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ABSTRACT 
 

Crossover operator plays a crucial role in the efficiency of genetic algorithm (GA). Several 

crossover operators have been proposed for solving the travelling salesman problem (TSP) 

in the literature. These operators have paid less attention to the characteristics of the 

traveling salesman problem, and majority of these operators can only generate feasible 

solutions. In this paper, a crossover operator is presented that has the capability of 

generating solutions based on a logical reasoning. In other words, the solution space is 

explored by the proposed method purposefully. Numerical results based on 26 benchmark 

instances demonstrate the efficiency of the proposed method compared with the previous 

meta-heuristic methods. 
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1. INTRODUCTION 
 

Traveling salesman problem is one of the well-known and practical problems in the field of 

combinatorial optimization. The purpose of this problem is to find the shortest Hamiltonian 

tour in a complete graph with N nodes.  A salesman starts from a city, visits a set of cities 

and returns to the original location in such a way that the total distance travelled becomes 

minimum and each city is visited exactly once. TSP is easy to understand but very hard to 

solve, because it  belongs to the class of NP-hard problems[1]. Many practical problems can 

be formulated as TSP in the real world; such as: vehicle routing problem, ship scheduling, 
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train driver scheduling and flowshop scheduling. 

Many researchers have attempted to solve TSP during the past fifty years and various 

algorithms have been presented to solve it. Algorithms for solving this problem are 

generally classified into two categories: exact algorithms and approximate algorithms. The 

branch-and-bound and branch-and-cut are examples of the exact methods that are 

excessively time consuming especially in large-scale instances. Approximate methods are 

rather classified into heuristic and meta-heuristic algorithms. Heuristic algorithm for TSP 

can be divided into three classes : 1) tour construction methods [2-3] , 2) tour improvement 

methods [4-5] , and 3) composite methods [6-8]. Tour construction methods build a tour by 

adding an unvisited city to the solution at each step while tour improvement methods apply 

an initial tour and try to achieve a shorter tour in each step. Finally, composite methods 

combine the two previous procedures to obtain better solutions. One of the most successful 

heuristic methods for solving traveling salesman problem was proposed by Lin and 

Kernighan (1973) [8]. The Lin-Kernighan algorithm (LK) is a λ-opt algorithm where the λ 

can be any nonnegative integers. It determines the most suitable λ value at each step, so that, 

in each step, λ edges of the current tour are replaced by λ new edges to achieve a shorter 

tour [6]. 

Appearance of meta-heuristic algorithms and their applications in optimization problems 

started a new stage of studies. During the three last decades, various meta-heuristic search 

algorithms have been applied on TSP; such as: tabu search [9], genetic algorithm [10-14], 

memetic algorithm [15-16], ant colony optimization [17-19], particle swarm optimization 

[13, 20-22], neural networks[23-26], simulated annealing [27], intelligent water drops [28], 

chaotic ant swarm [29], and gravitational emulation search algorithm [30]. Further 

information about the TSP and its solution methods can be found in [1]. 

Genetic algorithm has attracted a great deal of attention, due to its high efficiency in 

solving combinatorial optimization. Therefore, various methods of solving TSP have been 

presented based on the genetic algorithm. One of the major differences between the genetic 

algorithms is in their operators. The crossover operator is one of the most effective operators 

used in  genetic algorithms. It produces offspring by combining parents. Therefore, using an 

appropriate crossover operator for TSP can increase the efficiency and the speed 

convergence of genetic algorithm. Several crossover operators for TSP have been 

developed, such as: partially map crossover (PMX), cycle crossover (CX), order crossover 

(OX1), position-based crossover (POS), alternating-position crossover (AP), and edge 

recombination crossover (ER). Larranaga et al. [31] drew a comparison between the 

aforementioned crossover  operators. Their results demonstrate the superiority of edge 

recombination crossover operator (ER) and order crossover operator (OX1) compared to the 

others. Nevertheless, the aforementioned operators have only concentrated on generating 

feasible solutions, and they have paid less attention to the characteristics of the traveling 

salesman problem. In fact, the probability of the presence of  global optimum is not equal in 

the entire feasible space for some optimization problems. For example, longest edges of a 

complete graph are less likely to be in the shortest Hamiltonian tour. Therefore, one can 

hypothesize that if the crossover operator takes account of the likelihood of the presence of 

longest edges for generating offspring, it would explore the solution space more efficiently. 

