Search published articles


Showing 9 results for Rahman

H. Rahmanian, S. H Sedighy, M. Khalaj Amirhosseini,
Volume 11, Issue 1 (March 2015)
Abstract

A method for design and implementation of a compact via-less Composite Right/Left-Handed Transmission Line (CRLH TL) is presented. By introducing a new circuit model, the CRLH transmission line behavior is studied versus the parameters variations to achieve the desired characteristic impedance and electrical length. Then a compact quarter wavelength CRLH transmission line with 70 Ω characteristic impedance is designed as an example. Finally a very compact four way Wilkinson power divider and a rat-race coupler are designed and fabricated by using this type of CRLH TL which exhibit about 75% and 80% compactness, respectively.
J. Rahmani Fard,
Volume 16, Issue 1 (March 2020)
Abstract

By combining the field-weakening control principle of a new axial flux-switching permanent-magnet motor (AFFSSPM) with the space vector pulse width modulation (SVPWM) and maximum torque per voltage (MTPV) control principle, a novel field-weakening control strategy for AFFSSPM is proposed in this paper. In the first stage of the field-weakening, the difference between the reference voltage updated by the current regulator and the saturated voltage output with SVPWM is used for field-weakening control, which modifies the direct axis of stator current. This method makes full use of the DC bus voltage, and can naturally smooth transition. In the second stage of the field weakening, the principle of MTPV control is used for field-weakening control, and then, being linearized. Compared with the traditional method, this method solves the problem of depth weakening of AFFSSPM. Between the two stages, the turning speed is used for the switch condition to achieve a smooth transition. The effectiveness and correctness of the proposed field-weakening control method and calculation method were verified with simulation results. Moreover, the dSPACE semi-physical simulation experimental platform for the hardware design and software design is used, and the semi-physical simulation experiment is carried out. The results show the accuracy and effectiveness of the proposed scheme.

S. A. Rahman, S. Birhan, E. D. Mitiku, G. T. Aduye, P. Somasundaram,
Volume 17, Issue 4 (December 2021)
Abstract

Aim of this paper is to attain the highest voltage sag and swell compensation using a direct converter-based DVR topology. The projected DVR topology consists of a direct converter with bidirectional switches, a multi winding transformer with three primary windings and secondary winding and a series transformer. When voltage swell occurs in a phase, the same phase voltage can be utilized to mitigate the swell as huge voltage exists in the phase where swell has occurred. So it is possible to mitigate an infinite amount of swell. In all the DVR topologies, the converter is only used to synthesize the compensating voltage. The range of voltage sag mitigation depends upon the magnitude of input voltage available for the converter. If this input voltage of the direct converter is increased, then the range of voltage compensation could also be increased. Input voltage of the direct converter is increased using the multi winding transformer. The direct converter is synthesizing the compensating voltage. This compensating voltage is injected in series with the supply voltage through the series transformer and the sag is mitigated. In this proposed topology, the input voltage for the direct converter is increased by adding the three phase voltages using a multi winding transformer. Thus the voltage sag compensating range of this topology is increased to 68% and the swell compensating range is 500%. Ordinary PWM technique has been used to synthesize the PWM pulses for the direct converter and the THD of the compensated load voltage is less than 5%. This topology is simulated using MATLAB Simulink and the results are shown for authentication.

Pravat Biswal, Veera Venkata Subrahmanya Kumar Bhajana, Pavel Drabek,
Volume 18, Issue 4 (December 2022)
Abstract

This paper proposes two new soft-switching transformerless converters with high voltage conversion ratio. These proposed converters achieve soft-switching each with a single auxiliary resonant cell. The merit of these converters is reduced switching losses with lesser number of devices. The main switching devices are turned off with zero current switching (ZCS). Apart from the soft-switching feature, the voltage conversion ratio is increased in comparison with the existing topologies. The operating principles and the simulation results on 12V/200V/500W converter system are presented in this paper.
 
A. Y. Abdulrahman, O. S. Zakariyya, A. S. Afolabi, A.t. Ajiboye,
Volume 19, Issue 3 (September 2023)
Abstract

Abstract: Rain attenuation prediction models are inevitably deployed to provide rough estimates of the actual measured attenuation due to severe scarcity in most of the tropical and equatorial climates. The results of rain attenuation measurements over a 14.8 GHz terrestrial microwave link and slant-path attenuation in vertically polarized signals propagating at 10.982 GHz in a tropical Malaysian climate were reported in this study. The experimental results including the path adjustment factors were compared with the predictions of some selected rain attenuation models. The relative errors in the path length adjustment factors (PLAFs) are in the range -0.3370 – 2.6272, while those of the slant path adjustment factors (SPAFs) are -0.9252 – +0.2923. Moreso, the charts of PLAFs and SPAFs at 0.01% of the time were also presented because they are the most commonly used availability by the telecommunications service providers. This study will allow the radio engineer to select the most suitable prediction models for the particular region under study, thereby ensuring adequate radio planning for improved service delivery especially in the tropical climates due to their peculiarity.

