three performance indices for 

sensor placement optimization (one aiming at the maximization of linear independence, 

another aiming at the maximization of modal energy, and the last one being a combination 

of the front two indices) have been investigated. The algorithm is applied to a portal frame 

and a concrete arc dam. The result showed that the VEPGA performance index makes a 

superior compromise between the linear independence aimed index and the modal energy 

aimed index. Sanchez-Montanes and Pearce [10] discussed how Fisher information matrix 

(FIM) is used for sensor placement optimization. They introduced OSP within a population 

to maximize the accuracy of the overall sensory system. Singh and Joshi [11] discussed that 

error in damage classification associated with strain pattern requires an optimum number 

and position for strain sensors which obtain most appropriate strain pattern that produces a 

minimum error of damage classification. A genetic algorithm is developed and the method 

applied to SHM. Shah and Udwadia [12] introduced the optimally positioning sensors in 

lumped and distributed parameter dynamic system as a suitable norm of the covariance 

matrix is minimized. The efficiency of this method, for the structure as a shear structure 

model that has been under strong vibration of the earth, has been demonstrated. Naseralavi 

et al. [13] presented an improved genetic algorithm and sensitivity analysis for fault 
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detection. Bakhtiari-Nejad et al. [14] introduced OSP based on FIM. Numerical results for a 

plane truss demonstrate the ability of this method in damage detection. Papadimitriou [15] 

introduced two object functions for OSP using information entropy and showed that the 

lower and upper bounds of information entropy are the decreasing functions of the number 

of sensors. Based on this result, two algorithms are proposed. The theoretical developments 

and the effectiveness of the proposed algorithms are illustrated by designing the optimal 

formation for a 10 DOFs chain-like spring-mass model and a 240 DOFs three-dimensional 

truss structure. Guo et al. [16] used the damage detection for objective function in 

optimization sensor locations using genetic algorithm for SHM. The use of statistical 

objective function in OSP for SHM has been quite common [17, 18]. Perez and Behdinan 

[19] discussed particle swarm optimization (PSO) algorithm for OSP. Improvement in the 

results is shown by changing the parameters and functions problems and it shows that this 

algorithm found better positions for sensors. 

In this study, six simple forward algorithms based on a new geometrical viewpoint are 

proposed for OSP. Due to noisy data received by the sensors, some diameters of elliptical 

noise in damage space are large, so damage detection process is not exact. For scaling the 

elliptical noise, a new filter factor is proposed. Regularizing elliptical is called equivalent 

elliptical. Optimal locations for sensors obtained in two states, one using the elliptical noise 

before regularization, another using the equivalent elliptical noise based on geometrical 

viewpoint in the algorithms. The damage is detected using the recording responses from the 

obtaining optimal locations for sensors. The obtained results are compared to finding the 

best algorithm. This paper is organized as follows: Summary of sensitivity analysis for 

damage detection discussed in Section 2. The geometrical viewpoint for OSP described in 

Section 3.1. The equivalent elliptical noise described in Section 3.2. The proposed forward 

algorithms are presented in Section 4 and then two illustrative case studies are considered in 

Section 5. Finally, the conclusions end the paper in Section 6. 

 

 

2. DAMAGE DETECTION USING SENSITIVITY ANALYSIS 
 

In this research, the mathematical expression of fault detection problem can be defined by 

the Eq. (1). 

 

 ( )d R R X

 

(1) 

 

 1 2{ , , , } 0 1
T

n ix x x x  X

 

(2) 

 

where X is called the damage vector and n is the number of structural elements. The values 

xi= 0 and xi = 1 indicate the undamaged and completely damaged state, respectively. Rd= 

{rd1, rd2, …,rdm}
T
 is the vector of structure responses obtained from the existing damage 

structure and R (X) = {r1(X), r2(X), …, rm(X)}
T
 is the vector of m responses of a 

hypothetically damaged structure that can be evaluated from the analytical model. 

For solving the system of nonlinear equations in Eq. (1) the Taylor expansion of R (X) is 

used according to Eq. (3). 



S. Beygzadeh, E. Salajegheh, P.Torkzadeh, J. Salajegheh and S.S. Naseralavi 

 

4 

 
d h


   



R
R R X

X

 

(3) 

 

where Rh is the response vector of healthy structure. Using the first order approximation Eq. 

