
Iranian Journal of Electrical & Electronic Engineering, Vol. 9, No. 1, March 2013                                                        27 

A Family of Variable Step-Size Normalized Sub-Band 
Adaptive Filter Algorithms using Statistics of System Impulse 
Response 
 
 
M. Shams Esfand Abadi and M. S. Shafiee 
 
 
 

Abstract: This paper presents a new Variable Step-Size Normalized Subband Adaptive 
Filter (VSS-NSAF) algorithm. The proposed algorithm uses the prior knowledge of the 
system impulse response statistics and the optimal step-size vector is obtained by 
minimizing the Mean-Square Deviation (MSD). In comparison with NSAF, the VSS-NSAF 
algorithm has faster convergence speed and lower MSD. To reduce the computational 
complexity of VSS-NSAF, the VSS Selective Partial Update NSAF (VSS-SPU-NSAF) is 
proposed where the filter coefficients are partially updated in each subband at every 
iteration. We demonstrated the good performance of the proposed algorithms in 
convergence speed and steady-state MSD for a system identification set-up. 
 
Keywords: Adaptive filter, Normalized Subband Adaptive Filter (NSAF), Selective Partial 
Update (SPU), Variable Step-Size (VSS). 

 
 
 
1 Introduction0F1 
Adaptive filtering has been, and still is, an area of active 
research that plays an active role in an ever increasing 
number of applications, such as noise cancellation, 
channel estimation, channel equalization and acoustic 
echo cancellation [1-5]. The Least Mean Square (LMS) 
and its normalized version (NLMS) are the workhorses 
of adaptive filtering. In the presence of colored input 
signals, the LMS and NLMS algorithms have extremely 
slow convergence rates. Adaptive filtering in subbands 
has been proposed to improve the convergence behavior 
of the LMS algorithm [6]. The normalized subband 
adaptive filter (NSAF) was proposed in [7]. In [8], the 
selective partial update NSAF (SPU-NSAF) was 
proposed to reduce the computational complexity. In 
this algorithm, the filter coefficients are partially 
updated in each subband at every iteration. This feature 
leads to the reduction in computational complexity. 
Other selective partial update adaptive filter algorithms 
can be found in [9, 10]. 

In above mentioned algorithms, the selected fixed 
step-size can change the convergence rate and the 
steady-state Mean Square Error (MSE). It is well known 
that the steady-state MSE decreases when the step-size 
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decreases, while the convergence speed increases when 
the step-size increases. By optimally selecting the step-
size during the adaptation, we can obtain both fast 
convergence rate and low steady-state MSE. In [11], a 
new variable-step-size control was proposed for the 
Normalized Least-Mean-Square (NLMS) algorithm. A 
step-size vector with different values for each filter 
coefficients was used in [11]. In this approach, based on 
the prior knowledge of the system impulse response 
statistics, the optimal step-size vector is obtained by 
minimizing MSD. In [12], the approach of [11] was 
extended to NSAF. But the computational complexity of 
the presented algorithm was high. 

In this paper, we extend the approach in [11] to 
SPU-NSAF algorithm and VSS version of this 
algorithm is proposed. In the proposed algorithm, the 
step-size changes during the adaptation and the 
coefficient are partially updated at every iteration. We 
demonstrate the good performance of the presented 
algorithms through several simulation results in a 
system identification scenario. Also, the computational 
complexity of all algorithms is compared and analyzed. 
Furthermore, the performance of the proposed VSS-
NSAF is compared with other VSS-NSAF algorithms in 
[8, 13]. 

We have organized our paper as follows. In Section 
2, we briefly review NSAF, and SPU-NSAF algorithms. 
In Section 3, the proposed VSS adaptive algorithms are 
established. Section 4 presents the computational 
complexity of the algorithms. Finally, before concluding 
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the paper, we demonstrate the usefulness of these 
algorithms by presenting several experimental results. 
Throughout the paper, the following notations are 
adopted: 
 
.

 Norm of a scalar. 
2.  Squared Euclidean norm of a vector. 
2

∑
t  ∑-Weighted Euclidean norm of a column 

vector t defined as ttT ∑ . 
{}.E  Expectation operator. 

( )T.
 

Transpose of a vector or a matrix. 

(.)diag  Has the same meaning as the MATLAB 
operator with the same name: If its argument 
is a vector, a diagonal matrix with the 
diagonal elements given by the vector 
argument results. If the argument is a matrix, 
its diagonal is extracted into a resulting 
vector. 