In this regards, this paper attempts to develop a new crossover operator which takes account 
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of the inherent characteristics of TSP. It generates feasible solutions based on a logical 

reasoning by decreasing the probability of incorporating longest edges of the complete graph 

into the traveling salesman‟s tour. 

The rest of this paper is organized as follows. Section 2 is dedicated to the basic concepts 

of genetic algorithm. Section 3 describes GA for TSP. The proposed crossover operator is 

described in Section 4. Some numerical results on TSP benchmarks are presented in Section 

5. Finally, Section 6 concludes the paper and outlines future research perspectives. 

 

 

2. BASIC CONCEPTS OF GRNRTIC ALGORITHM 
 

The genetic algorithm is a randomized search technique which is based on the principles of 

natural selection and survival of the fittest chromosomes. In GA, the parameters of a 

solution are encoded into a numerical string called chromosome. Each chromosome 

represents a possible solution for the problem. Each chromosome is made up of a pre-

specified number of genes. The set of chromosomes is called „population‟. Initially a 

random population is created to represent different points in the search space, and based on 

the principle of survival of the fittest individuals, some of them are selected. Biologically 

inspired operators like crossover and mutation are then applied on these strings to yield a 

new generation of strings. The process of selection, crossover and mutation continues for a 

fixed number of generations or until a termination condition is satisfied. The following 

pseudo-code describes this approach. 

 

Algorithm 1. Genetic Algorithm 

Set the initial population 

while termination condition is not satisfied do   

        Evaluate the fitness value of each chromosome in the population. /*Fitness 

         Evaluation*/ 

         Select parents from the population. /*Selection Operation*/ 

         Create offspring by applying crossover operation on the parents. /*Crossover  

         Operation*/ 

         Randomly select a number of offspring for mutation. /*Mutation                                

 Operation*/        

end while  

return the chromosome with the highest fitness 

 

 

 

3. GENETIC ALGORITHM FOR TSP 
 

In this section, we describe the detail of our GA for solving the traveling salesman problem. 

The flowchart of the proposed algorithm for the TSP is depicted in Figure 1. Details of the 

algorithm are explained in the following sections. 
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Figure 1. The flowchart of the proposed algorithm 

 

3.1. Chromosome representation 

As noted earlier, the first step in GA is to encode feasible solutions for a particular problem. 

Several representation methods have been used for the TSP such as: path representation, 

matrix representation, binary representation, adjacency representation and ordinal 

representation. In this paper, we use a path representation where the cities are listed in the 

order in which they are visited. For example, consider a tour with four cities. If a salesman 

goes from city 1 to city 2, city 3, and city 4 sequentially and then returns back to city 1, the 

path representation of the tour will be as the chromosome shown in Figure 2. 

 

 

Figure 2. Path representation 

 

3.2. Population initialization 

The population initialization can be done by a random generation method or structured 

generation methods such as Lin-Kernighan algorithm [8]. Here, the initial population is 

generated randomly, where a randomized procedure is utilized to produce random 

permutation of nodes. 
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3.3. Evaluation of fitness function 

Since GA is generally applied on maximization problems and the TSP is a minimization 

problem, the inverse of tour length is considered as the fitness function. 

 

3.4. Selection operation 

Through selection operation step, parents are selected for crossover. Several different 

selection methods have been developed in the previous researches, such as roulette wheel 

selection, tournament selection, ranking selection and proportional selection. Here, the 

roulette wheel selection method is selected. 

 

3.5. Crossover operation 

The main purpose of this component is to create offspring using a given pair of solutions 

chosen through the selection operation procedure. This paper proposes a new crossover 

operator. Details of the proposed crossover operator are explained in Section 4. 

