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Abstract: The paper addresses a new QRS complex geometrical feature extraction 
technique as well as its application for electrocardiogram (ECG) supervised hybrid (fusion) 
beat-type classification. To this end, after detection and delineation of the major events of 
ECG signal via a robust algorithm, each QRS region and also its corresponding discrete 
wavelet transform (DWT) are supposed as virtual images and each of them is divided into 
eight polar sectors. Then, the curve length of each excerpted segment is calculated and is 
used as the element of the feature space. To increase the robustness of the proposed 
classification algorithm versus noise, artifacts and arrhythmic outliers, a fusion structure 
consisting of three Multi Layer Perceptron-Back Propagation (MLP-BP) neural networks 
with different topologies and one Adaptive Network Fuzzy Inference System (ANFIS) 
were designed and implemented. To show the merit of the new proposed algorithm, it was 
applied to all MIT-BIH Arrhythmia Database records and the discrimination power of the 
classifier in isolation of different beat types of each record was assessed and as the result, 
the average accuracy value Acc=98.27% was obtained. Also, the proposed method was 
applied to 8 number of arrhythmias (Normal, LBBB, RBBB, PVC, APB, VE, PB, VF) 
belonging to 19 number of the aforementioned database and the average value of 
Acc=98.08% was achieved. To evaluate performance quality of the new proposed hybrid 
learning machine, the obtained results were compared with similar peer-reviewed studies in 
this area. 
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1 Introduction1 
Heart is a special myogenic muscle which its 
constitutive cells (myocytes) possess two important 
characteristics namely as nervous (electrical) 
excitability and mechanical tension with force feedback. 
The heart's rhythm of contraction is controlled by the 
sino-atrial node (SA node) called the heart pacemaker. 
This node is the part of the heart’s intrinsic conduction 
system, made up of specialized myocardial (nodal) 
cells. Each beat of the heart is set in motion by an 
electrical signal from the SA node located in the heart’s 
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right atrium. The automatic nature of the heartbeat is 
referred to as automaticity which is due to the 
spontaneous electrical activity of the SA node. The 
superposition of all myocytes electrical activity on the 
skin surface causes a detectable potential difference 
which its detection and registration together is called 
electrocardiography [1]. However the heart’s electrical 
system controls all the events occurring when heart 
pumps blood. So if according to any happening, the 
electro-mechanical function of a region of myocytes 
encounters a failure, the corresponding abnormal effects 
will appear in the electrocardiogram (ECG) which is an 
important part of the preliminary evaluation of a patient 
suspected to have a heart-related problem. Based on a 
comprehensive literature survey among many 
documented works, it is seen that several features and 
extraction (selection) methods have been created and 
implemented by authors. For example, original ECG 
signal [17], preprocessed ECG signal via appropriately 
defined and implemented transformations such as 
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discrete wavelet transform (DWT), continuous wavelet 
transform (CWT) [21], Hilbert transform (HT) [64], fast 
Fourier transform(FFT) [48-49], short time Fourier 
transform (STFT) [10], power spectral density (PSD) 
[51-52], higher order spectral methods [46-47], 
statistical moments [24], nonlinear transformations such 
as Liapunov exponents and fractals [43-45] have been 
used as appropriate sources for feature extraction. In 
order to extract feature(s) from a selected source, 
various methodologies and techniques have been 
introduced. To meet this end, the first step is 
segmentation and excerption of specific parts of the 
preprocessed trend (for example, in the area of the heart 
arrhythmia classification, ventricular depolarization 
regions are the most used segments). Afterwards, 
appropriate and efficient features can be calculated from 
excerpted segments via a useful method. Up to now, 
various techniques have been proposed for the 
computation of feature(s). For example mean, standard 
deviation, maximum value to minimum value ratio, 
maximum-minimum slopes, summation of point to 
point difference, area, duration of events, correlation 
coefficient with a pre-defined waveform template, 
statistical moments of the auto (cross) correlation 
functions with a reference waveform [32], bi-spectrum 
[46], differential entropy [37], mutual information [39], 
nonlinear integral transforms and some other more 
complicated structures [33-45] may be used as an 
instrument for calculation of features. 

After generation of the feature source, segmentation, 
feature selection and extraction (calculation), the 
resulted feature vectors should be divided into two 
groups “train” and “test” to tune an appropriate 
classifier such as a neural network, support vector 
machine or ANFIS, [30-40]. As previous researches 
show, occurrence of arrhythmia(s) affects RR-
tachogram and Heart Rate Variability (HRV) in such a 
way that these quantities can be used as good features to 
classify several rhythms. Using RR-tachogram or HRV 
analysis in feature extraction and via simple if-then or 
other parametric or nonparametric classification rules 
[7-9], artificial neural networks, fuzzy or ANFIS 
networks [10-14], support vector machines [15] and 
probabilistic frameworks such as Bayesian hypotheses 
tests [16], the arrhythmia classification would be 
fulfilled with acceptable accuracies. Heretofore, the 
main concentration of the arrhythmia classification 
schemes has been on morphology assessment and/or 
geometrical parameters of the ECG events. 
Traditionally, in the studies based on the morphology 
and the wave geometry, first, during a preprocessing 
stage, some corrections such as baseline wander 
removal; noise-artifact rejection and a suitable scaling 
are applied. Then, using an appropriate mapping for 
instance, filter banks, discrete or continuous wavelet 
transform in different spatial resolutions and etc., more 
information is derived from the original signal for 
further processing and analyses. In some researches, 