 
2 Background on Nsaf and Spu-Nsaf Algorithms 

Adaptive filtering in subbands has been proposed to 
improve the convergence behavior of the LMS 
algorithm [6, 14]. In subband adaptive filtering, the 
input signal and desired response are band-partitioned 
into almost mutually exclusive subband signals. This 
feature of the SAF permits the manipulation of each 
subband signal, in such a way that their properties can 
be exploited [2], allowing each subband to converge 
almost separately for various modes [6], and thus 
improving the overall convergence behavior. In this 
section we briefly review NSAF and SPU-NSAF 
algorithms. 
 

2.1  NSAF Algorithm 
Fig. 1 shows the structure of NSAF [7]. In this 

figure, f0, f1, …, fN-1, are analysis filter unit impulse 
responses of an N channel orthogonal perfect 
reconstruction critically sampled filter bank system. 

)(nix  and )(nid are nondecimated subband signals. It 
is important to note that n refers to the index of the 
original sequences and k denotes the index of the 
decimated sequences. Similar to the NLMS algorithm, 
NSAF can be established by the solution of the 
following optimization problem 

2)()1(min kk ww −+  
(1) 

subject to the set of N constraints imposed on the 
decimated filter output 

1,...,0)1()()(, −=+= NiforkkT
ikDid wx

(2) 

where: 
[ ])1(),...,1(),()( +−−= MkNixkNixkNixkix  (3) 

By solving this optimization problem based on the 
method of Lagrange multipliers, the filter update 
equation for NSAF can be stated as [7]. 

∑
−

=
+=+

1

0 2)(

)(,)(
)()1(

N

i ki

kDiekikk
x

x
ww μ  (4) 

where )()()(,)(, kikTkDidkDie xw−=  is the decimated 

subband error signal, and µ is the step size which is 
chosen in the range 0<μ<2 [7]. We also assumed a 
linear data model for the desired signal as: 

)(,)()(, kDivokT
ikDid += wx  (5) 

where w0 is the true unknown filter vector, and )(, kDiv  
is partitioned and decimated additive noise with zero 
mean and variance, 2

,Divσ
. We also assume that )(nv  is 

identically and independently distributed (i.i.d.) and 
statistically independent of the input data )(nx . 
 

2.2  SPU-NSAF Algorithm 
To reduce the computational complexity of NSAF, 

SPU-NSAF algorithm was proposed in [8]. Partition 

)(kix 10 −≤≤ Nifor and )(kw  into B blocks each of 

length L which are defined as  

[ ]TkT
BikT

ikT
iki )(,),...,(2,),(1,)( xxxx =  (6)

[ ]TkT
BkTkTk )(),...,(2),(1)( wwww =  (7)

Suppose we want to update S blocks out of B blocks 
in each subband at every adaptation. Let 

{ }sjjjF ,...,2,1= denote the indexes of the S blocks 
out of B blocks. In this case, the optimization problem is 
defined as 
 
 

 
Fig. 1 Structure of NSAF algorithm 
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2)()1(
)1(

min kFkF
kF

ww
w

−+
+

 (8)

Subject to Eq. (2). By using the Lagrange multipliers 
approach, the filter vector update equation is given by  

∑
−

=
+=+

1

0 2
)(,

)(,)(,)()1(
N

i kFi

kDiekFikFkF
x

x
ww μ  

(9) 

where 
T

kT
jsikT

jikT
jikFi ⎥⎦

⎤
⎢⎣
⎡= )(,),...,(2,),(

1,)(, xxxx . To 

reduce the computational complexity associated with 
the selection of the blocks to update, two alternative 
simplified criteria were proposed: 1) In the first 
approach, we compute the following Values 

∑
−

=
≤≤

1

0
12)(,

N

i
Bbforkbix  (10) 

The indexes of the set F correspond to the indexes of 
the S largest values of Eq. (10). 2) In the second 
approach, we identify a set of indexes, correspond to the 
S smallest values of Eq. (11) [8]. 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∑
−

=≤≤
=

1

0 2)(,

2)(,

1
minarg

N

i kbi

kDie

Bb
j

x
 (11) 

 
3 Derivation of Vss-Nsaf and Vss-Spu-Nsaf 
Algorithms 

In this section, we establish the family of VSS-
NSAF algorithms based on [11]. This method 
minimizes MSD and obtains the step-size vector based 
on the system impulse response statistics. 
 