(1) can be expressed as follows: 
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(5) 

 

X0 is the response vector of healthy structure, so it has the value of zeros. S is the 

sensitivity matrix obtained from using Equations (6) and (7) [13]. 
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(7) 

 

where Rdl is the response vector of structure when the amount of damage at lth element is 

0.1% (in this study, damaging is considered as reduction in elasticity modules of the 

elements).  

The sensitivity matrix for a damped structure system under general excitation is as 

follows: 
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(8) 

 

where ai is the acceleration response vector with size nt×1 at the ith DOF (sensor 

placement) of the structure. nt is the number of data point. Matrix Si with the size of nt×n is 

also a function of time. Since the relationship between the acceleration responses ai and the 

fractional damage value x is nonlinear, a nonlinear model updating method, like the Gauss-

Newton method, is required [20]. 

ΔX is the damage vector change and can be determined as follows: 

 

 


 ΔX S R

 

(9) 
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The pseudo-inverse of  S (i.e. S
+
) can be by singular value decomposition [21]. 

 

 

3. THEORIES 

 

3.1. Geometrical viewpoint 

The responses recorded by the sensors are noisy. The noise has a multivariate normal 

distribution and it is indicated as follow: 

 

 ~ ( , )ε N μ   (10) 

 

where ε is the vector of random variable, μ is the mean vector and ∑ is the covariance 

matrix. Geometrically, a normal distribution interpreted as the elliptical where the 

eigenvalues of covariance matrix are the diameters value and mean vector is the center of 

this elliptical. The normal distribution for additive and multiplicative noise is as Eq. (11) 

and Eq. (12), respectively. 
 

 ~ ( , ) R ε N R μ   (11) 

 

 ~ ( , )
T

R ε N Rμ R R  (12) 

 

In the additive noise, ∑ matrix is the diagonal. When the components on main diameter 

from this matrix are similar, the noise is viewed as spherical in Euclidean space. The 

distribution noise with unit covariance matrix is as unit spherical. In the multiplicative 

noise, ∑ is the complete matrix, so it is viewed as elliptical in Euclidean space. 

The noise is applied to Eq. (5) as follows: 

 

  S X ΔR ε  (13) 

 

The damage vector, X, can be determined as follows: 

 

 
 

 X S ΔR S ε  (14) 

 

The normal distribution has zero mean, μ = 0, and according to Eq. (12), the normal 

distribution for S
+
ε is: 

 

 ~ ( , )
T  

S ε N 0 S S  (15) 

 

Geometrically, the damage vector, X, and the response vector change, ΔR, are members 

of n-dimensional and m-dimensional Euclidean spaces, respectively. According to Eq. (14), 

the additive noise in response space is mapped to the damage space by matrix S
+
 and it is 
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changed to the multiplicative noise with covariance matrix S
+
∑ S

+T
, according to Eq. (15). 

The eigenvalues of this covariance matrix are the diameters of the elliptical noise in damage 

space. In the present geometrical viewpoint, the noise is assumed unit spherical with 

covariance matrix In×n in damage space and it is mapped to the response space by matrix S 

and it is changed to elliptical noise with covariance matrix SS
T
. The idea is schematically 

illustrated in Figure 1. In this figure, the mapping of the response space to the damage space 

is called “direct mapping” and the overhand is called “inverse mapping”. 

... ... ... ...

  x1   x1

  x2

  xn

  x2

  xn

  r1

  r2

rm

  r1

  r2

  rm

  SS+

  d

  1/

= >

X space X space R spaceR space

(a) (b)

 
Figure 1. The geometrical interpretation: (a) Direct mapping (b) Inverse mapping 

 

According to Figure 1, if d is the diameter of elliptical noise in direct mapping, then it is 

1/d in inverse mapping. Therefore, the elliptical noise in response space should be large so 

that the noise in damage space would be small. In this viewpoint, the selection of the 

optimal location for sensor is viewed as the projection of the elliptical noise on the faces of 

response space according to Figure 2.  
 