original and/or preprocessed signal are used as 
appropriate features and using artificial neural network 
or fuzzy classifiers [17-25], parametric and probabilistic 
classifiers [26-28], the discrimination goals are 
followed. Although, in such classification approaches, 
acceptable results may be achieved, however, due to the 
implementation of the original samples as components 
of the feature vector, computational cost and burden 
especially in high sampling frequencies will be very 
high and the algorithm may take a long time to be 
trained for a given database. In some other researches, 
geometrical parameters of QRS complexes such as 
maximum value to minimum value ratio, area under the 
segment, maximum slope, summation (absolute value) 
of point to point difference, ST-segment, PR and QT 
intervals, statistical parameters such as correlation 
coefficient of a assumed segment with a template 
waveform, first and second moments of original or 
preprocessed signal and etc. are used as effective 
features [29-35]. The main definition origin of these 
features is based on practical observations and a priori 
heuristic knowledge whilst conducted researches have 
shown that by using these features, convincing results 
may be reached. On the other hand, some of studies in 
the literature focus on the ways of choosing and 
calculating efficient features to create skillfully an 
efficient classification strategy [36-39]. In the area of 
nonlinear systems theory, some ECG arrhythmia 
classification methods on the basis of fractal theory [40, 
41], state-space, trajectory space, phase space, Liapunov 
exponents [42-44] and nonlinear models [45] have been 
innovated by researchers. Amongst other classification 
schemes, structures based on higher order statistics in 
which to analyze features, a two or more dimensional 
frequency space is constructed can be mentioned [46, 
47]. According to the concept that upon appearance of 
changes in the morphology of ECG signal caused by 
arrhythmia, corresponding changes are seen in the 
frequency domain, therefore, some arrhythmia 
classifiers have been designed based on the appropriate 
features obtained from signal fast Fourier transform 
(FFT), short-time Fourier transform (STFT), auto 
regressive (AR) models and power spectral density 
(PSD), [48-53]. Finally, using some polynomials such 
as Hermite function which has specific characteristics, 
effective features have been extracted to classify some 
arrhythmias [54, 55]. The general block diagram of the 
proposed heart arrhythmia recognition-classification 
algorithm including two stages train and test is shown in 
Fig. 1. According to this figure, first, the events of the 
ECG signal are detected and delineated using a robust 
wavelet-based algorithm [62-63]. Then, each QRS 
region and also its corresponding DWT are supposed as 
virtual images and each of them is divided into eight 
polar sectors. Next, the curve length of each excerpted 
segment is calculated and is used as the element of the 
feature space and to increase the robustness of the 
proposed classification algorithm versus  noise, artifacts 
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Fig. 1 The general block diagram of an ECG beat type 
recognition algorithm supplied with the virtual image-based 
geometrical features. 

 
and arrhythmic outliers, a fusion structure consisting of 
three MLP-BP neural networks with different topologies 
and one ANFIS were designed and implemented. The 
new proposed algorithm was applied to all 48 records of 
the MIT-BIH Arrhythmia Database (MITDB) and the 
average value of Acc=98.27% was obtained. Also, the 
proposed hybrid classifier was applied to 8 number of 
arrhythmias (Normal, LBBB, RBBB, PVC, APB, VE, 
PB, VF) belonging to 19 number of the MITDB and the 
average value of Acc=98.08% was achieved. To 
compare the outcomes with previous peer-reviewed 
studies and to show the generalization power of the 
proposed classification algorithm, 4,011 and 4,068 
samples have been selected for training and for testing 
groups, respectively. 

The List of Abbreviations is as follows: 
ANFIS:       Adaptive Network Fuzzy Inference System 
MF:                                               Membership Function 
ECG:                                                  Electrocardiogram 
DWT:                                 Discrete Wavelet Transforms 
SNR:                                              Signal to Noise Ratio 
ANN:                                      Artificial Neural Network 
MEN:                                   Maximum Epochs Number 
NHLN:                     Number of Hidden Layer Neurons 
RBF:                                             Radial Basis Function 
MLP-BP:      Multi-Layer Perceptron Back Propagation 
LR:                                                           Learning Rate 
FP:                                                            False Positive 
FN:                                                          False Negative 
TP:                                                             True Positive 
P+:                                           Positive Predictivity (%) 
Se:                                                           Sensitivity (%) 
CPUT:                                                           CPU Time 

MITDB:                        MIT-BIH Arrhythmia Database 
SMF:                                                Smoothing Function 
FIR:                           Finite-duration Impulse Response 
LBBB:                                   Left Bundle Branch Block 
RBBB:                                Right Bundle Branch Block 
PVC:                        Premature Ventricular Contraction 
APB:                                            Atrial Premature Beat 
VE:                                           Ventricular Escape Beat 
PB:                                                                Paced Beat 
VF:                                          Ventricular Flutter Wave 

 
2 Materials and Methods 

2.1  Discrete Wavelet Transform using à Trous 
Method 

Generally, it can be stated that the wavelet transform 
is a quasi-convolution of the hypothetical signal x(t)  
and the wavelet function (t)ψ  with the dilation 
parameter “a” and translation parameter “b”, as the 
following integration. 

