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Abstract: Two-dimensional (2D) adaptive filtering is a technique that can be applied to
many image and signal processing applications. This paper extends the one-dimensional
adaptive filter algorithms to 2D structure and the novel 2D adaptive filters are established.
Based on this extension, the 2D variable step-size normalized least mean squares (2D-VSS-
NLMS), the 2D-V SS affine projection algorithms (2D-VSS-APA), the 2D set-membership
NLMS (2D-SM-NLMS), the 2D-SM-APA, the 2D selective partial update NLMS (2D-
SPU-NLMS), and the 2D-SPU-APA are presented. In 2D-VSS adaptive filters, the step-
size changes during the adaptation which leads to improve the performance of the
agorithms. In 2D-SM adaptive filter algorithms, the filter coefficients are not updated at
each iteration. Therefore, the computational complexity is reduced. In 2D-SPU adaptive
algorithms, the filter coefficients are partially updated which reduce the computational
complexity. We demonstrate the good performance of the proposed agorithms thorough
several simulation results in 2D adaptive noise cancellation (2D-ANC) for image
denoising. The results are compared with the classical 2D adaptive filters such as 2D-LMS,
2D-NLMS, and 2D-APA.

Keywords: Two Dimensional, Adaptive Filter, Noise Cancellation, Selective Partial
Update, Variable Step-Size, Set-Membership.

1 Introduction

Adaptive filter algorithms have numerous applications
in electrical engineering [1], [2] and [3]. Two-
dimensional (2D) adaptive filters as well as one
dimensional adaptive filter have received a great deal of
attention in the last two decades [4], and that is because
of their ability to take into account the inherent
nonstationary statistical properties of two dimensional
data, as well as 2D dtatistical correlation. The 2D
adaptive filters have been applied to a variety of image
processing applications such as image denoising, image
enhancement, adaptive noise cancellation, 2D adaptive
line enhancer, and 2D system identification. In [5], the
one dimensional least mean sguares (LMS) adaptive
algorithm was extended to the 2D application and this
algorithm was used for estimation of nonstationary
images. In [6] an algorithm was proposed which was
used the McClellan transformation. The new 2D-LMS
whose convergence properties are not restricted to the
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one direction, was proposed in [7]. Also, the
development of a 2D adaptive filter using the block
diagonal LM S method was presented in [8].

The 2D-LMS adaptive filter [5] is essentialy an
extension of its one dimensional counterpart. The 2D-
LMS s an attractive adaptation algorithm because of its
simple structure, but this algorithm is highly sensitive to
eigenvalue disparity, and its convergence speed is slow
that is not appropriate in many applications. Therefore,
to overcome this problem, the 2D normalized NLMS
(2D-NLMS) agorithm was proposed. In this algorithm,
the influence of the magnitude of the filter input on the
convergence speed was considered. The 2D adaptive
FIR filters which was based on affine projection
algorithm (APA) was firstly introduced in [4]. In this
algorithm the positions of projection vectors can be
selected freely, and the performance is improved
especially when the input data is highly correlated.
Unfortunately, this improvement comes at the expense
of a higher computational complexity. In[9] afast APA
for two dimensional adaptive linear filtering was
presented. The results show that this algorithm has a fast
convergence speed and good tracking ability. The 2D
recursive least sguares (2D-RLS) algorithm was
proposed in [10-12]. Whereas the computationa
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complexity of one dimensional RLS is high, when we
extend the one dimensional to 2D, the computational
complexity is increased. The 2D-RLS has good
performance in many applications, but the cost that we
have to pay to enjoy its abilities is so expensive,
therefore we did not consider this algorithm.

In 2D adaptive filter algorithms, the small variation
of the step-sizes can produce an undesirably large
change in adaptation speed and accuracy. Hence the
optimal step-size selection is important in different
applications. This selection is usually obtained by tria
and eror. Furthermore, an adaptive system with a
constant step-size cannot appropriately adjust its
parameters. To overcome this problem, the time-varying
step-size technique was proposed in [13]. In [14], the
variable step-size APA (VSS-APA), and variable step-
size NLMS (VSSNLMS) agorithm for one
dimensional case were presented. The same approach in
[14] was successfully extended to the other adaptive
filter algorithms in [15] and [16]. In this paper, with the
purpose of using variable step size in 2D applications,
we extend the approach in [14] to establish of two new
2D adaptive filter algorithms which are called 2D-VSS-
APA, and 2D-VSS-NLMS algorithms. In simulation
results section, we demonstrate the good performance of
the proposed algorithms in adaptive noise cancellation
in digital images for image denoising. Unfortunately,
when we use time varying step-size, we have to pay its
cost, because of increasing the computational
complexity.