S

R space  X space

...
...

  x1   r1

r2

  rm

  x2

xn

 

Figure 2. The projection of elliptical noise on faces of response space 

 

For example, the aim is to find the optimal placements for three sensors in the structure 

with 10 DOFs. The projections of elliptical noise obtained on all faces of response space. The 

results show that the projections on faces r3, r7 and r8 are larger than other faces. Any face is 

according to one sensor placement, so the sensors should be placed in DOFs 3, 7 and 8. 

Generally, the noise is multiplicative in response space. In inverse mapping, the elliptical 

noise in damage space changes to elliptical noise in response space, so the basic assumption 
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is rejected in the geometrical viewpoint. To address this problem, the elliptical noise in 

response space is mapped to an m-dimensional Euclidean space by P matrix and changed to 

unit spherical noise, according to Figure 3. The definition of matrix P is according to Eq. 

(16). 
 

 

1

1
0

1
0

h

hm

r

r



 
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 
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P  (16) 

 

In Eq. (16), the vector of structure responses obtained from the existing damage 

structure, rd, isn’t accessible, so response vector change is approximately considered as the 

response vector of healthy structure (rhi- rdi~ rhi). Consequently, the unit spherical noise in 

the response space is mapped to the damage space by pseudo-inverse of PS as shown in 

Figure 3. According to the geometrical theory the unit spherical noise in damage space is 

mapped to response space by PS and it is changed to the elliptical noise with covariance 

matrix PS(PS)
T
.  

 

 

S

R space   X space

...
......
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Figure 3. The elliptical noise conversion to the spherical noise 

 

The singular value decomposition (SVD) is another method for obtaining the diameters 

of elliptical noise in response space. The SVD is applied on matrix PS with m×n (m > n) 

dimension as follows: 
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where U and V are m×n and n×n matrices, respectively; the vectors in U and V are the 
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direction of diameters from elliptical and spherical noises, respectively. The diagonal matrix 

∑ contains the singular values, which are non-negative and, by convention, are numbered in 

descending order: δ1≥ δ2≥ … ≥ δn ≥0. δi which are the diameters value of elliptical noise in 

response space [21]. 

 

3.2. Equivalent elliptical: regularized elliptical noise 

Most damage detection methods cannot tolerate the influence of measurement errors and 

damage detection is not exact. The solution of Eq. (9) is often ill-conditioned and some 

diameters of elliptical noise are large in damage space, so regularization techniques are 

needed to provide bounds to the solution. The most widely used regularization method is 

Tikhonov regularization [20]. In this method, the optimal parameter, λ, is selected for 

regularization. The regularized solution can be written in the following from as, 

 

 1
1

1

m T
i

i i
ii

f





U ΔR

ΔX V  (18) 

 

where U1, V1 and σi are obtained from applying SVD to the sensitivity matrix and fi are 

referred to as filter factors which can be expressed by Eq. (19). 

 

 
σ

( )
(σ λ )

2
i

i 2 2
i

f i 1, 2,..., m 


 (19) 

 

In this study, the filter factors, hi, for regularization of elliptical noise diameters are 

proposed as: 

 

 

1

=

1
λ +

2

i

i 2

2

i

h




 
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 

 
 
 

 (20) 

 

In Eq. (20), diameters of the elliptical noise in damage space, γi, are singular values on 

the diagonal of covariance matrix obtained from applying SVD to matrix (PS)
+
. In Eq. (20) 

if λ is too large, then the problem solved will deviate from the main problem and if λ is too 

small, then the problem will be too close to the main ill-posed problem. Therefore a 

limitation is required on the range of λ, i.e. min (γi) ≤ λ ≤ max (γi). 

After regularization, the elliptical noise center is displaced according to Figure 4. The 

damage vector X changes to Y vector by regularization and the displacement vector of 

elliptical noise center, D, will be the following form. 

 

 -D Y hX  (21) 
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According to the theory of parallel axes, the standard deviation for elliptical noise 

diameters after regularization is as Eq. (22). Since the elliptical noise is composed of 

contours of a multivariate normal distribution, it isn’t considered as the effect of area. 
 

      
22 2 2

1 1 2 2( ) ... n nF h h h           D  (22) 

 

The regularization parameter λ is determined by minimizing Eq. (22). In the following 

studies, the golden section method is used for determining the parameter λ. 