( )xa
1W (b) x(t) (t b) a dt, a 0
a

ψ
+∞

−∞
= − >∫                 (1) 

The parameter a  can be used to adjust the wideness 
of the basis function and therefore the transform can be 
adjusted in several temporal resolutions. In Eq. 1, for 
dilation parameter “a” and the translation parameter “b”, 
the values ka q=  and kb q lT=  can be used in which q 
is the discretization parameter, l is a positive constant, k 
is the discrete scale power and T is the sampling period. 
By substituting the new values of the parameters “a” 
and “b” into the wavelet function (t)ψ , the following 
result is obtained. 

k / 2 k
k,l (t) q (q t lT); k, l Zψ ψ− − += − ∈             (2) 

The scale index k determines the width of wavelet 
function, while the parameter l provides translation of 
the wavelet function. 

If the scale factor a  and the translation parameter b  
are chosen as q=2 i.e., ka 2=  and kb 2 l= , the dyadic 
wavelet with the following basis function will be 
resulted [76], 

k / 2 k
k,l (t) 2 (2 t lT); k, l Zψ ψ− − += − ∈          (3) 

To implement the à trous wavelet transform 
algorithm, filters H(z)  and G(z)  should be used 
according to the block diagram represented in Fig. 2-a, 
[76]. According to this block diagram, each smoothing 
function (SMF) is obtained by sequential low-pass 
filtering (convolving with G(z)  filters), while after 
high-pass filtering of a SMF (convolving with H(z)  
filters), the corresponding DWT at appropriate scale is 
generated. In order to decompose the input signal x(t) 
into different frequency passbands, according to the 
block diagram of Fig. 2-b, sequential high-pass low-
pass filtering including down-sampling should be 
implemented. The filter outputs Hx (t)  and Lx (t)  can 
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be obtained by convolving the input signal x (t)  with 
corresponding high-pass and low-pass finite-duration 
impulse responses (FIRs) and contributing the down-
sampling as 

k

L
k

k

H
k

x (t) g (k) x(2 t k)

x (t) h (k) x(2 t k)

t 0, 1,..., N 1

=+∞

=−∞

=+∞

=−∞

⎧
⎪ = −
⎪⎪
⎨
⎪

= −⎪
⎪⎩
= −

∑

∑
              (4) 

On the other hand, to reconstruct the transformed 
signal, the obtained signals Hx (t)  and Lx (t)  should be 
first be up-sampled by following simple operation 

* *
L L L
* *
H H H

x (2 t) x (t) , x (2 t 1) 0

x (2 t) x (t) , x (2 t 1) 0
t 0, 1,..., N 1

⎧ = + =⎪
⎨

= + =⎪⎩
= −

        (5) 

If the FIR lengths of the H(z) and G(z) filters are 
represented by HL  and GL , respectively, then the 
reconstructing high-pass and low-pass filters are 
obtained as 

*
G

*
H

g (t) g (L 1 t)

h (t) h (L 1 t)

⎧ = − −⎪
⎨

= − −⎪⎩
                   (6) 

Then the reconstructed signal Rx (t)  is obtained by 
superposition of the up-sampled signals convolution 
with their appropriately flipped FIR filters as follow 

R
k k

* * * *
H G

k k

x (t)

h (k) x ( t k) g (k) x ( t k)
= +∞ =+∞

= −∞ =−∞

=

− + −∑ ∑
              (7) 

For a prototype wavelet (t)ψ  with the following 
quadratic spline Fourier transform,  

4
sin ( 4)( ) j

4
Ω

Ω Ω
Ω

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
Ψ                       (8) 

the transfer functions H(z)  and G(z)  can be obtained 
from the following equation 

( )
( )

3j j 2

j j 2

H(e ) e cos( 2)

G(e ) 4je sin( 2)

ω ω

ω ω

ω

ω

=

=
                 (9) 

and therefore, 

( )
h[n]
1 8 { [n 2] 3 [n 1] 3 [n] [n 1]}

g[n] 2 { [n 1] [n]}
δ δ δ δ

δ δ

=

+ + + + + −

= + −

           (10) 