Another way to overcome, the problem of existence
tradeoff between low misadjustment and high
convergence speed contemporaneous, is using the
concept of set-membership (SM) filtering. In this
method, by definition an upper bound on the estimation
error, the number of adaptation of filter coefficients is
reduced. The one dimensional SM-NLMS algorithm
and the SM-APA were proposed in [17] and [18],
respectively. To reduce the computational complexity in
2D applications, we introduced two new 2D-SM
adaptive algorithms which are an extension of their one
dimensional counterpart. The simulation results of the
2D-SM-NLMS and 2D-SM-APA show that these
algorithms have good performance in elimination of
noisein digital images.

In the classical adaptive filters the filter coefficients
are fully updated. To reduce the computational
complexity, other adaptive filter algorithms were
introduced where the filter coefficients are partially
updated. Based on this approach the filter coefficients
which should be updated are optimally selected during
the adaptation [19-24]. The one dimensional selective
partial update NLMS (SPU-NLMS) and SPU-APA are
important examples of these adaptive filters [25-26]. To
reduce the computational complexity of conventional
2D-NLMS and 2D-APA agorithms, we extend the SPU
approach to 2D structure to establish of the 2D-SPU-
NLMS and 2D-SPU-APA.

The parameters selection of many 2D adaptive filter
algorithms did not considered completely in the
literatures. Many of the parameters have been selected
by try and error approach in different literatures. In this
paper we study the former and new 2D-agorithms
comprehensively. As we know, each algorithm has
different behavior in various applications of adaptive
filters. So, we consider the performance of the presented
algorithms in 2D adaptive noise cancellation (2D-ANC)
for image denoising.

What we propose in this paper can be summarized
asfollows:

1. Extension of VSS approach to 2D-NLMS, and 2D-
APA, and establishment of 2D-VSS-NLMS, and
2D-VSS-APA.

2. Extension of SPU approach to 2D-NLMS, and 2D-
APA, and establishment of 2D-SPU-NLMS, and
2D-SPU-APA.

3. Extension of SM filtering to 2D-NLMS, and 2D-
APA, and establishment of 2D-SM-NLMS, and 2D-
SM-APA.

4. Demonstration of the presented algorithms in 2D-
ANC application.

We have organized our paper as follows. Section 2
presents classical 2D adaptive filter algorithms. In
section 3, the novel 2D adaptive filter algorithms are
established. Section 4 presents the computational
complexity of the derived algorithms. We conclude the
paper by presenting severa simulation results in 2D
adaptive noise cancellation for reduction of noise in
digital images.

Throughout the paper the following notations are
adopted:

0" Transpose of vector or amatrix

diag(.) Diagonal of a matrix

Tr() Trace of amatrix
2

|||| Squared Euclidean norm of a vector

|.] Absolute value of ascalar

E[] Expectation operator

2 Background on Classical 2D Adaptive Filter
Algorithms

As we know, linear system parameterization is an
important class of system modeling with a wide area of
applications. The most popular among the class of linear
model is the finite impulse response (FIR). It isimposed
in order to ssimplify the estimation task and to reduce the
computational load in real-time application [9]. Let
u(i,j) be the input of alinear 2D FIR model, defined
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over a regularly spaced lattice (i, j) €[M,,M,], where
M, and M, specify the order of the input data. The

output of the 2D finite impulse response (FIR) digital
filter, y(i,j), is given by 2D finite impulse response

(FIR) digital filter, y(i, ) , is given by

N,-IN,-1

yi,))= D D" wt.hu(i-t,j-1) (1)
t=0 1=0

where, u(i,j) is the input signal, w(t,1) is the model

coefficients, and N; and N, specify the order of the

FIR filter. Usually, the 2D signal is presented as a
matrix. Therefore, the weight matrix W(i,j) and the

input matrix U(i, j) are introduced as

w(0,0) ...  w(O,N,-1)
W, G, ) = - (2)
w(N, -1,0) w(N, -1,N, -1)
u(i, j) u(i,j-N, +1)
U, G,j) = 3)

ui-Ny+1LJ) e u(-N,+1j-Ny +1)

where k is the iteration number and 0 <k <MM,.
Hadhoud expressed in [5] that the weight matrix and the
input matrix can be converted into their one-
dimensional form by lexicographic ordering. Equations
(4) and (5) present the one dimensional form of Eq. (2),
and Eq. (3).

