Search published articles


Showing 1 results for Underwater Channel Modelling

,
Volume 1, Issue 1 (1-2005)
Abstract

In an environment such as underwater channel where placing test equipments are difficult to handle, it is much practical to have hardware simulators to examine suitably designed transceivers (transmitter/receiver). The simulators of this kind will then allow researchers to observe their intentions and carry out repetitive tests to find suitable digital coding/decoding algorithms. In this paper, a simplified shallow water digital data transmission system is first introduced. The transmission channel considered here is a stochastic DSP hardware model in which signal degradations leads to a severe distortion in phase and amplitude (fades) across the bandwidth of the received signal. A computer base-band channel model with frequency non-selective feature is derived by the authors [10-11]. This system was based on fullraised cosine channel modelling and proved to be the most suitable for vertical and shortrange underwater communication csdfher), with a reflected path (specula component, when the acoustic hydrophone receives reflected signals from surface and bottom of the sea) and a random path (diffused component, when the acoustic hydrophone receives scattered signals from the volume of the sea). The model assumed perfect transmitter-receiver synchronization but utilized realistic channel time delays, and demonstrated the timevarying characteristics of an underwater acoustic channel observed in practice. In this paper, they are used to provide a full system simulation in order to design an adaptive receiver employing the most advanced digital signal processing techniques in hardware to predict realizable error performances.

Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.