X space

after regularization

before regularization

xn

.
.

.

x1

x2
 

Figure 4. Center displacement of the elliptical noise after regularization 

 

 

4. THE PROPOSED ALGORITHMS  
 

Using geometrical viewpoint, six simple forward algorithms are proposed for OSP as 

follows: 

 

4.1. Algorithm A 

The unit spherical noise, In×n, in the damage space is mapped to the response space by 

matrix PS and change to elliptical noise with covariance matrix (PS) I (PS)
T
 =PS(PS)

T
. The 

projection of this elliptical noise on the face ei of response space (i.e. ei ∈ R
m
) obtained 

using Eq. (23). 

 

 ( ) ( )
i

T T

i iproj



e

PS PS e e PS PS  (23) 

Vector ei has the size of m×1 with unit ith component and zeros elsewhere. Every vector 

of the response space is corresponding to a sensor placement. The optimal placements for 

sensors are the freedom degrees corresponding to the faces that FA is larger in Eq. (24). 

 

 ( )
i

T

AF proj e PS PS  (24) 
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4.2. Algorithm B 

The definition of PSij is according to Eq. (25), 
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Every row of matrix PS is according to a sensor location. The ith row with the large 

value for Eq. (26) is corresponding to OSP because it is corresponding to the face with large 

projection of elliptical noise. FBi is obtained for all rows and arranged in a decreasing order 

and the freedom degrees corresponding to the rows are the optimal locations for sensors, 

respectively. 

 

 
1

n

Bi ij
j

F PS


   (26) 

 

4.3. Algorithm C 

Geometrically, when the sensors are placed in optimal locations, the elliptical noise in 

response space is large. In other word, standard deviation has maximum value for diameters 

of elliptical noise in Eq. (27). 

 

 
2 2 2

1 2 ...C mF        (27) 

 

In Eq. (27) δi are the diameters of elliptical noise in response space. The response space 

is transferred to the damage space by matrix PS and obtained subspace PS(PS)
+
. The 

elliptical noise in response space is transferred to subspace and the elliptical noise with 

covariance matrix (PS(PS)
+
).(PS(PS)

T
).(PS(PS)

+
)

T
 obtained. Eigen values of this 

covariance matrix are the diameters of elliptical noise in the response space. 

The basic assumption in this algorithm is that every degree of freedom has a sensor and a 

sensor is removed in every step of this algorithm. It means that, in every step one degree of 

freedom is eliminated in calculating matrix PS. The degree of freedom is OSP; with its 

removal, the amount of Eq. (27) is lesser. In the next step, considering the presence of 

sensor optimum location obtained in the previous step and updating matrix PS, the next 

optimum location is searched. 
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4.4 Algorithm D 

The basic assumption of this algorithm is that no degree of freedom has any sensor and a 

sensor is placed in every step of the algorithm. This means that, in every step, one degree of 

freedom is used for calculating the matrix PS. The degree of freedom is OSP; with its 

attaching, the amount of Eq. (27) is larger. In the next step, when considering the presence 

of sensor optimum location obtained in the previous step and updating matrix PS, the next 

optimum location is searched. 

 

4.5 Algorithm E 

When the elliptical noise in damage space is small, the volume of elliptical noise in 

response space is large as follows: 

 

 
1

det( )
m

E i
i

F 


    (28) 

 

The basic assumption in this algorithm is that every degree of freedom has a sensor and a 

sensor is removed in every step of the algorithm. The degree of freedom is OSP; with its 

removal, the amount of Eq. (28) is lower. In the next step, when considering the presence of 

sensor optimum location obtained in the previous step and updating matrix PS, the next 

optimum location is searched. 

 

4.6 Algorithm F 

The basic assumption of this algorithm is that no degree of freedom has a sensor and in 

every step of the algorithm, a sensor is placed. The degree of freedom is OSP; with its 

attaching, the amount of Eq. (28) is larger. In the next step, when considering the presence 

of sensor optimum position obtained in the previous step and updating matrix PS, the next 

optimum location is searched. 