Wi (i, ) = [W(0,0 W(0,1)... W(O, N, -1) @

w(1,0)...w(N, -1.N, -)]"

u, (0, j) = [u(i, j)u(, j-1)...u(d, j- N, +1) 5)
u(i-1,j)..u(i-N, +1,j-N, +D]*

Both vectors U(i,j) and W(i,j) have dimensions
(N;N,)x1. From Eq. (4), and Eq. (5), Eq. (1) can be
stated as

Y@ 3) =Wy (i, ) Uy G, ) (6)

2.1 2D-LMS Adaptive Filter Algorithm

This algorithm is based on the steepest descent
method [27-29], and in this method the two dimensional
weight adaptation is given by

8, (. ) )

Wi (1,3) = Wi (3, ) -1 oW, (. J)
kb

where p is the step size and can control the rate of
convergence, steady state error, and filter stability and
€ , mean square error (MSE), is the cost function which

is defined as &, (1,j) = E[ei (i,j)], where e, (i,]) is the

error signal at the k™ iteration and is given by

e (i,J) = di (i, ) -wy (i, ) uy (i, §) )

where d, (i,]) is the desired signal. The aim of 2D-
LMS algorithm is to obtained the optimum weight
matrix such that the cost function, &, (i, j) , is minimized.

The 2D-LMS algorithm is a practical scheme for
realizing 2D wiener filter, without explicitly solving the
Wiener-Hopf equation. This algorithm wuses the
instantaneous estimates into the steepest descent
algorithm. This algorithm replaces the cost function,

&) =E[ef@.)] with &(.))=]e}.i)]| which
leads to

86, (1) _ 2¢,(i,]) 8(e, () _
8Wk (19 .]) ka (19 .])

By substituting Eq. (9) into Eq. (7), the filter
coefficients update equation for 2D-LMS is obtained by

Wk+l(iaj) :Wk(i’j)+2u ek(iaj) uk(i’j) (10)

-2e, (L ucGj) @

2.2 2D-NLMS Adaptive Filter Algorithm
In this algorithm, as we mentioned before, the
influence of magnitude of the filter input was
considered. The filter coefficients update equation for
2D-NLMS algorithm is obtained by

Wi (1, 1) = Wi (i, J) + Uy s )

11
WUl G, Uy G )+8) " ey ) (b

where O is a positive small parameter which keep
u,(i,j) to become singular. We can consider this

algorithm as a 2D adaptive filter algorithm with time
varying step-size, when we define the variable step-size
as

w= (U G, DU G, 1)+8)™ (12)

2.3 2D-APA AdaptiveFilter Algorithm

The 2D-APA algorithm of Muneyasu and Hinamoto
[4] can be interpreted as the 2D filter that minimizes the
following objective function,

min| Wy, G, )-w G )| (13)

subject to
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dy (i)W ()0, () (14)

In 2D-APA, we use (KL) blocks to update the

weight coefficients, where the parameters K and L are
introduced to apply the recent input vectors in relations,
and they are usually selected as 0<K<N,;, and

0<L<N,. The matrix U(i, j) have dimension
(N;N,)x(KL) and it consist of regressor vectors that

belongs to the affine projection support region. By
defining (15) for m=0,1,..K-1

O, i-m, ) = [u (i-m, juy G-m,j-1) (15)
U (i-m,j-L+1)]
The input matrix can be obtained as
0,G.) =10, G.) 0y (-1, Oy G-K+1,j) - (10
Also, d,(i,j) is the desired signal vector with
dimension of (KL)x1 which is given by
di-1,j)..di-K+1,j-L+D]"

From the above, the filter coefficients update
equation for 2D-APA can be established by

Wy (i, §) = Wy (1, §) + AW, G0, ) (18)
where

Aw, (i, 3) = 0, (L ) (OF G, DU G +o1) e .j) - (1)
and

e, () =dy (. )- Uy (. ) wy . ) (20)

is the output error vector. Notice that the 2D-NLMS
algorithm is a special case of 2D-APA algorithm, when
we use a current block (K=0,L=0) to update the filter
coefficients.

3 Derivation of 2D Adaptive Filter Algorithms

In this section we introduce the novel 2D adaptive
filter algorithms.

3.1 2D-VSS-APA and 2D-VSS-NLMS

In Eq. (18) the weight update equation for 2D-APA
was presented. Following the same approach in [14], if
we rewrite the update equation for 2D-APA respect to

weight error vector, W, (i,j) = W°(i,j)-w, (i,j), where

W°(i,]) is the true unknown filter vector, Eq. (21) is
obtained as

Wi (i) =W, (i, 1) - Uy (i, ) (U G ) @1
U, G.)+31) "6 (i, )

By taking the squared Euclidean norm and
expectations from both sides of Eq. (21), Eq. (22) is
obtained as

E Wy G DI = E W G D~ A 22)
where

Ap=pE[el i, )(OF G, )0, G, 3)" OF G, )W (. 3) | +
RE [ W G, ) Oy i, ) (OF G, D0, G ) (i) |-

WE[ el 1) (01 G, )0, G )" e )| (23)

To have maximum decreasing in MSD from
iteration (k) to(k+1), Ap should be maximized.