It should be noted that for frequency contents of up 
to 50 Hz, the à trous algorithm can be used in different 
sampling frequencies. Therefore, one of the most 
prominent advantages of the à trous algorithm is the 
approximate independency of its results from sampling 
frequency. This is because of the main frequency 
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Fig. 2 FIR filter-bank implementation to generate discrete 
wavelet dyadic scales and smoothing functions transform 
based on à trous algorithm. (a) one-step generation of detail 
coefficient scales and reconstruction of the input signal. (b) 
four-step implementation of DWT for extraction of dyadic 
scales. 

 
contents of the ECG signal concentrate on the range less 
than 20 Hz [62-63]. After examination of various 
databases with different sampling frequencies (range 
between 136 to 10 kHz), it has been concluded that in 
low sampling frequencies (less than 750 Hz), scales 2λ 
(λ=1, 2, …, 5) are usable while for sampling frequencies 
more than 1000 Hz, scales 2λ (λ=1, 2, …, 8) contain 
profitable information that can be used for the purpose 
of wave detection, delineation and classification. 

 
2.2  ANFIS Classification Strategy 

ANFIS is a fuzzy Sugeno model of integration 
where the final fuzzy inference system is optimized via 
the ANNs training. ANFIS can be viewed as a class of 
adaptive networks which are functionally equivalent to 
fuzzy inference system. It maps inputs through input 
membership function and associated parameters, and 
then through output membership function to outputs. 
ANFIS uses back-propagation or a combination of least 
square estimation and back-propagation for membership 
function parameter estimation. The most important 
point in data classification by ANFIS is designing of 
fuzzy rules. To solve this problem, several clustering 
techniques such as fuzzy c-means (FCM), K-means 
clustering (KMC) and histogram adaptive smoothing 
(HAS) can be utilized. In this study, subtractive 
clustering is used in which each cluster represents one 
independent rule, (Jang, 1993 [71]). 

 
2.2.1 Subtractive Clustering 

A Data clustering is a process of putting similar data 
into groups. A clustering algorithm partitions a data set 
into several groups such that the similarity within a 
group is larger than among groups. Clustering 
algorithms are used extensively not only to organize and 
categorize data, but are also useful for data compression 
and model construction. Clustering techniques are used 
in conjunction with radial basis function networks or 
fuzzy modeling primarily to determine initial location 
for radial basis functions or fuzzy if-then rules. There 
are different clustering technique such as k-means 
clustering, fuzzy c-means clustering, mountain 
clustering and subtractive clustering. If there is no clear 
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Fig. 3 The general of ANFIS used for heart rhythm 
classification. 

 
idea how many clusters there should be for a given set 
of data, subtractive clustering is a fast, one-pass 
algorithm for estimating the number of clusters and the 
cluster centers in a set of data. Consider a collection of n 
data points in an m-dimensional space. Without loss of 
generality, the data points are assumed to have been 
normalized within a hypercube. Since each data point is 
a candidate for cluster centers, a density measure at data 
point xi is defined as: 

2
n

i j
i 2

aj 1

D exp
(r 2)=

⎛ ⎞−⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
x x

                  (11) 

where ra is a positive constant. Hence a data point will 
have a high density value if it has many neighboring 
data points. The radius ra defines a neighborhood; data 
points outside this radius contribute only slightly to the 
density measure. After the density measure of each data 
point has been calculated, the data point with the highest 
density measure is selected as the first cluster center. 
Let xc1 be the point selected and Dc1 its density measure. 
Next the density measure for each data point xi is 
revised by the formula 

2
i c1

i i c1 2
b

D D D exp
(r 2)

⎛ ⎞−⎜ ⎟= − −
⎜ ⎟
⎝ ⎠

x x               (12) 

where rb is a positive constant. Therefore, the data 
points near the first cluster center xc1 will have 

significantly reduced density measures, thereby making 
the points unlikely to be selected as the next cluster 
center. The constant rb defines a neighborhood that has 
measurable reductions in density measure. The constant 
rb is normally larger than ro to prevent closely spaced 
cluster centers; generally rb is equal to 1.5 ra. After the 
density measure for each data point is revised, the next 
cluster center xc2 is selected and all of the density 
measures for data points are revised again. This process 
is repeated until a sufficient number of cluster centers 
are generated. 

When applying subtractive clustering to a set of 
input-output data, each of the cluster centers represents 
a prototype that exhibits certain characteristics of the 
system to be modeled. These cluster centers would be 
reasonably used as the centers for the fuzzy rules' 
premise in a zero-order Sugeno fuzzy model, or radial 
basis functions in a Radial Basis Function Network 
(RBFN). For instance, assume that the center for the i-th 
cluster is ci in an M dimension. The ci can be 
decomposed into two component vectors pi and qi, 
where pi is the input part and it contains the first N 
element of ci; qi is the output part and it contains the last 
M - N elements of ci. Then given an input vector x, the 
degree to which fuzzy rule i is fulfilled is defined by 

2
i

i 2
a

exp
(r 2)

μ
⎛ ⎞−⎜ ⎟= −
⎜ ⎟
⎝ ⎠

x p                           (13) 

This is also the definition of the i-th radial basis 
function if we adopt the perspective of modeling using 
RBFNs. Once the premise part (or the radial basis 
functions) has been determined, the consequent part (or 
the weights for output unit in an RBFN) can be 
estimated by the least-squares method. After these 
procedures are completed, more accuracy can be gained 
by using gradient descent or other advanced derivative-
based optimization schemes for further refinement, 
(Jang, 1993 [71]). 