𝐒𝐢𝐫𝐚𝐣𝐮𝐬 𝐒𝐚𝐥𝐞𝐡𝐢𝐧, Shakila Rahman, 𝐌𝐨𝐡𝐚𝐦𝐦𝐚𝐝 𝐍𝐮𝐫, 𝐀𝐡𝐦𝐚𝐝 𝐀𝐬𝐢𝐟, 𝐌𝐨𝐡𝐚𝐦𝐦𝐚𝐝 𝐁𝐢𝐧 𝐇𝐚𝐫𝐮𝐧, Jia Uddin,
Volume 20, Issue 4 (Special Issue on ADLEEE - December 2024)
Abstract

Abnormal activity detection is crucial for video surveillance and security systems, aiming to identify behaviors that deviate from normal patterns and may indicate threats or incidents such as theft, vandalism, accidents, and aggression. Timely recognition of these activities enhances public safety across various environments, including transportation hubs, public spaces, workplaces, and homes. In this study, we focus on detecting violent and non-violent activities of humans using a YOLOv9-based deep learning model considering the above issues. A diverse dataset has been built of 9,341 images from various platforms, and then the dataset has been pre-processed, i.e., augmentation, resizing, and annotating. After pre-processing, the proposed model has been trained which demonstrated strong performance, achieving an F1 score of 95% during training for 150 epochs. It was also trained for 200 epochs, but early stopping was applied at 148 epochs as there was no significant improvement in the results. Finally, the results of the YOLOv9-based model have been analyzed with other baseline models (YOLOv5, YOLOv7, YOLOv8, and YOLOv10) and it performed better compared with others.
Ahmad Syukri Abd Rahman, Mohamad Nur Khairul Hafizi Rohani, Nur Dini Athirah Gazata, Afifah Shuhada Rosmi, Ayob Nazmi Nanyan, Aiman Ismail Mohamed Jamil, Mohd Helmy Halim Abdul Majid, Normiza Masturina Samsuddin,
Volume 21, Issue 2 (Special Issue on the 1st International Conference on ELECRiS 2024 Malaysia - June 2025)
Abstract

Partial discharge (PD) is a significant concern in the operation of rotating machines such as generators and motors, as it can lead to insulation degradation over time, reducing the reliability and lifespan of the machines. To monitor PD activity, coupling capacitors (CC) are widely used as sensors for online PD detection, as they can effectively capture PD pulses in high-voltage (HV) rotating machines. The primary objective of this research is to measure and analyze PD signals using a CC sensor for HV rotating machines under varying input voltages and frequencies, following the guidelines of the IEC 60270 standard and utilizing the MPD 600 device. The experimental setup includes performing insulation resistance (IR) testing, PD calibration, and PD measurement. Additionally, this paper provides a detailed study of PD signal characteristics, specifically focusing on phase-resolved partial discharge (PRPD) patterns, to understand the behavior of PD in HV rotating machines, enhancing fault diagnosis and preventive maintenance strategies.
Z. N. Zakaria, M. S. Laili, N. A. Rahman, P. L. Lewin, T. Andritsch, N. Hussin,
Volume 21, Issue 2 (Special Issue on the 1st International Conference on ELECRiS 2024 Malaysia - June 2025)
Abstract

The study investigates the electric field and space charge distributions in propylene carbonate under direct current (DC) applied fields using Kerr effect. Propylene carbonate is known for its high permittivity and is utilised in many applications, including electrochemical systems and dielectric materials. Understanding the behaviour of electric fields and space charge distributions within propylene carbonate is critical for optimising its performance in these applications. In the study, Kerr effect is employed which by applying the DC electric field across the test liquid for measuring the electric field and space charge distributions within the propylene carbonate. The experimental setup involved a controlled application of DC fields, and the Kerr effect measurements were conducted using an optical system. The results show significant understandings into the behaviour of space charges and their influence on the electric field distribution in propylene carbonate. Distinct patterns of charge accumulation and electric field distortion were observed and analysed in the dielectric liquid properties and charge transport mechanisms. The relationship between electric fields and space charges in propylene carbonate under DC conditions has been provided by the findings. The study also shows that the Kerr effect is a useful tool for studying electric field distributions in complex materials.
Ahmad Syukri Abd Rahman, Mohamad Nur Khairul Hafizi Rohani, Nur Dini Athirah Gazata, Afifah Shuhada Rosmi, Ayob Nazmi Nanyan, Aiman Ismail Mohamed Jamil, Mohd Helmy Halim Abdul Majid, Normiza Masturina Samsuddin,
Volume 21, Issue 2 (Special Issue on the 1st International Conference on ELECRiS 2024 Malaysia - June 2025)
Abstract

Partial discharge (PD) is a critical phenomenon in electrical systems, particularly in high-voltage (HV) equipment like transformers, cables, switchgear, and rotating machines. In rotating machines such as generators and motors, PD is a significant concern as it leads to insulation degradation, potentially resulting in catastrophic failure. Effective and reliable diagnostic techniques are essential for detecting and analyzing PD to ensure the operational safety and longevity of such equipment. Various PD detection methods have been developed, including coupling capacitor (CC), high-frequency current transformer (HFCT), and ultra-high frequency (UHF) techniques, each offering unique advantages in assessing the condition of HV electrical systems. Among these, coupling capacitors have gained significant attention due to their ability to improve the accuracy, sensitivity, and efficiency of PD detection in rotating machines. This study focuses on the advancements in coupling capacitor-based techniques and their critical role in enhancing PD diagnostics for monitoring and maintaining high-voltage rotating machinery.

Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.