 

3.6. Mutation operation 

Mutation operation increases the genetic diversity of populations. This operation avoids 

premature convergence and escape algorithm from local optima. In this paper, two mutation 

operators are used in each iteration simultaneously. The first mutation operator is the 

exchange mutation operator (EM) that randomly selects two cities in a tour and exchanges 

them (Figure 3(a)). We have designed another mutation operator which can increase the 

diversity of population while maintaining the optimality of sub-tours. The second operator is 

somewhat based on locating neighbor cities as closed as possible to each other in the 

resultant tour (Figure 3(b)). The pseudo-code of the proposed mutation operator is presented 

in the following algorithm. 

 

Algorithm 2. Second mutation operator 

Step 1: Divide the chromosome by two cut points into three sectors.   
Step 2: Copy the third sector of the prior chromosome into the first part of the new             

chromosome. 

Step 3: Copy the second sector of the prior chromosome into the new chromosome in           

front of the previous copied genes in step 2. 
Step 4: Copy the inverse of the first sector of the prior chromosome into the new                  

      chromosome in front of the previous copied genes in step 3. 
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Figure 3. Mutation operators 

 

3.7. Local search 

2-opt is a well-known local search operator for solving TSP. In each step of 2-opt, two 

edges of the current tour are replaced by two other edges in a way that a shorter tour is 

achieved. This local search operator is implemented in this paper. Interested readers can 

refer to [8] for the details of 2-opt algorithm. 

 

3.8. Termination criteria 

The termination criteria can be characterized by the maximum number of iterations, the 

compution time, or the number of iterations with no improvement. In this paper, the 

maximum number of iterations is used as the termination criterion. 

 

 

4. THE PROPOSED CROSSOVER OPERATOR  
 

The new crossover operator presented in this section is designated to generate more logical 

offspring. It can increase the possibility of connecting each city to its neighboring cities. In 

other words, the longest edges of a complete graph are less likely to be in the shortest 

Hamiltonian tour. For this purpose, we have created a list of tabu cities for each city so that 

the possibility of direct connection of distant cities is reduced; hence, cities that their 

distances from city i are higher than a critical distance are stored in the tabu list of city i. 

The critical distance for city i is calculated as: 

 

 
1

1
, 1

( 1)

j N
i

c ij

j

d d B
B N





 



 

(1) 

 

where dij is the traveling distance between cities i and j, N is the number of cities in TSP 

and B  is a positive parameter which determines the importance of the closeness of cities. 

Thus, as the value of B  is increased the probability of connecting each city to the nearer 

cities is increased. 
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Note that storing cities in the tabu list of city i does not mean that the tabu cities of city i 

are prohibited from connecting to city i directly, but it is just a measure to decrease the 

possibility of the connection of faraway cities to each other. 

To produce an offspring, the algorithm of the proposed crossover operator is given 

below. 

 

Algorithm3. Proposed crossover operator 

Step 1: Choose initial city randomly (name it city i) and copy it into the first gene of the 

offspring. 

Step 2: If all of the cities are visited then go to step 6 else go to step 3. 

Step 3: Denote j1 and j2 the cities located after the city i in the first and second parents 

respectively. 

Step 4: 
1 2min min{ , }.ij ijd d d

 
Step 5: If 

 
(dmin ≤ i

cd ) then 

 If (
1 minijd d and j1 is an unvisited city) then 

                 Copy j1 into the next gene of the offspring and i← j1 , then go to step 2. 
                    else if (

2 minijd d and j2 is an unvisited city)  

    Copy j2 into the next gene of the offspring and i← j2 then go to step2. 
                    else  

                             Copy the nearest city (to city i) that has not been chosen yet into the 

                             next gene of the offspring, name it city j3 and i← j3 then go to step 2. 

               end if 

       else 

               Copy the nearest city (to city i) that has not been chosen yet into the next           

                       gene of the offspring, name it city j3 and i← j3 then go to step 2. 

       end if 

Step 6: return the offspring  

 

Figure 4 presents an example for the application of the proposed crossover operator in a 