3.1   VSS-NSAF Algorithm 
The update equation for VSS-NSAF is introduced 

as: 

∑
−

=
+=+

1

0 2)(

)(,)(
)()()1(
N

i ki

kDiekikkk
x

x
Uww  (12)

where [ ])(1),...,(0)( kMkdiagk −= μμU  is the variable 
step-size matrix. During the adaptation, this matrix 
changes to obtain faster convergence speed and lower 
steady-state MSD. Therefore, the objective of this paper 
is to design the step-size matrix )(kU  to improve the 
performance of the NSAF algorithm. By defining the 
weight error vector as: 

)()(~ kk www −= o  (13) 

and using the definition of )(, kDie , the decimated 
error signal can be rewritten as: 

)(,)()(~)(, kDivkikTkDie += xw  (14) 

Now by substituting Eqs. (13, 14) into Eq. (12), we 
obtain: 

∑
−

=
−=+

1

0 2)(

)(,)(
)()(~)()1(~ N

i ki

kDivkikkkk
x

x
UwAw  (15)

where: 

∑
−

=
−=

1

0 2)(

)()(
)()(
N

i ki

kT
ikikMk

x

xx
UIA  (16)

and IM is the MM ×  identity matrix. To quantitatively 
evaluate the mis-adjustment of the filter coefficients, the 
MSD is taken as a figure of merit, which is defined as: 

[ ]2)(~)( kEk w=Λ  (17)

Note that at each iteration, the MSD depends on 
)(kjμ . Combining Eqs. (15) and (17), we obtain: 

[ ]   )(~)()()(~)1( γ+=+Λ kkkTkTEk wAAw  (18)

where: 

[ ]
∑
−

=
=

1

0 2

2
,

2
)(2 N

i
ix

Div

M

kTr

σ

σ
γ

U  (19)

Similar to [13], we assume again that )(kNix and 
)(, kDiv  are zero-mean i.i.d. stationary with variance 

2
iXσ and 2

,Divσ , respectively; )(~ kw , )(kNix , and 

)(, kDiv  are mutually independent and 

12)()( >>≈ Mfor
ixMkikT

i σxx . Therefore, we 

Obtain: 

[ ] [ ] )(2
2

)(2
1)()( k

M
N

MI
M

kNTr
kkTE UUAA −+=

⎭
⎬
⎫

⎩
⎨
⎧  (20) 

Combining Eqs. (18) and (20), we get: 

[ ] [ ]
[ ] γ+

−+=+Λ
⎭
⎬
⎫

⎩
⎨
⎧

)(~)()(~2

2)(~
2

)(2
1)1(

kkkTE
M
N

kE
M

kNTr
k

wUw

wU

 

 
(21) 

The optimal step size is obtained by minimizing the 
MSD at each iteration. Taking the first-order partial 
derivative of )1( +Λ k  with respect to 

( )1,,0)( −= Mjkj Kμ , we will have 
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[ ]

[ ] ∑
−

=
+

−=
∂

+Λ∂

1

0 2
,

2
)(2

2
)(~2

2
)(22)(~

)(
)1(

N

i
ix

Div
kjM

kjwE
M
N

M

kjN
kE

kj

k

σ

σ
μ

μ

μ
w

 

 
(22)

Setting Eq. (22) to zero, we obtain: 
[ ]

[ ] ∑
−

=
+

=
1

0 2
,

2
2)(~

)(~
)(

N

i
ix

Div
kNE

kjwNME
kj

σ

σ
μ

w

 
 

(23)

To update [ ])(2~ kjwE , we use the following equation 

obtained by taking the mean square of the k-th entry in 
Eq. (15). 

[ ] [ ] [ ]

[ ] ∑
−

=
+

+−=+

1

0 2

2
,

2

)(2
2)(~

2

)(2

)(2~)(21)1(2~

N

i
ix

Div

M

kj
kE

M

kjN

kjwEkjM
NkjwE

σ

σμμ

μ

w
 

 
(24)

From Eq. (5), and using the definition of )(, kDie , 

we obtain: 

[ ] [ ] 2
,

2)(~2)(2
, DivkE

ixkDieE σσ += w
 

(25)

Substitution Eq. (25) into Eq. (24) leads to: 

[ ] [ ] [ ]
[ ]

∑
−

=

+−=+

1

0 2

)(2
,

2

)(2

)(2~)(21)1(2~

N

i
ix

kDieE

M

kj

kjwEkjM
NkjwE

σ

μ

μ

 

 
(26)

It is straightforward to estimate [ ])(2
, kDieE  by a 

moving average of )(2
, kDie : 

)(2
,)1()1(2

,
ˆ)(2

,
ˆ kDiek

Diek
Die λσλσ −+−=  (27)

Similar for )(kNix : 

)(2)1()1(2ˆ)(2ˆ kNixk
ixk

ix λσλσ −+−=  (28)

where 10 <<λ  is the forgetting factor. The initial 

[ ])0(2~
jwE  is obtained by the second-order statistics of 

the channel response, i.e. ⎥⎦
⎤

⎢⎣
⎡ 2

jowE , from Eq. (13). 

