Search published articles


Showing 3 results for Magnetic Gear

J. Sepaseh, N. Rostami, M. R. Feyzi,
Volume 17, Issue 4 (12-2021)
Abstract

A new axial magnetic gear (AMG) with enhanced torque density and reduced cogging torque is proposed in this paper. In the new structure, the direction and width of permanent magnets in high-speed rotor are changed and permanent magnets are removed from the modulator while the low-speed rotor remains unchanged. The torque density of the proposed magnetic gear is enhanced by using an appropriate direction and pole pitch for permanent magnets of high-speed rotor. The proposed AMG is compared with recent structures in the literature with the highest torque density. Three-dimensional (3D) finite element analyses are employed to obtain the cogging torque and torque density. The results of the analysis indicate that not only torque density increases but also cogging torque decreases dramatically.

M. K. Rashid, A. M. Mohammed,
Volume 19, Issue 2 (6-2023)
Abstract

Nowadays, magnetic gears (MGs) have become an alternative choice for mechanical gears because of their low maintenance, improved durability, indirect contact between inner and outer rotors, no lubrication, and high efficiency. Generally, although these advantages, MGs suffer from inherent issues, mainly the cogging torque. Therefore, cogging torque mitigation has become an active research area. This paper proposed a new cogging torque mitigation approach based on the radial slit of the ferromagnetic pole pieces of MGs. In this method, different numbers and positions of slits are applied. The best results are gained through an even number of slits which shows promising results of cogging torque mitigation on the inner rotor with a small mitigation in the mean torque on both rotors. This work is done by using Simcenter and MATLAB software packages. The inner rotor’s cogging torque has mitigated to 81.9 %, while the outer rotor’s cogging torque is increased only by 2.75 %.

Ali Jabbari, Hassan Moradzadeh, Rasul Lotfi,
Volume 19, Issue 4 (12-2023)
Abstract

Along with the development of hybrid electric vehicles, researchers are trying to reduce existing limitations such as noise and environmental concerns and improve the efficiency and reliability of these systems. The use of magnetic gear technology is one of the solutions that have been recently proposed to remove these limitations and achieve higher benefits. In this paper, a mechanically coupled magnetic geared (MCMG) machine has been introduced. An accurate analytical model based on the subdomain method is presented to calculate the magnetic machine performance. To do this, first, a pseudo-Cartesian coordinate system is specified, and then the constitutive equations, i.e. Laplace’s and Poisson’s equations are rewritten for different regions of the machine. The separation of variables method was used to determine the general solution of the equations. Then by applying appropriate interface and boundary conditions, the Fourier coefficients of the equations were determined. To verify the analytical results, the performance of the proposed magnetic machine is numerically simulated using the finite element method in commercial software, and then a prototype is built and tested in three distinct modes. By comparing the analysis results with numerical simulation results and experimental tests, the high accuracy of the proposed analytical model can be confirmed.

Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.