5-city tour. Consider two parents P1 and P2 (see Figure 4(a)). According to the first step of 

the proposed crossover operator, city 1 is selected randomly and copied into the first gene of 

the offspring (Figure 4(b)). Then those cities that are located after city 1 in both parents are 

considered for the next step of the algorithm (here, j1 = j2 =2). Since the distance between 

city 1 and city 2 is less than the critical distance, city 2 is copied into the second gene of the 

offspring and according to step 5, i=2 is set (Figure 4(c)). Following the same approach 

discussed for city 1, city 5 and city 4 are considered as the cities that are located after city 2 

in the both parents. Whereas the minimal distances between city 2 and cities 5 and 4 are 

more than the critical distance then according to step 5, the closest city to the city 2 that has 

not been visited yet (city 3) is determined as the third city in this Hamiltonian tour (Figure 

4(d)). In next step, cities 4 and 5 are both visited cities after city 3 in the parents. Since city 

4 is closer to city 3 and the distance between city 3 and city 4 is less than the critical 
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distance, then this city is copied into the next gene of the offspring (Figure 4(e)). Finally, 

city 5 is copied into the last gene of the offspring as the last remaining city (Figure 4(f)). 

 

 
Figure 4. The proposed crossover operator 

 

 

5. RESULTS AND DISCUSSION 
 

In this section, we present the computational results of the proposed algorithm. For 

experiments, a computer with Intel Pentium IV 2.67 GHz processor was used and the 

algorithm was coded in C#.Net 2008 programming language. Moreover, in all cases a 

population of 100 chromosomes is used; the value of crossover rate is set 0.8 and the 

mutation rate is taken as 0.1.  

Figure 5 compares the convergence speed of the proposed algorithm when B  varies from 

1 to 4. Due to the similarity of results from different test problems, here we present  the 

results of the Eil51 problem. It can be observed from Figure 5 that better convergence speed 

is obtained when the value of B  is 2. Besides, it can clearly be seen in Figure 6 that the 
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proposed algorithm finds a better solution when the value of B is 2. Therefore, the value of 

2 is considered for parameter B  in all analysis performed within the rest of this section.  

 

 
Figure 5. Convergence rates of the proposed algorithm with different values of B  

 

 
Figure 6. Average tour lengths of 15 runs on Eil51 

 

Table 1 presents the numerical results of the proposed GA on TSP instances. The first 

column of the table indicates the instance name .The second column indicates the well 

known optimal tour length for each problem . The columns „„Best”, „„Average”, „„Worst”  

and “ Std” show the best, average, worst and standard deviation of tour lengths of 15 runs, 

respectively. The last column indicates the average running time in seconds. The relative 

error, which is presented in the seventh column, is calculated as follows: 
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Ave opt

Err
opt


 

 

(2) 

where Ave is the average tour length of all runs for each problem and Opt is the best-known 

solution. 
 

Table1. Results of the proposed genetic algorithm for TSP instance 

Problem optimal  best average worst Std Err Time(s) 