Finally, the entire adaptive algorithm is described by 
Eqs. (12, 23, 26-28). Table 1 summarizes VSS-NSAF 
algorithm. 

3.2   VSS-SPU-NSAF Algorithm 
The filter coefficients update for VSS-SPU-NSAF is 

introduced: 

∑
−

=
+=+

1

0 2)(,

)(,)(,)()()1(
N

i kFi

kDiekFikFkFkF
x

x
Uww (29)

where [ ])(),...,(1)( ksjkjdiagkF μμ=U . Using the 

approximation for )(, kDie  as 

)(,)(~)(,)(, kDivkFkT
FikDie +≈ wx  and substituting it 

into (29), we obtain: 

( )
∑
−

=

+

+=+

1

0 2
)(,

)(,)(~)(,)(,)(

)()1(

N

i kFi

kDivkFkT
FikT

FikF

kFkF

x

wxx
U

ww
 

(30) 

Rewrite Eq. (30) as a weight error vector: 

∑
−

=
−=+

1

0 2)(,

)(,)(,)()()1( ~~ N

i kFi

kDivkFikFFkkF
x

x
UwQw  

(31) 

where: 

∑
−

=
−=

1

0 2
)(,

,)(,)()(
N

i KFi

T
FikFikFSLk

x

xx
UIQ  

(32)

and 
SLI  is the SLSL×  identity matrix. To obtain MSD 

we can write: 

[ ] [ ] [ ]2)(~2)(~2)(~)( kFEkFEkEk ′+==Λ www (33)

where ⎥⎦
⎤

⎢⎣
⎡ ′

2
)(~ kFWE  are weights that are not selected 

to update. Therefore: 

[ ] [ ]2)(~2)1(~ kFkF ′=+′ ww  (34)

Combining Eq. (31) and Eq. (33) leads to: 
[ ]

[ ] [ ]2)(~1

0 2

2
,

2)(

)(2

)(~)()()(~)1(

kFE
N

i
ix

Div

SL

kFTr

kFkkTkT
FEk

′+∑
−

=

+=+Λ

w
U

wQQw

σ

σ  

 
(35)

Similar to [15], we assume again that )(kNix  and 
)(, kDiv  are zero-mean i.i.d. stationary with variance 

2
ixσ  and 2

,Divσ
, r)espectively; )(),(~ kNixkw , and , 

)(, kDiv  are mutually independent and 

12)(,)(, >>≈ SLfor
ixSLkFikT

Fi σxx . Therefore, 

we obtain: 
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[ ] [ ]
)(

2
2)(

)(2
1)()( kFSL

N
SLSL

kFNTr
kkTE UI

U
QQ −+=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧      (36) 

By combining Eq. (35) and Eq. (36), we get: 

[ ] [ ]
[ ]

[ ] [ ]2)(~1

0 2

2
,

2)(

)(2

)(~)()(~
)(

2

2)(~
2)(

)(2
1)1(

kFE
N

i
ix

Div

SL

kFTr

kFkFkT
FE

SL
N

kFE
SL

kFNTr
k

′+∑
−

=

+

+=+Λ
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

w
U

wUw

w
U

-

σ

σ

  
(37) 

Taking the first-order partial derivative of )1( +Λ K  
with respect to ( )1,,0)( −= SLjkj Kμ , and setting it to 
zero for Fj∈  , we obtain: 

[ ]

[ ] 0
1

0 2

2
,)(2)(

2
)(2~2

2)(

)(22)(~
)(
)1(

=∑
−

=
+

−=
∂

+Λ∂

N

i
ix

Div
kjSL

kjwE
SL
N

SL

kjN
kFE

kj

K

σ

σ
μ

μ

μ
w

 
(38)

Therefore: 

[ ]
[ ] ∑

−

=
+

=

1

0 2

2
,2)(~

)(2~)(
)(

N

i
ix

Div
kFNE

kjwESLN
kj

σ

σ
μ

w

 
 

(39)

To update [ ])(2~ kjwE , the following equation is 

obtained by taking the mean square of the jth entry in 
Eq. (31). 