 
3 The Neuro-ANFIS Fusion Classification 
Algorithm: Design, Implementation and 
Performance Evaluation 

3.1  QRS Geometrical Features Extraction 
3.1.1 ECG Events Detection and Delineation 
In this step, QRS complexes are detected and 

delineated. Today reliable QRS detectors based on 
Hilbert [64, 65] and Wavelet [62, 63] transforms can be 
found in literature. In this study, an ECG detection-
delineation method with the sensitivity and positive 
predictivity Se = 99.95% and P+ = 99.94% and the 
average maximum delineation error of 6.1 msec, 4.1 
msec and 6.5 msec for P-wave, QRS complex and T-
wave, respectively is implemented [62]. By application 
of this method, detecting the major characteristic 
locations of each QRS complex i.e., fiducial, R and J 
locations, becomes possible. 
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3.1.2 Detected QRS Complex Geometrical Features 
Extraction [77] 

In order to compute features from the detected QRS 
complexes either normal or arrhythmic via the proposed 
method, first a reliable time center should be obtained 
for each QRS complex. To find this point, the absolute 
maximum and the absolute minimum indices of the 
excerpted DWT dyadic scale 24 using the onset-offset 
locations of the corresponding QRS complex, are 
determined. It should be noted that according to 
comprehensive studies fulfilled in this research, the best 
time center of each detected QRS complex is the mean 
of zero-crossing locations of the excerpted DWT (see 
Fig. 4) 

To make a virtual close-up from each detected QRS 
complex, a rectangle is built on the complex with 
following specifications: 

• The left-side mid-span of the rectangle is the 
fiducial location of the QRS complex. 

• The Absolute distance of the complex from 
the fiducial point is the half of the rectangle 
height. 

• The center of rectangle is the time-center of 
the QRS complex. 

• The right-hand abscissa of the rectangle is the 
distance between QRS time center and its J-
location. 

Afterwards, Each QRS region and also its 
corresponding DWT are supposed as virtual images and 
each of them is divided into eight polar sectors. Next, 
the curve length of each excerpted segment is calculated 
and is used as the elements of the feature space, 
(therefore, for each detected QRS complex, 16 features 
are computed). The quantity curve-length of a 
hypothetical time series x(t) in a window with length 
WL samples can be estimates as 

( )
Lk W 1

2
CL s

s t k

1M (k) 1 x (t 1) x (t) F
F

+ −

=

⎡ ⎤≈ + + −⎣ ⎦∑    (14) 

where, sF  is sampling frequency of the time series x(t). 
 

 
Fig. 4 Determination of the time center of a detected QRS 
complex using excerpted DWT scale 24. The vertical axis unit 
is arbitrary. 

The curve length is suitable to measure the duration of 
the signal x (t)  events, either being strong or weak. 
Generally, the MCL measure indicates the extent of 
flatness (smoothness or impulsive peaks) of samples in 
the analysis window. This measure allows the detection 
of sharp ascending/descending regimes occurred in the 
excerpted segment [63]. 

In Fig. 1, the general block diagram of the ECG 
beats annotation algorithm with the proposed QRS 
geometrical feature space is illustrated. A generic 
example of a holter ECG and its corresponding 24 DWT 
dyadic scale with the virtual images of the complexes 
provided for feature extraction as well as two quantities 
obtained from the RR-tachogram are shown in Fig. 5. 
 

3.2  Design of the Hybrid (Fusion) Neuro-ANFIS 
Classification Algorithm 

3.2.1 Design of the Particle Classifiers 
In the heart-beat classification context, due to 

differences existing in the theory and the structure of the 
several types of classifiers such as Artificial Neural 
Network (ANN) and ANFIS reasonably, achieving 
exactly similar result from them given a common train 
and test feature spaces, can’t be expected. Assessments 
confirm that in the arrhythmia classification of the 
MITDB, even if the average discrimination power of an 
appropriately designed classifier is superior to another 
rival classifier, however, existence of some records in 
which exceptionally higher generated accuracies 
obtained from the rival classifier may be possible. In 
order to increase the total accuracy of the proposed 
classification algorithm, one way is to synthesize the 
output of several classification algorithms with different 
inherent structures to achieve the best accuracy as much 
as possible leading to higher robustness against 
uncertainties and probable arrhythmia or outliers. In this 
study, to build a fusion (hybrid) classification scheme, 
three MLP-BP with different topologies and one ANFIS 
are properly regulated using the train dataset. The 
specifications of each classification algorithm are 
described below. 