Maximizing Ap with respect top, the optimum step-
size can be stated as

ReE| & (i) (0} (. )0y (.3)" O G )Wy . )
E[ el 1)(0F G, )0, G, ) 6 (i, ) |
(24)

(i, ) =

If we define the linear data model for desired signal
as Ay (i, ) = Ug (i, DWO G, ) + Vi (i, ), where v (i,) is
the vector of measurement noise, the error vector can be
described as

e (i, ) = Uy (i, ) wi (i, )+ vi (5 ) - Uy G, )y wi G, )
= 0§ (i )W (i, j) + v, (. §) (25)
We assume that Vv, (i,]) is statistically independent
of regression data Uk(i, j) . Substituting Eq. (25) into
Eq. (24), Eq. (26) is given by
wy (i) ~ LWy G, ) Uy (i, )+ v, G, 3) (O G, UG )
UL G, )Wy G, DV/ELWy G, ) Oy G, )+ Vi )
(Ug D0 G (O G )W D) +vi (L] (26)
By defining:
A (i ) = Uy (i) (U G, )0y G, ) @n
Ul (. )) W, G j)
where 0, (i,j) is (N;N,)x1 column vector, we obtain
o 6. =W .9 U . (O (. O, G )
Ut (i, ) W, (i, )
Therefore, Eq. (26) can be written as

(28)
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E o . D[
Elay . +olTr {E((] 6. )0 G5}

2 . . .
where o, is the variance of measurement noise.

w (i) =

To obtain the optimum step-size from Eq. (29), we
need W°(i,j), which is unknown. From Eq. (25), we

can estimate 0, (i,j) by time averaging as follows:
81 (1) = v, G, D+ (1-7) Oy G, j)
(UL G,3)0, G,5)+31) " e (i, )

where y is a smoothing factor ( 0 <y <1).

(30)

By substituting the estimated value of Q,(i,])

instead of its real value in Eq. (29), the variable step-
size for 2D-APA algorithm is given by

G G )|

uk(i’j):p’max N 31
Gy +C b

where c=03Tr{E((UE(i, D06, j))")} and can be
selected constant in simulation results. To guarantee the
stability of the filter p,,,is chosen less than 2.

Therefore, the filter coefficients update equation for 2D-
VSS-APA algorithm can be stated as

Wit (0:§) = Wy . ) 1y (G U0, G ) (32)
(U5 @)U . ) +81) ey € )

2D-VSS-NLMS is a special case of 2D-VSS-APA

when we use only one block to update weight matrix.

The filter coefficients update equation in 2D-VSS-
NLMS is given by the following relations

A e 12
W) = Wy o) g SO

GG +C (33)
Uy (i, ) (U (i, ) Uy (5, ) +8) e 3, )
where
Gt (0 ) = Y6y G, ) + (-7 U G ) (34)

(Ug (i, U@ 3) +8) ey (i, )

3.2 2D-SM-APA and 2D-SM-NLMS
In 2D set-membership filtering, an upper bound, f3,

on the magnitude of the estimation error is specified.
The parameter B can vary with the specific application.

When the signal error is larger than the certain value
(B), the filter coefficients are updated. On the other

word, the step-size which is proportionate to the

(29)

absolute value of error is introduced in this algorithm.
Following the same approach in [18] for one
dimensional SM-APA, the weight update equation for
2D-SM-APA is given by

Wk+1 (15.]) = Wk (17.]) +0Lk (1’.])01((1’.])

- - (35)
(UG, )0 G D) +8) ey (1) v,
where
aip=] T fi,j)l eGP o
0 otherwise
and

e (i,)) =[ex (i, ))ex (i, j-1)...e (1, j-L+1)
e (i-1,j)...e, (i-K+1,j-L+1)]"
(37
v, =[100...0]"

The 2D-SM-NLMS is a special case of 2D-SM-APA
and is obtained when we use current block to update the
weight matrix and can be stated as

Wi (1) = Wy (3, J) + oy (3, ) Uy (3, )
(Ui (6 DU (0 ) +8) 7 e (0,)
It is clear in the above equation that, if the absolute
value of error becomes smaller than 3, then the step-

(38

size will be zero and if it is larger than B, the step-size
becomes large (close to 1). These algorithms exhibit

like VSS adaptive filters and also reduce the
computational complexity.

