Showing 3 results for Radiation
B. Zakeri, H. Bernety,
Volume 10, Issue 4 (12-2014)
Abstract
Band-notch characteristic has been of great interest recently to overcome the electromagnetic interference of Ultra-wideband systems (UWB) with other existing ones. In this paper, we present a novel microstrip-fed antenna with band rejection property appropriate for UWB applications. Band-notch characteristic has been achieved by adding a rectangular resonant element to the ground section. A prototype was fabricated and measured based upon optimal parameters. Experimental results show consistency with simulation results. Measurement results confirm that the antenna covers the UWB band and satisfies a band rejection in the frequency span of 5 GHz to 5.7 GHz to restrain it from interference with Wireless Local Area Network (WLAN). Then, to achieve better isolation, a rectangular strip is appended to the band-notch creating part of the ground section to enhance obtained VSWR up to 30 through simulation. In addition, by applying a similar technique, a dual band-notched characteristic with an average simulated VSWR of around 13.75 has been achieved for WLAN and the downlink of X band satellite communication systems with each more than 10. Features such as small size, omnidirectional pattern and perfect isolation make the antenna suitable for any UWB applications.
J. Fatemi-Nasab, S. Jarchi, A. Keshtkar,
Volume 17, Issue 1 (3-2021)
Abstract
In this study, a radiation pattern reconfigurable microstrip antenna is designed and fabricated. The antenna’s radiation pattern is directed in 9 different angles by employing a radiating patch and embedding complementary split ring resonators (CSRR) on the ground plane. The radiating patch is of circular shape, while for CSRR elements both circular and rectangular shapes are investigated. The antenna is excited through coaxial feed. There are four CSRR cells on the ground plane. With applying slots on CSRR’s arms and loading them by pin diodes, variable length CSRRs are obtained which result in radiation pattern reconfigurable property. Radiation characteristics of the antenna versus different switching modes of pin diodes are investigated and illustrated. The proposed antenna is also compact. The designed antenna was fabricated on FR4 substrate with thickness of 1.6 mm, and measurement results are provided. The results demonstrate that the presented antenna has impedance bandwidth of 2.39-2.47 GHz with a gain of more than 7 dBi.
Jia Wen Tang, Chin Leong Wooi, Wen Shan Tan, Nur Hazirah Zaini, Yuan Kang Wu, Syahrun Nizam Bin Md Arshad@hashim,
Volume 21, Issue 2 (6-2025)
Abstract
Photovoltaic (PV) energy is increasingly recognized as an environmentally friendly source of renewable energy. Integrating PV systems into power grids involves power electronic inverters, adding complexity and evolving traditional grids into smarter systems. Ensuring the reliability of decentralized PV generation is crucial, particularly as PV systems are often exposed to extreme weather conditions. This study investigates the impact of temperature and solar radiation on the performance of a PV array, focusing on key characteristics such as open-circuit voltage (VOC), short-circuit current (ISC), and maximum power (PMAX). Using PSCAD/EMTDC simulations, the study analyses these characteristics under varying temperatures (5°C to 45°C) and radiation levels (200 W/m² to 1200 W/m²). Results indicate that VOC increases with higher irradiance but decreases with higher temperatures. ISC increases with both higher radiation and temperature, while PMAX is optimized at high irradiance and low temperatures. The impulse withstand voltage (Vimp), a critical factor for PV system reliability, is assessed according to the PD CLC/TS 50539-12 standard. Findings reveal that at low temperatures and high radiation, the Vimp requirement is highest, emphasizing the need for robust voltage protection in PV systems. These insights underscore the importance of considering local climate conditions and implementing effective thermal management to enhance the performance and reliability of PV systems.