MLP-BP1. The first MLP-BP classifier includes 
one hidden layer with number of hidden layer neurons 
(NHLN) equal to 11 and tangent sigmoid and the 
logarithmic sigmoid as the activation functions of the 
hidden layer and output layer, respectively. Also, for 
this ANN, MEN is chosen to be 200. 

MLP-BP2. This classifier possesses one hidden 
layer with NHLN=12. The tangent sigmoid was chosen 
as the activation function for both hidden and output 
layers, respectively. For this ANN, MEN = 150 was 
assigned. 

MLP-BP3.The third MLP-BP classifier includes 
one hidden layer with logarithmic sigmoid as the 
activation function for both hidden and output layers, 
respectively. For this ANN, MEN = 300 and NHLN=14 
was assigned. 
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Fig. 5 Extraction of the geometrical features from a delineated QRS complex via segmentation of each complex into 8 polar sectors 
by generating of a virtual image from the complex. (a) original ECG, (b) DWT of the original ECG and (c) RR-interval. The vertical 
axis unit is arbitrary. 

 
ANFIS. for generating fuzzy inference system, the 

parameters of subtractive clustering is set as follow: 
Range of influence=0.5, Squash factor=0.55, Accept 
ratio=0.5, Reject ratio=0.15. With these parameters, 7 
fuzzy rules are obtained. 

It should be noticed that several parameters such as 
types of activation functions and several values for 
NHLN, MEN, Range of influence, Squash factor 
,Accept ratio and Reject ratio were examined and were 
altered based on trying-and-error method and suitable 
ranges and types were chosen for these parameters. 

 
3.2.2 The Neuro-ANFIS Fusion Classification 

Scheme 
To design a fusion classification algorithm, after 

appropriate training of three MLP-BP classifiers, 
ANFIS is regulated to merge results of all particle 
classifiers. To train this classifier, obtained outputs of 
each MLP-BP are set as the train feature vector for 
ANFIS. 

In Fig. 6, the block diagram of the proposed fusion 
classification algorithm including different classifiers 
in the train and test stages is illustrated. 

To evaluate performance of the proposed feature 
extraction method and the fusion classification 
algorithm, the following steps are pursued. 

• Evaluation of the discriminate power of the 
selected features.  

• Design of the particle classifiers and their 
implementation to all MITDB records. 

• Design of the fusion classifier for each 
MITDB record and comparing the obtained 
results with each particle classifier.  

• Selection of some rhythms from the MITDB 
records and designing of the particle and 
fusion classifiers. 

• Comparison of the obtained final results with 
previous similar peer-reviewed studies. 

 
3.3 Results and Discussion 

In Table 1, the numeric codes of the 23 MITDB 
rhythms and their corresponding annotations are 
illustrated. After implementation of the three MLP-BP 
neural networks and ANFIS classifier and the 
corresponding fusion classifier to all 48 MITDB 
records and calculation of  the  accuracy,  the  obtained 
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Fig. 6 Design of the fusion classification algorithm via merging 
the outpur of several pre-trained particle classifiers in ANFIS. 
 
 

Table 1 The different rhythm types and the corresponding 
equivalent ASCII code integer numbers. 

Numeric 
Code Rhythm Numeric 

Code Rhythm 

33 Ventricular Flutter Wave 83 Supraventricular Premature or Ectopic Beat 
34 Comment Annotation 86 Premature Ventricular Contraction 
43 Rhythm Change 91 Start of Ventricular Flutter/Fibrillation 
47 Paced Beat 93 End of Ventricular Flutter/Fibrillation 
65 Atrial Premature Beat 97 Aberrated Atrial Premature Beat 
69 Ventricular Escape Beat 101 Atrial Escape Beat 
70 Fusion of Ventricular and Normal Beat 102 Fusion of Paced and Normal Beat 
74 Nodal (junctional) premature Beat 106 Nodal (junctional) Escape Beat 
76 Left Bundle Branch Block Beat 120 Non-Conducted P-wave (Blocked APC) 
78 Normal Beat 124 Isolated QRS-Like Artifact 
81 Unclassifiable Beat 126 Change in Signal Quality 
82 Right Bundle Branch Block Beat    

 

Table 2 Performance of the fusion classification algorithm for all MIT-BIH records. 