 

 

5. NUMERICAL EXAMPLES 
 

In this section, the different OSP algorithms presented above were tested for damage 

detection on a two-dimensional truss in two states, one using the elliptical noise before 

regularization, another using the equivalent elliptical noise for geometrical viewpoint. This 

truss as shown in Figure 5, has been previously studied by Bakhtiari-Nejad et al. [14]. The 

truss was made from steel with 20MP elastic modulus and the sections of its elements are 

according to Table 1. In this study, the damage is detected by the parameter subset selection 

method. One method to solve the problem in Eq. (9) is to select a single subset of the 

parameters for updating. The parameter subset selection is a method that selects the best 

subset of parameters for a candidate set, utilizing some application-dependent cost function 

that provides a measure of integrity of each subset [22]. The different OSP algorithms and 

the damage detection method are implemented using the MATLAB software [23]. The 

standard deviation is the exact criterion for indicating the scatter in the parameters, so 
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algorithms C and D, which are based on the standard deviation, are the criterion for OSP. 

Therefore, the results obtained from other algorithms are compared with those algorithms. 

 

Table 1: Cross-sectional areas of two-dimensional truss elements 

Element No Cross-sectional area (cm
2
) 

1-6 18 

7-12 15 

13-17 10 

18-25 12 

 

6@200cm

40cm

60cm

160cm

1

2

3

4
5

6

7

8 9 10 11 12

1

3

5

8 10 12

17
2523

15

2113 18

X

Y

 
Figure 5. Geometry of two-dimensional truss 

 

5.1 Numerical example 1: Truss under static load 
The truss is under static load, according to Figure 6. All results for the 9 sensor locations are 

listed and compared for states 1 and 2 in Tables 2 and 3, respectively. In these Tables, for 

example, positions 15 and 18 indicate that the sensor should be placed in the freedom 

degree of the 9
th

 node in Y-direction and that of the 11
th

 node in X-direction. 

 
 

1

2

3
4

5

6

7

8 9 10 11 12

250N
500N

250N

 
Figure 6. Applied static loading 

 

 

Table 2: Comparison of the optimal sensor locations in state 1  

Algorithm Optimal sensor locations 

A 18 5 20 3 1 7 9 11 12 

B 3 15 19 6 8 16 11 18 21 

C 18 5 3 20 1 7 9 12 11 
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D 18 5 20 3 1 7 9 11 12 

E 18 5 7 3 9 20 11 12 1 

F 18 5 1 7 20 12 9 3 2 

Table 3: Comparison of the optimal sensor locations in state 2 

Algorithm Optimal sensor locations 

A 15 21 10 4 6 17 8 19 2 

B 15 8 10 4 17 2 19 14 16 

C 15 21 6 10 4 8 17 19 2 

D 15 4 21 10 6 17 8 19 2 

E 8 19 6 17 21 10 15 4 13 

F 15 21 6 19 8 17 4 13 16 

To find the best algorithm, three damaged scenarios are considered as shown in Table 4. 

With recording the displacement of the freedom degrees, where a sensor exists, the 

sensitivity matrix is calculated then the damage is detected, using the method mentioned, 

and the results are compared. The results of damage detection in states 1 and 2 are reported 

in Tables 5-7 and Tables 9-11, respectively.  

Table 4: Damaged scenarios 

Scenario Element 
Damage percent 

(%) 

1 
15 25 

22 25 

2 

10 15 

18 15 

19 10 

3 

2 15 

15 15 

17 15 

25 15 

 
Table 5: Comparison of the damage detection in state 1 for scenario 1 

Element 
  Damage percent   

A B C D E F 

15 7.15 0 7.15 7.15 7.15 0 

22 35.38 37.08 35.38 35.38 35.38 37.27 

 

Table 6: Comparison of the damage detection in state 1 for scenario 2 

Element 
  Damage percent   

A B C D E F 

10 17.74 17.49 17.74 17.74 17.74 17.45 

18 24.52 13.68 24.52 24.52 24.52 0 
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19 0 0 0 0 0 11.29 

It is observed that damage detection in state 2 is more accurate, so the purposed filter factor 

is effective in the algorithms, frequently. The numbers of healthy elements are wrongly 

detected to be damaging are given in Tables 8 and 12 and it is shown that the numbers are 

lower in state 2 in the algorithms. 