3.3 2D-SPU-NLM S
As we mentioned, we introduce 2D-SPU-NLMS
algorithm to reduce the computational complexity. In
this algorithm, we partitioned the input matrix into N,

blocks, each of length N, , and in each iteration a subset

of these blocks is updated. The parameter S is used to
show the number of blocks to update in each iteration.
By extending the approach in [20] and [25] to 2D
version, the filter coefficients update equation for 2D-
SPU-NLMS is obtained by

Wi (1, ) = Wi (3, ) T Cy (i, u (i, ) ey (4, ) (39

where

C.(G,j) = Lz (40)
|Ac .9

The matrix Ay is a (N;N,)x(N,N,) diagonal
matrix with the 1 and O blocks each of length N, on the

diagonal and the positions of 1’s on the diagonal
determine which coefficients should be updated in each
iteration.
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By partitioning the regressor vector Uy (i,j) into N,
blocks each of length N, , the positions of 1 blocks (S

blocks andS<N,) on the diagonal of A, matrix for
each iteration in the 2D-SPU-NLMS adaptive
algorithms are determined by the following procedure:

1. The ||0kk (i,j)”2 values are sorted for 0 <k’ < (N, —1)
, where O (i,j) describes each block of input matrix at
k™ iteration, and
Uy (0, ) = [uGi-k', u-k', j-Du(-k', j-2)

..... u(i-k’,j-N, + )"
2. The k' values that determine the positions of 1 blocks

N 2
correspond to the S largest values of ”ukk (I,J)" .

34 2D-SPU-APA
The SPU approach can be extended to APA. As we
mentioned, the SPU-APA for one dimensional was
presented [20] and [26]. This section presents the 2D-
SPU-APA to reduce the computational complexity in

two dimensional applications, where we use (KL)
blocks to update the weights matrix. In this algorithm
we partition the input matrix into N; blocks, each of
length (N, xKL), and we use S blocks to update. The

filter coefficients update equation for 2D-SPU-APA is
given by

Wiy (1, 1) =Wy (1, ) TRA U (1, ) (41)
(UG DAUG )+ e (i,])
where the A, matrix is the (N;N,*N;N,) diagonal

matrix with the 1 and O blocks each of length N, on the

diagonal and the positions of 1°s on the diagonal
determine which coefficients should be updated in each
iteration. By introducing (N, xKL) block matrix

Ui, j) for 0<k'<(N,-1) as

U (5 3) =[O0 (5 ) Oige Gy j- 1) Oy (i, j- L +1)

Uyereny (B 3D Oygesry (G J- LA 1) Oy gy (G, j-L+ D' (42
the following procedure is used to find the positions of 1
blocks.

1. Compute Tr (UL (i, ) Uy (i, j)) for 0<k'< (N, -1)
2. The k' values that determine the positions of 1 blocks
correspond to the S largest  values  of

Tr (U (i, §) U 0,30
When all blocks are used for updating the weight

matrix (S=N,), the conventional 2D-APA is

established.
4 Computational Complexity

Table 1 presents the computational complexity of
2D adaptive algorithms which were introduced in this
paper. As we can see, the computational complexity of
2D-SPU-NLMS and 2D-SPU-APA are less than
conventional 2D-NLMS and 2D-APA algorithms, and
the computational complexity for 2D-VSS-NLMS and
2D-VSS-APA  algorithms are more than these
algorithms. For the 2D-SPU adaptive filters, the number
of comparisons based on heapsort algorithm have been
also presented in Table 1 [30]. For the 2D-SM-NLMS,
and 2D-SM-AP algorithms, the adaptation is related to
the condition in Eq. (36). If the condition in Eq. (36)
always becomes true (which in practice it does not),
then the computational complexity of 2D-SM
algorithms are similar to the complexity of classical 2D
adaptive algorithms. But the gains of applying the 2D-
SM algorithms comes through the reduced number of
required updates, which cannot be accounted for a
priori, and an increased performance as compared to
classical 2D adaptive filter algorithms.

5 Simulation Results

In this section, we present the simulation results in
one of the important applications of 2D adaptive filter
algorithms, namely, 2D adaptive noise cancellation. Fig.
1 shows the setup of 2D adaptive noise cancellation.
The primary signal is the combination of desired and
noise signals and the reference signal is noise which is
correlated with the noise in the primary signal.

e(la.]) = d(la.]) ) (19.]) ~ ﬁ(la.]) (43)

The 2D adaptive noise cancellation tries to eliminate
the noise from the noisy signal. Based on Eq. (43), after
the convergence of filter coefficients, e(i,j) will be the
estimation of desired signal. In this simulation, the
white Gaussian noise with zero mean and unit variance
v(i,j) is added to the images to produce the noisy images
where the signal to noise ratio (PSNR) is set to 0 dB.
Based on Eq. (44), the reference signal, v,(i, j), is
generated by passing the white Gaussian noise with zero
mean and unit variance through the 2D low pass filter.
In this section, we use four standard images. The
dimension of each original image is 256x256. Figs. 2
and 3 show the original and noisy images. Also, the
order of 2D adaptive filter is set to N1 =N2 = 5.

d@, j) = u(i, j) + v@, j)

v(i, J) Low pass | V1 (1,_]: 2D Adaptive |V (LJ):CV

Filter Filter —

N

Fig. 1 Adaptive noise cancellation setup.