MIT 
Rec 

Total 
# of 

Beats 
Rhythm Codes # of Beats of Each  

Annotated Rhythm 
# 

class 
1st Neural 

Net 
2nd Neural 

Net 
3rd Neural 

Net ANFIS 

100 2274 [43,78,65,86] [1,2239,33,1] 2 99.84 99.79 100 100 
101 1874 [43,78,126,124,81,65] [1,1860,4,4,2,3] 3 99.8660 100 100 100 
102 2192 [43,47,102,78,86] [5,2028,56,99,4] 5 99.5126 99.04 99.61 99.91 
103 2091 [43,78,126,65] [1,2082,6,2] 2 99.7605 100 100 100 
104 2311 [43,47,102,126,81,78,86] [45,1380,666,37,18,163,2] 6 91.6304 91.41 92.11 93.61 
105 2691 [43,78,86,126,124,81] [1,2526,41,88,30,5] 5 97.8177 97.16 97.95 98.53 
106 2098 [126,43,78,86] [30,41,1507,520] 4 96.2963 95.94 96.77 97.44 
107 2140 [43,47,86,126] [1,2078,59,2] 2 100 100 100 100 
108 1824 [43,78,86,120,126,65,124,70,106] [1,1740,16,11,41,4,8,2,1] 6 98.8044 98.49 98.94 99.51 
109 2535 [43,76,70,86,126] [1,2492,2,38,2] 2 100 100 100 100 
111 2133 [43,76,126,86] [1,2123,8,1] 2 99.7479 99.65 99.81 99.88 
112 2550 [43,78,126,65] [1,2537,10,2] 2 99.8071 99.79 99.8125 100 
113 1796 [43,78,97] [1,1789,6] 2 100 99.54 100 100 
114 1890 [43,78,86,74,70,124,126,65] [3,1820,43,2,4,1,7,10] 5 99.7679 99.53 99.84 99.94 
115 1962 [43,78,126,124] [1,1953,2,6] 2 99.8169 99.46 99.842 99.91 
116 2421 [43,78,86,65,126] [1,2302,109,1,8] 3 99.8824 99.66 99.9452 100 
117 1539 [43,78,126,65] [1,1534,3,1] 1 100 100 100 100 
118 2301 [43,82,86,65,120,126] [1,2166,16,96,10,12] 5 98.4552 98.16 98.6314 99.45 
119 2094 [43,78,86,126] [103,1543,444,4] 4 99.564 97.28 99.64 100 
121 1876 [43,78,126,65,86] [1,1861,12,1,1] 2 100 100 100 100 
122 2479 [43,78,124] [1,2476,2] 1 100 100 100 100 
123 1519 [43,78,86] [1,1515,3] 1 100 100 100 100 
124 1634 [43,82,74,86,70,65,126,106] [13,1531,29,47,5,2,2,5] 6 95.2160 94.67 95.74 96.95 
200 2792 [43,86,78,65,126,70] [148,826,1743,30,43,2] 5 93.4412 92.44 94.11 95.84 
201 2039 [43,78,97,106,86,120,65,74,126,70] [35,1625,97,10,198,37,30,1,4,2] 8 91.4598 92.71 92.86 93.74 
202 2146 [43,78,86,65,124,97,70] [8,2061,19,36,2,19,1] 5 98.65 97.36 98.85 98.98 
203 3107 [43,126,78,86,97,124,81,70] [45,57,2529,444,2,25,4,1] 6 96.25 95.36 96.74 97.02 
205 2672 [43,78,86,65,70,126,124] [13,2571,71,3,11,2,1] 4 99.57 98.25 99.41 99.91 
207 2385 [43,82,86,76,91,33,93,126,124,69,65] [24,86,105,1457,6,472,6,15,2,105,107] 10 95.58 94.58 95.86 96.23 
208 3040 [43,70,86,78,126,124,83,81] [53,373,992,1586,24,8,2,2] 6 96.454 95.54 96.84 96.98 
209 3052 [43,78,65,124,126,86] [21,2621,383,7,19,1] 5 97.7 97.47 97.62 98.53 
210 2685 [43,78,86,70,126,97,124,69] [17,2423,194,10,17,22,1,1] 6 97.36 97.29 97.651 97.89 
212 2763 [43,82,78,126,124] [1,1825,923,13,1] 3 98.92 98.65 99.02 99.46 
213 3294 [43,78,70,65,86,97] [43,2641,362,25,220,3] 5 94.46 92.97 95.12 95.79 
214 2297 [43,76,86,126,124,81,34,70] [25,2003,256,4,5,2,1,1] 5 99.38 98.45 99.63 99.81 
215 3400 [43,78,86,126,65,34,70] [5,3195,164,30,3,2,1] 4 99.1882 99.14 99.32 99.55 
217 2280 [43,47,102,86,78,126,124] [67,1542,260,162,244,4,1] 6 86.578 85.66 88.15 88.87 
219 2312 [43,78,86,70,34,65,120] [21,2082,64,1,4,7,133] 6 97.7941 97.61 97.87 97.94 
220 2069 [43,78,65,126] [17,1954,94,4] 4 99.7576 98.54 99.82 99.91 
221 2462 [43,78,86,126] [23,2031,396,12] 4 98.8654 97.78 98.92 99.31 
222 2634 [43,78,126,65,106,74] [136,2062,15,208,212,1] 5 86.4762 85.33 87.12 88.05 
223 2643 [43,78,86,65,101,70,126,97] [28,2029,473,72,16,14,10,1] 7 95.0570 92.49 95.41 95.78 
228 2141 [43,78,124,86,126,65,34] [41,1688,24,362,20,3,3] 5 96.4757 95.53 96.83 96.98 
230 2466 [43,78,126,124,86] [207,2255,2,1,1] 2 100 99.85 100 100 
231 2011 [43,82,34,78,120,65,86] [11,1254,427,314,2,1,2] 4 97.7500 99 99.12 99.89 
232 1816 [43,82,65,126,106] [1,397,1382,35,1] 3 96.2707 94.89 96.54 96.74 
233 3152 [43,86,78,65,70,124] [71,831,2230,7,11,2] 5 98.2951 97.57 98.51 98.84 
234 2764 [43,78,126,74,86] [3,2700,8,50,3] 3 99.8278 99.72 99.88 99.97 

