Showing 2 results for M. Kalantar
M. Kalantar, M. Sedighizadeh,
Volume 1, Issue 1 (January 2005)
Abstract
A dynamic reduced order model using integral manifold theory has been derived,
which can be used to simulate the DOIG wind turbine using a double-winding
representation of the generator rotor. The model is suitable for use in transient stability
programs that can be used to investigate large power systems. The behavior of a wind farm
and the network under various system disturbances was studied using this dynamic model.
Simulation results of the proposed method represents that integral manifold method results
fit the detailed model results with a higher precision than other methods.
M. Gitizadeh, M. Kalantar,
Volume 4, Issue 4 (October 2008)
Abstract
This paper presents a novel optimization based methodology to allocate Flexible
AC Transmission Systems (FACTS) devices in an attempt to improve the previously
mentioned researches in this field. Static voltage stability enhancement, voltage profile
improvement, line congestion alleviation, and FACTS devices investment cost reduction,
have been considered, simultaneously, as objective functions. Therefore, multi-objective
optimization without simplification has been used in this paper to find a logical solution to
the allocation problem. The optimizations are carried out on the basis of location, size and
type of FACTS devices. Thyristor Controlled Series Compensator (TCSC) and Static Var
Compensator (SVC) are utilized to achieve the determined objectives. The problem is
formulated according to Sequential Quadratic Programming (SQP) problem in the first
stage. This formulation is used to accurately evaluate static security margin with congestion
alleviation constraint incorporating voltage dependence of loads in the presence of FACTS
devices and estimated annual load profile. The best trade-off between conflicting objectives
has been obtained through Genetic Algorithm (GA) based fuzzy multi-objective
optimization approach, in the next stage. The IEEE 14-bus test system is selected to
validate the allocated devices for all load-voltage characteristics determined by the
proposed approach.