Bruma14 3323 3323 3323 3323 0 0 0.139 

F15 1105 1105 1105 1105 0 0 0.073 

U16 6859 6859 6859 6859 0 0 0.450 

C20 62568 62568 62568 62568 0 0 0.034 

S21 60000 60000 60000 60000 0 0 0.041 

U22 7013 7013 7013 7013 0 0 6.3 

Wi29 27603 27603 27691.2 27750 75.9 0.319 3.95 

C30 62716 62716 62716 62716 0 0 0.064 

Olvir30 420 420 420.3 421 0.48 0.071 6.6 

Ncit30 48873 48873 48873 48873 0 0 3.13 

F32 84180 84180 84180 84180 0 0 0.071 

Dj38 6656 6656 6656 6656 0 0 2.02 

C40 6278 6278 6278 6278 0 0 0.071 

F41 68160 68160 68160 68160 0 0 0.063 

Att48 33522 33522 33522 33522 0 0 4.89 

Eil50 425 426 426 426 0 0.235 3.7 

Eil51 426 427 427 427 0 0.234 8.14 

Mhd51 459 459 459 459 0 0 6.6 

Berlin52 7542 7542 7598 7662 42 0.745 13 

Ncit64 6400 6400 6400 6400 0 0 0.205 

St70 675 678 680.2 684 1.98 0.77 12.6 

Eil76 538 538 542.6 546 3.13 0.85 24.4 

Pg88 6548 6548 6548 6548 0 0 4.4 

Kroa100 21282 21334 21431.8 21542 67.5 0.7 81.5 

Pr124 59030 59150 59446.7 59720 218 0.203 79 

Pr226 80369 81206 81944 82363 362 1.959 112 

 

Figure 7 shows the average convergence speed curves of the proposed crossover operator 

on four TSP instances: Bruma14, Dj38, Eil 51 and Pg88. It illustrates that the maximum 

error of the proposed algorithm is about 0.235% in the above-mentioned TSP instances.   

In order to assess the performance of the proposed algorithm, some of the existing meta-

heuristic algorithms are considered: genetic algorithm (GA), particle swarm optimization 

(PSO), artificial neural network (ANN), ant colony optimization (ACO), intelligent water 

drops (IWD), simulated annealing (SA) and chaotic ant swarm (CSA). Table 2 shows the 

capability of the proposed algorithm in comparison to the other meta-heuristic algorithms.  
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Figure 7. Convergence curves of the proposed algorithm   

 
Table 2. Computational average results of several meta-heuristic approaches 

Study Method 
Eil 

51 

Berlin 

52 

St 

70 

Eil 

76 

Kroa 

100 

Optimal solution - 426 7542 676 538 21282 

Proposed method GA 427 7598 680.2 542.6 21431.8 

Kuo et al (2010) [11]  GA 438 7738 N/A N/A 22141 

Ting et al (2010) [12] GA 513 N/A 939 N/A N/A 

Cunkas and Ozsaglam (2009)[13] GA 434 N/A N/A 551 21852 

Soak et al (2004) [10] GA 429 N/A N/A N/A 21445 

Licheng and Lei (2000) [14] GA 446 N/A N/A 568 22154 

Cunkas and Ozsaglam (2009)[13] PSO 436 N/A N/A 555 22071 

Shi et al (2007) [21] PSO 436.9 7832 697.5 560.4 N/A 

Shi et al (2006) [22] PSO 444.6 7960 733.2 587.4 N/A 

Li et al (2006) [20] PSO 442 N/A 696 555 23036 

Masutti et al (2009) [24] ANN 437.4 7932.5 N/A 556.3 21522.7 

Creput and Koukam (2009) [26] ANN 435.1 N/A 681.7 553.5 21524.6 

Cochrane and Beasley (2003) 

[23] 
ANN 438 8070 N/A 561 21560 

Somhom(1997) [25] ANN 440.5 8025 N/A 562.2 21616 

Puris et al (2007) [19] ACO N/A 7594 750 N/A N/A 

Tsai et al (2004) [17] ACO 430 N/A N/A 552.6 21457 

Shah-Hosseini (2009) [28] IWD 432.6 N/A 684.08 558 21904 

Liu et al (2009) [27] SA 432.5 7718.5 N/A 564 N/A 

Wei (2011) [29] CAS 439 N/A N/A 559 21552 
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6. CONCLUSION 
 

  In this study a crossover operator is developed for solving TSP. The proposed method 

utilizes a logical reasoning for producing offspring. Computational results on 26 benchmark 

instances indicate that the proposed algorithm is very efficient to find the best-known 

solution especially for small-to-medium-scale instances. The most obvious finding to 

emerge from this study is that employing a crossover operator based on a logical reasoning 

can significantly improve the results of genetic algorithm. An important topic for future 

research would be the modification of the proposed crossover operator using fuzzy-logic 

systems, which are mostly suited to model logical reasoning issues. Finally, the overall 

procedure of the proposed method can be considered as a general framework and it could be 

extended to cover other routing and scheduling problems. 
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