[ ] [ ] [ ]

∑
−

=
+

+−=+

⎥⎦
⎤

⎢⎣
⎡ 1

0 2

2
,

2)(

)(2
2

)(~
2)(

)(2

)(2~)(21)1(2~

N

i
ix

Div

SL

kj
kFWE

SL

kjN

kjwEkjSL
NkjwE

σ

σμμ

μ

  
(40)

Using the following assumption as: 

[ ] [ ] 2
,

2)(~2)(2
, DivkFE

ixkDieE σσ +≈ w
 

(41)

and substituting it into Eq. (40), the following relation is 
obtained: 

[ ] [ ] [ ]
[ ]

∑
−

=

+−=+

1

0 2

)(2
,

2)(

)(2

)(2~)(21)1(2~

N

i
ix

kDieE

SL

kj

kjwEkjSL
NkjwE

σ

μ

μ

  
(42)

where [ ])(2
, kDieE  and 2

ixσ  are estimated according to 

Eqs. (27) and (28). Table 2 summarizes the VSS-SPU-
NSAF algorithm. 
 
4 Computational Complexity 

Table 3 shows the number of multiplications, 
divisions, and comparisons of different adaptive 
algorithms. The computational complexity of NSAF for 
each input sampling period is exactly 3M +3NK +1 
multiplications and 1 division, where K is the length of 
the channel filters of the analysis filter bank, M is the 
number of filter coefficients, and N is the number of 
subbands. SPU-NSAF needs 2M+SL+3NK+1 
multiplications, 1 division, and O(B)+Blog2(S) 
comparisons when using the heapsort algorithm [16]. 
The proposed VSS-NSAF needs 5M+8 multiplications 
and 3 divisions more than conventional NSAF. Using 
SPU approach in VSS-NSAF leads to the reduction in 
number of multiplications. The number of 
multiplications is 7M + SL + 3NK + 8 in this algorithm. 
The VSS-SPU-NSAF algorithm needs also 4 divisions 
and O(B) + Blog2(S) comparisons. We have also 
presented the computational complexity of set 
membership NSAF (SM-NSAF) [8] and VSS-NSAF 
[13] in Table 3. The SM-NSAF needs 3M+3NK+1 
multiplications, 2 divisions and N comparisons during 
each iteration which is lower than proposed VSS-NSAF. 
We will show in simulation results section that the 
steady-state error of this algorithm is higher than 
proposed algorithm. The VSS-NSAF in [13] needs 3M 
+ 3NK + 1 multiplications, 3 divisions, 3M+5 additional 
multiplications and N comparisons. In this algorithm, 
each subband has the variable step-size. Therefore we 
have N variable step-size. In the proposed VSS-NSAF 
algorithm, the number of variable step-size is equal to 
M. Therefore, the computational complexity is slightly 
increased. But the proposed VSS-SPU-NSAF reduces 
the number of multiplications during the adaptation due 
to the partial update. Furthermore, the convergence 
speed of the presented VSS-NSAF algorithms is better 
than SM-NSAF [8] and VSS-NSAF [13]. 
 
5 Simulation Results 

We demonstrate the performance of the proposed 
algorithms by several computer simulations in a system 
identification scenario. In the first simulation, we use 
the real acoustic impulse response with length M = 256 
as shown in Fig. 2 [17]. The same length is used for the 
adaptive filter. The colored Gaussian signal is used for 
the input signal. The input signal is obtained by filtering 
a white, zero-mean and unit variance Gaussian random 
sequence through a second order auto regressive 
(AR(2)) system with transfer function 

28.011.01

1)(
−−−−

=
zz

zT . The filter bank used in NSAF 
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was the four subband extended lapped transform (ELT) 
(N = 4) [18]. The white zero-mean Gaussian noise was 
added to the filter output such that the SNR = 30dB. 