Table 7: Comparison of the damage detection in state 1 for scenario3 

Element 
  Damage percent   

A B C D E F 

2 17.52 0 17.52 17.52 17.52 17.5 

15 17.45 22.8 17.45 17.45 17.45 17.62 

17 0 1145 0 0 0 0 

25 21.74 11.01 21.74 21.74 21.74 21.94 

 

Table 8: The number of healthy elements which are wrongly detected to be damaging in state 1 

Scenario 
Number of healthy element wrongly detected to be damaging 

A B C D E F 

1 2 1 2 2 2 2 

2 1 2 1 1 1 2 

3 0 2 0 0 0 1 

 

Table 9: Comparison of the damage detection in state2 for scenario 1 

Element 
  Damage percent   

A B C D E F 

15 30.68 30.39 30.68 30.68 30.61 31.31 

22 29.61 29.51 29.61 29.61 29.66 29.67 

Table 10: Comparison of the damage detection in state 2 for scenario 2 

Element 
  Damage percent   

A B C D E F 

10 17.06 16.84 17.06 17.06 17.04 16.65 

18 19.2 14.67 19.2 19.2 18.41 19.69 

19 7.32 0 7.32 7.32 6.23 0 

Table 11: Comparison of the damage detection in state 2 for scenario 3 

Element 
  Damage percent   

A B C D E F 

2 17.74 0 17.74 17.74 9.69 18.47 

15 18.6 0 18.6 18.6 16.9 20.09 
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17 8.82 0 8.82 8.82 0 0 

25 12.72 0 12.72 12.72 0 7.65 

Table 12: The number of healthy elements which are wrongly detected to be damaging in state2 

Scenario 
Number of healthy element wrongly detected to be damaging 

A B C D E F 

1 0 0 0 0 0 1 

2 0 1 0 0 0 1 

3 0 3 0 0 2 1 

The comparison between the results of damage detection in state 1 showed that the 

damage detection using the measurement locations obtained of algorithms A and E are the 

best and in state 2, algorithm A is the best. Finally, the results of damage detection obtained 

from the best algorithms in states 1 and 2 are compared for three damaged scenarios as 

shown in Figure7. As it can be seen, the best algorithm in state 2 offers better sensor 

locations and subsequently results in more exact damage detection and the number of 

healthy elements which are wrongly detected to be damaging is lower in this algorithm. 
 

 
(a) 

 
(b) 
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(c) 

Figure 7. Comparison of the damage detection obtained from states 1 and 2 in (a) scenario 1 

(b) scenario 2 (c) scenario 3 

 

5.2 Numerical example 2: Truss under dynamic load  

The excitation acting on the truss is a triangular impulsive force with 320.4 N peak values 

and it lasts for 0.005 s. It is applied vertically at node 5. The optimal sensor locations are 

obtained for 5 sensors by algorithms in two states. The results are given in Tables 13 and 14, 

respectively. 

Table 13: Comparison of the optimal sensor locations in state 1 

Algorithm Optimal sensor locations 

A 17 2 12 7 8 

B 17 2 7 12 6 

C 17 2 7 12 6 

D 17 2 12 7 8 

E 17 2 12 7 5 

F 17 2 7 12 6 

Table 14: Comparison of the optimal sensor locations in state 2 

Algorithm Optimal sensor locations 

A 8 19 17 6 21 

B 8 19 17 7 6 

C 8 19 17 7 16 

D 8 19 17 6 21 

E 8 10 6 5 11 

F 8 7 17 6 20 

Three damaged scenarios are considered as shown in Table 15. With recording the 

acceleration at the freedom degrees with sensors existing for duration of 0.25 s, damage is 

detected and the obtained results are compared. The results of damage detection are 

reported in Tables 16-18 and Tables 20-22. The numbers of healthy elements are wrongly 
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detected as damaged, are given in Tables 19 and 23. 