/N
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b(z,)=1-0.7z," +0.5z,> —0.05z,” + 0.0056z,* —0.0004z,”
b(z,) =1-0.7z;" +0.5z;> — 0.045z;® +0.0046z;* —0.0003z;°
B(z,,2,) = b(z,)b(z,) (44)
B(z,,2,) v, (i, )) = v(i, j)

One of the important subjects that did not fully
considered in the literature is the performance of 2D-
algorithms in a comprehensive range of step-size. In Fig. 4,
the performance of 2D-LMS, 2D-NLMS and 2D-APA
algorithms in different values of step-size and for four
images are considered. The step-size changes from 10 to

1. To compare the performance of 2D adaptive filters, we

calculated the PSNR of the output image which is defined

as

M -1M

1

> (1G.) -G, )
PSNR =-10log_ | — (45)
10 M]Mz

1

where 1 and J is the original and noisy images,
respectively. Also, M; and M, describe the size of input
images. Fig. 4 shows that for each algorithm, there is an
optimum value for the step-size to have maximum
PSNR in output image. This figure shows that the
optimum step-size in 2D-LMS is 10~ for four images.
In 2D-NLMS, this value is approximately 10™', and for
2D-APA with K=2, and L=2, the optimum step-size is
102, Also, the stability bound of 2D-LMS is less than
2D-NLMS, and 2D-APA algorithms.

Figure 5 shows the PSNR of output images versus
the step-size for 2D-SPU-NLMS algorithm. Different
values for S have been used in this simulation. As we
can see, there is an optimum step-size for 2D-SPU-
NLMS algorithm. Simulation results show that the
optimum step-sizes are close to each other for different
values of S. Also by increasing the parameter S, the
PSNR of output image increases. This figure shows that
the stability band of 2D-SPU-NLMS for S=1 and S=2 is
less than 2D-SPU-NLMS with S=3, 4, and 5.

Table 1 The computational complexity of 2D-LMS, 2D-NLMS, 2D-APA, 2D-SM-NLMS, 2D-SM-APA, 2D-VSS-NLMS, 2D-VSS-

APA, 2D-SPU-NLMS and 2D- SPU-APA.

Algorithm Multiplications Il);;’llss Mﬁlgiiltii:;?olns Comparisons

2D-LMS 2(NiNy)+1 _ _ _
2D-NLMS 3(N|N,) +1 1 o o
2D-APA (KL (NN, +D+2(KDN N, +(KL)* | - -
2D-SM-NLMS 3(N|N,) +1 2 _ o
2D-SM-APA (KL (NN, +D)+2(KD)N N, +(KL)* || B B
2D-VSS-NLMS 3(N|N,)+1 1 (N;N,) o
2D-VSS-APA (KLY’ (NN, +1)+2(KL)N)N, +(KL)* | (N|N,) -

2D-SPU-NLMS 3(SN,)+1 ! 1 N; log, S+OMNy)

2D-SPU-APA (KL)*(SN, +1)+2(KL)SN, +(KL)* | __ 1 N, log, S+OMN))
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(©)

Fig. 2 Original images. (a) Pot (b) Simpson (c) Part (d) Camera man.

Figure 6 shows the PSNR of output images versus
the step-size, for 2D-SPU-APA algorithm. Different
values for S have been used in this simulation. As we
can see, there is an optimum step-size for 2D-SPU-APA
algorithm. Simulation results show that the optimum
step-sizes are close to each other for different values of
S. Also by increasing the parameter S, PSNR of output
image increases. As we can see, the stability bound low
values of S are less than large values.

Table 2 shows the selected parameters and the
PSNR of output image for different images and various
2D adaptive filter algorithms in optimum values. In this
table we have also presented the results of applying 2D-
VSS-NLMS, and 2D-VSS-APA. As we can see, the
PSNR of output image in 2D-VSS-NLMS is better that
2D-NLMS adaptive filter algorithm. Also, the 2D-VSS-
APA has better performance than 2D-APA.

Figure 7 shows the output images of 2D-LMS, 2D-
NLMS, 2D-APA, 2D-VSS-NLMS, and 2D-VSS-APA.

The results show that the 2D-VSS-APA has better
results than other algorithms. In Figs. 8-10, we
presented the results for different images. Again the
same results can be seen in these figures.