In all simulations, we show the normalized MSD, 

2

2
)(

oE

koE

w

ww −
 which is evaluated by ensemble 

averaging over 20 independent trials. Also, we assume 
that the noise variance, 2

vσ , is known a priori [19]. For 

all simulations we consider 999.0=λ . Fig. 3 compares 
the convergence rate of the NSAF algorithm with the 

proposed VSS-NSAF when the real unknown impulse 
response should be identified. In NSAF, different step 
sizes (1; 0.2 and 0.05) were chosen. As we can see, the 
proposed VSS-NSAF has both fast convergence rate 
and low steady-state MSD features compared with 
ordinary NSAF. Fig. 4 shows the normalized MSD 
curves for the proposed VSS-NSAF for 

1,...,0),( −=−= MjjrjeoW τ  where )( jr  is a white 

Gaussian random sequence with zero-mean and 
variance 2

rσ  of 0.09. In this case, the impulse response 
length is M = 200, and the envelope decay rate τ  is set 

Table 1 Summary of VSS-NSAF algorithm 

0,1,2,

( ) ( ) ( ), ,
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+ = + ∑
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Table 2 Summary of VSS-SPU-NSAF algorithm

0,1,2,

( ) ( ) ( ), ,
2 2 2ˆ ˆ( ) ( 1) (1 ) ( ),, ,
2 2 2ˆ ˆ( ) ( 1) (1 ) ( )

22 2( 1) 1 ( ) ( )

2ˆ ( )2( ) 1 ,
2 2( ) 0

( )
( )

for k
Te k d k X ki D i D i

k k e ki De ei D i D
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Table 3 Computational complexity of the family of VSS-NSAF algorithms

Comparisons Additional 
Multiplications Divisions Multiplications Algorithm 

- - 1  133 ++ NKM  NSAF [7] 
)(

2log)( SBBO +  - 1  132 +++ NKSLM  SPU-NSAF [8] 

N  - 2  133 ++ NKM  SM-NSAF[8] 

N  53 +M  3  133 ++ NKM  VSS-NSAF[13] 
- 85 +M  4  NKM 33 +  Proposed VSS-NSAF 

)(
2log)( SBBO +  85 +M  4  NKSLM 32 ++  Proposed VSS-SPU-NSAF 
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to 0.04. The simulation results show that for low and 
large values for the step-size, the performance of NSAF 
is deviated. 

But the VSS-NSAF has both fast convergence speed 
and low steady-state MSD due to the strategy of 
variable step-size. In Fig. 5, we presented the results for 
random unknown impulse response. The parameter M is 
set to 50. The simulation results show that in the case of 
random unknown system the performance of VSS-
NSAF is deviated, but still, the overall performance is 
better than ordinary NSAF algorithm. Fig. 6 compares 
the MSD curves of VSS-NSAF, and VSS-SPU-NSAF 
algorithms when the real unknown impulse response 
should be identified. The number of blocks (B) was set 
to 4 and various values for S were selected. By 
increasing the parameter S, the performance of VSS-
SPU-NSAF will be closed to the VSS-NSAF algorithm. 
Furthermore, the computational complexity of VSS-
SPU-NSAF is lower than VSS-NSAF due to partial 
updates of filter coefficients. 
 

 
Fig. 2 The impulse response of the car echo path 
 

 
Fig. 3 The MSD curves of VSS-NSAF and conventional 
NSAF for real unknown impulse response 

 
Fig. 4 The MSD curves of VSS-NSAF and conventional 
NSAF for exponential unknown impulse response 
 
 

 
Fig. 5 The MSD curves of VSS-NSAF and conventional 
NSAF for random unknown impulse response 
 
 

 
Fig. 6 The MSD curves of VSS-SPU-NSAF with B=4 and 
S=2, 3, and 4 for real unknown impulse response 
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Fig. 7 The MSD curves of SM-NSAF [8], VSS-NSAF [13], 
and proposed VSS-NSAF for real unknown impulse response 
 

Fig. 7 compares the performance of the proposed 
algorithm with other VSS-NSAF algorithms in [8], and 
[13]. In [8], the convergence speed is high during the 
initial iterations. But the steady-state error is large. In 
this algorithm, the variable step-size is the same for all 
the coefficients. The performance of VSS-NSAF in [13] 
is better than SM-NSAF due to the variable step-size for 
each subband. As we can see, the proposed VSS-NSAF 
has better performance than other algorithms in both of 
convergence speed and steady-state error. 
 
6 Conclusion 

In this paper we presented the new variable step-size 
NSAF algorithm. This algorithm had fast convergence 
speed and low steady-state MSD compared with 
ordinary NSAF algorithm. To reduce the computational 
complexity of VSS-NSAF, the VSS-SPU-NSAF was 
proposed. We demonstrated the good performance of 
the presented VSS adaptive algorithms in system 
identification scenario by several simulation results. 
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