Table 15: Damaged scenarios  

Scenario Element Damage percent (%) 

1 
2 30 

12 40 

3 

6 

7 

8 

20 

30 

30 

2 

5 20 

8 50 

18 20 

Table 16: Comparison of the damage detection in state 1 for scenario 1 

Element 
  Damage percent   

A B C D E F 

2 0 0 0 0 0 0 

12 27.34 27.14 27.14 27.34 34.91 27.14 

Table 17: Comparison of the damage detection in state 1 for scenario 2 

Element 
  Damage percent   

A B C D E F 

6 15.94 2.98 2.98 15.94 10.29 2.98 

7 39.75 19.8 19.8 39.75 40.98 19.8 

8 0 0 0 0 0 0 

Table 18: Comparison of the damage detection in state 1 for scenario 3 

Element 
  Damage percent   

A B C D E F 

5 16.79 14.59 14.59 16.79 13.21 14.59 

8 0 0 0 0 0 0 

18 0 0 0 0 0 0 

Table 19: The number of healthy elements which are wrongly detected to be damaging in state 1 

Scenario 
Number of healthy element wrongly detected to be damaging 

A B C D E F 

1 2 2 2 2 3 2 

2 4 5 5 4 5 5 

3 4 4 4 4 4 4 
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Table 20: Comparison of the damage detection in state 2 for scenario 1 

Element 
  Damage percent   

A B C D E F 

2 38.96 26.79 27.29 38.96 11.21 17.21 

12 44.19 23.87 24.62 44.19 10.86 9.03 

 

Table 21: Comparison of the damage detection in state 2 for scenario 2 

Element 
  Damage percent   

A B C D E F 

6 29.74 17.35 20.09 29.74 19.92 17.36 

7 28.97 16.8 18.07 28.97 21.98 15.61 

8 27.85 31.71 22.44 27.85 20.54 30.99 

 

Table 22: Comparison of the damage detection in state 2 for scenario 3 

Element 
  Damage percent   

A B C D E F 

5 25.74 23.23 28.87 25.74 28.29 16.12 

8 54.48 0 0 54.48 0 0 

18 32.74 39.92 38.02 32.74 0 28.17 

 

Table 23: The number of healthy elements which are wrongly detected to be damaging in state 2 

Scenario 
Number of healthy element wrongly detected to be damaging 

A B C D E F 

1 1 1 1 1 2 1 

2 1 2 2 1 1 2 

3 1 1 2 1 3 2 

 

The comparison between the results of damage detection in state 1 showed that the 

damage detection using the measurement locations obtained from algorithms A and E are 

the best and in state 2, algorithm A is the best. 

Finally, the results of damage detection obtained from the best algorithms in states 1 and 

2 are compared with three damaged scenarios as shown in Figure 8. 
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(a) 

 
(b) 

 
(c) 

Figure 8. Comparison of the damage detection obtained from states 1 and 2 in (a) scenario 1 

(b) scenario 2 (c) scenario 3 

 

As it can be seen, the best algorithm in state 2 offers better sensor locations and 



S. Beygzadeh, E. Salajegheh, P.Torkzadeh, J. Salajegheh and S.S. Naseralavi 

 

20 

subsequently more exact damage detection and the number of healthy elements which are 

wrongly detected to be damaging is lower in this algorithm. From the results given in this 

paper, it can be seen that the new geometrical viewpoint is effective for OSP. Generally, the 

present method is simple and has relatively high accuracy. 

 

 

6. CONCLUSION 
 

A methodology for sensor placement optimization based on a new geometrical viewpoint is 

developed in this paper. The view of this method to the OSP is a projection of the elliptical 

noise on the faces of the response space. Based on this viewpoint, six simple forward 

algorithms are introduced. The elliptical noise regularized by a filter factor is called 

equivalent elliptical noise. The damage is detected using the responses record of optimal 

sensor placements obtained from the algorithms in two states, one using the elliptical noise 

before regularization, another using the equivalent elliptical noise based on geometrical 

viewpoint in algorithms. The results as shown state that the algorithm A, based on the norm 

of the projection of the elliptical noise on face of the response space in state 2, is the best 

algorithm and the damage detection is more accurate and the number of healthy elements 

which are wrongly detected to be damaged is lower. So the geometrical viewpoint can be 

applied to the OSP problem and obtaining optimal placements are better using 

regularization by the purposing filter factor. It is also shown through the numerical 

examples that the present method is exact and effective. 
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