In the following, we applied the 2D-SM-NLMS, and
2D-SM-APA to denoising of images. Table 3 shows the
selected parameters and the PSNR of output image for
four images. This table also shows the number of filter
coefficients in update for these algorithms. As we can
see, the number of filter coefficients in update for 2D-
SM-NLMS, and 2D-SM-APA is less than 2D-NLMS,
and 2D-APA. Comparing the results from this table
with Table 1 shows that the PSNR of output image
based on 2D-SM adaptive filter algorithms is larger than
ordinary 2D adaptive filters. Figs. 11 and 12 show the
output images with 2D-SM-NLMS, and 2D-SM-APA
respectively. The simulation results show that the 2D-
SM adaptive filter algorithms have good ability to
eliminate the noise from the noisy images.
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()
Fig. 3 Noisy images with PSNR=0. (a) Pot (b) Simpson (c¢) Part (d) Camera man.

Table 4 presents the results for 2D-SPU-NLMS, and
2D-SPU-APA. Different values for the parameter S
have been used. As we can see by increasing the
parameter S, the PSNR of output image increases. This
fact can be seen for all images. Also, the results for S=3,
4, and 5 are very close together. Furthermore, the
computational complexity of 2D-SPU adaptive filters is
lower than ordinary algorithms.

In Table 5, we presented the executing time of the
proposed algorithms in 2D-ANC for “Simpson” image.
The processor characteristic of computer was Intel Core
2 Duo CPU 2.53 GHz with 4.00 GB RAM. The
parameters of the algorithms are according to Tables 2,
3 and 4. It is clear that, the executing time of 2D-VSS
algorithms are further than conventional algorithms. In
2D-SM-NLMS, the executing time is less than the

(d

classical 2D adaptive algorithms. In 2D-SPU adaptive
algorithms, by increasing the parameter S, the executing
time increases.

To complete our simulations, we justified the
presented algorithms in different PSNR. Fig. 13 shows
the output PSNR versus input PSNR for 2D-LMS, 2D-
NLMS, 2DAPA, 2D-VSS-NLMS, and 2D-VSS-APA.
The results show that 2D-VSS-APA has better
performance than other algorithms. In Fig. 14, we
presented the results for 2D-SPU-NLMS algorithms. As
we can see, by increasing the parameter S, the output
PSNR increases. Furthermore, the results for S=3, 4,
and 5 are very close for different PSNR of input image.
Figure 15 presents the results for 2D-SPU-APA. This
figure shows that, the performance for S=2, 3, 4, and 5
are very close in various PSNR of input images.
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Fig. 4 Output PSNR of different images versus the step-size for 2D-LMS, 2D-NLMS, and 2D-APA with K=2, L=2.

(a) Pot (b) Simpson (c) Part (d) Camera man.

To complete our discussion about 2D adaptive
algorithms, we consider the influence of the order of the
filter, in 2D adaptive noise cancellation. In Figs. 16, 17
and 18, we justified the performance of 2D-LMS, 2D-
NLMS and 2D-APA algorithms in different input PSNR
and various orders of filter. In Fig. 16 the step-size was
set to ©=0.001 and cameraman image was used. In

Fig. 17, we considered n=0.01 and Simpson image
was used and finally in Fig. 18, n=0.01 was set and the

part image was used. The simulation results show that
by increasing the order of the filter, the output PSNR
decreases. Also the simulation results show that for
large values of input PSNR, the PSNR improvement
decreases.

Table 3 Comparison of PSNR Improvement for 2D-SM Adaptive Filters.

PARAMETER NUMBER OF

ALGORITHM IMAGE B PSNR(OUT) WEIGHT UPDATE
Pot 1 18.47 654
Simpson 1 17.21 1582
2D-SM-NLMS Part 1 18.21 1348
Cameraman 1 18.25 752
Pot 1 20.21 751
2D-SM-APA Simpson 1 20.39 1872
(K=2,L=2) Part 1 23.76 1597
Cameraman 1 18.10 894
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Table 4 Comparison of PSNR Improvement for 2D-SPU Adaptive Filters.

PARAMETER PSNR(OUT) IN DIFFERENT NUMBER OF
ALGORITHM IMAGE BLOCK
p S=5 S=4 S=3 S=2 S=1
Pot 0.05 14.47 14.32 14.14 13.60 | 13.22
Simpson 0.05 14.22 14.09 13.88 13.31 | 12.67
2D-SPU-NLMS Part 0.05 14.26 14.11 13.94 13.37 | 12.99
Cameraman 0.05 14.62 14.49 14.30 13.76 13.26
Pot 0.005 20.34 20.23 20.05 1991 | 18.59
Simpson 0.003 21.64 21.42 21.29 21.28 20
2D-SPU-APA Part 0.003 21.62 21.38 21.29 21.4 19.98
Cameraman 0.003 20.25 20.09 20.01 20 19.16
P[=A—2pnins Y rA—2DNLvs
—{O— 2D-SPU-NLNS (S=4) _
13| =g 2D-SPU-NLNSS (5=3) 7 13 Iggzgﬂmtm: g;‘g 1
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Fig. 5 Output PSNR of different images versus the step-size for 2D-SPU-NLMS with S=1, 2, 3, 4, and 5.
(a) Pot (b) Simpson (c) Part (d) Camera man.
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Fig. 6 Output PSNR of different images versus the step-size for 2D-SPU-APA with K=2, L=2 and various values for S.

