Search published articles



Sharulnizam Mohd Mukhtar, Muzamir Isa, Azremi Abdullah Al-Hadi,
Volume 21, Issue 2 (6-2025)
Abstract

The development of advanced diagnostic tools is critical for the effective monitoring and management of electrical insulation systems. This paper presents the development of an Ultra High Frequency (UHF) sensor designed for the detection of partial discharges (PD) within high-voltage substations. The study focuses on the sensor’s technical development, encompassing design considerations, fabrication processes, and initial performance evaluations in laboratory settings. The engineering principles underlying the sensor design are detailed, including the selection of innovative materials that enhance sensitivity and frequency response. The sensor configuration is tailored to optimize the detection of PD signals, with adjustments made based on simulated PD scenarios. Initial testing results demonstrate the sensor’s capability to detect a range of PD activities, showcasing its potential effectiveness in real-world applications. The sensor's performance is analyzed through a series of controlled lab experiments, which confirm its high sensitivity and broad operational frequency range. This paper not only illustrates the technical specifications and capabilities of the newly developed UHF sensor but also discusses its practical implications for improving the reliability and efficiency of PD monitoring systems in electrical substations.
Mohammad Abouhosseini Darzi, Mohammad Mirzaie, Amir Abbas Shayegani Akmal, Ebrahim Rahimpour,
Volume 21, Issue 3 (8-2025)
Abstract

Bushings are one of the most important components of electrical equipment such as power transformers, reactors, capacitors. Most of the installed bushings have Oil-Immersed Paper (OIP) insulation structure. Bushing failure is caused by various reasons such as poor manufacturing process, overloading and also poor installation process, but moisture ingress is one of the main reasons of OIP bushing defect during its operation. In this paper, the electric field distribution of OIP bushings in multiple situations are simulated and effects of moisture distribution are analyzed. The simulations are stablished in polluted and clean surfaces of the studied bushing and done by COMSOL Multiphysics Software. The results show that non-uniform moisture distribution has a significant effect on electric fields of OIP insulation. This effect strongly increases with increasing the pollution on the external insulator of the bushing.

Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.