(a) Pot (b) Simpson (c) Part (d) Camera man.

Table 2 Comparison of PSNR Improvement for 2D Adaptive Filters.

PARAMETERS
ALGORITHM IMAGE PSNR(OUT)
H C i Hmax
Pot 0.001 | - | e | - 13.74
Simpson [ e B 13.64
2D-LMS Part 0.001 |  —oooem | e | —meee- 13.69
Cameraman 0.001 |  —-=-= | mmmeem | - 13.98
Pot 005 | - | s | - 14.47
Simpson 0.05 | - | memeem | - 14.22
2D-NLMS Part (N — 14.26
Cameraman 0.05 | === | mmemem | e 14.62
Pot 0.005 | - | emeeem | e 20.34
2D-APA Simpson 0.003 | - | eemeem | - 21.65
(K=2,L=2) Part 0.003 | - | e | - 21.62
Cameraman 0.003 | - | e |- 20.25
Pot | - 0.0001 0.99 1 16.18
Simpson = | ------ 0.0002 0.99 1 16.34
2D-VSS-NLMS Part | - 0.0001 0.99 1 16.59
Cameraman = | ------ 0.0003 0.99 1 16.74
Pot | - 0.01 0.99 1 21.87
2D-VSS-APA Simpson | --—---- 0.01 0.99 1 23.35
(K=2,L=2) Part | --—-- 0.01 0.99 1 23.59
Cameraman | ------ 0.01 0.99 1 21.39
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(e) ®

Fig. 7 Noisy and restored images by different 2D adaptive filter algorithms.
(a) Noisy image, Restored images by (b) 2D-LMS (c) 2D-NLMS (d) 2D-VSS-NLMS (e) 2D-APA (f) 2D-VSS-APA.
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(e)
Fig. 8 Noisy and restored images by different 2D adaptive filter algorithms.
(a) Noisy image, Restored images by (b) 2D-LMS (c) 2D-NLMS (d) 2D-VSS-NLMS (e) 2D-APA (f) 2D-VSS-APA.
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(®) ®

Fig. 9 Noisy and restored images by different 2D adaptive filter algorithms.
(a) Noisy image, Restored images by (b) 2D-LMS (c¢) 2D-NLMS (d) 2D-VSS-NLMS (e) 2D-APA (f) 2D-VSS-APA.
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(e) ®
Fig. 10 Noisy and restored images by different 2D adaptive filter algorithms.
(a) Noisy image, Restored images by (b) 2D-LMS (c) 2D-NLMS (d) 2D-VSS-NLMS (e) 2D-APA (f) 2D-VSS-APA.
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(c)
Fig. 11 Restored images for different images with 2D-SM-NLMS.

Table 5 Executing time of the proposed algorithms in 2D-
ANC.

ALGORITHM TIME(SECOND)
2D-LMS 5.87
2D-NLMS 6.31
2D-APA (K=L=2) 11.71
2D-VSS-NLMS 7.94
2D-VSS-APA(K=L=2) 13.21
2D-SPU-NLMS (S5=3) 5.10
2D-SPU-NLMS (S=1) 331
2D-SPU-APA (K=L=2, $=3) 10.14
2D-SPU-APA(K=L=2, S=1) 8.25
2D-SM-NLMS 5.24
2D-SM-APA(K=L=2) 10.04

6 Conclusion

In this paper we presented several 2D adaptive filter
algorithms. The presented algorithms are 2D-VSS-
NLMS, 2D-VSS-APA, 2D-SPU-NLMS, 2D-SPU-APA,
2D-SM-NLMS, and 2D-SM-APA. The performance of
these algorithms was demonstrated in 2D adaptive noise
cancellation setup. The simulation results showed that
the 2D-VSS adaptive filter algorithms have good ability
for elimination of noise in digital images. Also, the 2D-
SPU adaptive filters have low computational complexity
and have close performance to classical 2D adaptive
filters. In 2D-SM adaptive filters, the number of filter
coefficients in update is related to the specific condition
which leads to reduction in computational complexity.
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Fig. 12 Restored images for different images with 2D-SM-APA.
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