Total # of 
Subjects 48 Average Accuracy (%) 98.27375 

  

Total # of 
Complexes 112,646   

 
results are shown in Table 2. According to this table, 
the ANFIS classifier yielded the average accuracy of 
Acc=98.27% given all data and all rhythms of the 
MITDB records. As it can be seen in this table, the 
overall performance quality associated with the ANFIS 
is superior rather than the each MLP classifier. In order 
to be able for comparing the obtained results of this 

study with the outcomes of the previous researches 
([46,72-75]), utilizing exactly the same train and test 
databases is mandatory. To this end, records 100, 102, 
104, 105, 106, 107, 109, 111, 114, 116, 118, 119, 124, 
200, 207, 209, 212, 214 and 217 are selected from the 
MITDB records and the rhythms Normal, left bundle 
branch  block  (LBBB),  right  bundle  branch  block 
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Table 3 The name of selected MITDB records with their rhythm types contents for the aim of performance evaluation and 
comparison with other studies. 

 
Normal LBBB RBBB PVC APB VE PB 

train test train test train test train test train test train test train test
record 

100 146 158 0 0 0 0 0 0 18 15 0 0 0 0 
102 0 0 0 0 0 0 0 0 0 0 0 0 100 100
104 0 0 0 0 0 0 0 0 0 0 0 0 100 100
105 165 179 0 0 0 0 12 12 0 0 0 0 0 0 
106 100 107 0 0 0 0 150 150 0 0 0 0 0 0 
107 0 0 0 0 0 0 0 0 0 0 0 0 100 100
109 0 0 185 201 0 0 11 11 0 0 0 0 0 0 
111 0 0 158 171 0 0 0 0 0 0 0 0 0 0 
114 119 129 0 0 0 0 12 12 5 5 0 0 0 0 
116 150 163 0 0 0 0 31 31 0 0 0 0 0 0 
118 0 0 0 0 193 212 5 5 53 43 0 0 0 0 
119 101 109 0 0 0 0 127 127 0 0 0 0 0 0 
124 0 0 0 0 136 150 13 13 0 0 0 0 0 0 
200 114 123 0 0 0 0 236 236 16 14 0 0 0 0 
207 0 0 108 117 8 8 30 30 58 49 55 50 0 0 
209 171 185 0 0 0 0 0 0 208 174 0 0 0 0 
212 60 65 0 0 163 180 0 0 0 0 0 0 0 0 
214 0 0 149 161 0 0 73 73 0 0 0 0 0 0 
217 0 0 0 0 0 0 0 0 0 0 0 0 100 100

Total 1126 1218 600 650 500 550 700 700 358 300 55 50 400 400  
 
(RBBB), premature ventricular contraction (PVC), atrial 
premature beat (APB) , ventricular escape beat (VE) , 
paced beat (PB) and ventricular flutter wave (VF) are 
extracted according to the MITDB annotation files. In 
Table 3, the name of the MITDB records as well as the 
selected rhythm types and their corresponding beat 
numbers are presented. 
 

3.3.1 Error Analysis 
It should be noted that if some diversely designed 

classification algorithms show error rate diversity 
relative to each other for a given common database, then 
the utilization of them in a fusion classification structure 
is justified. In Fig. 7, the error rate diversity of structural 
classifiers including three MLP-BP and ANFIS 
classifier is demonstrated. In Table 4, the performance 
of the fusion classification algorithm has been described 
by the obtained confusion matrix. For instance, the fifth 
row of this table shows that 2, 3, 1, 4, 0, 1 and 0 beat 
numbers were falsely classified into the Normal, LBBB, 
RBBB, APB, VE, PB and VF categories, respectively. 
In this way the number of fusion classifier false 
negative (FN) detections for the PVC class equals to 11. 
 

 
Fig. 7 Error-rate diversity analysis for justification of the 
fusion of Three MLP-BP and ANFIS classifiers. 

Table 4 Performance evaluation of the presented classification 
algorithm for the selected MITDB records the confusion 
matrix. 

 
 Normal LBBB RBBB PVC APB VE PB VF 

Normal 1198 10 2 2 2 1 3 0 
LBBB 5 639 1 3 1 0 0 1
RBBB 2 4 539 1 3 0 1 0 
PVC 2 3 1 689 4 0 1 0 
APB 1 0 1 7 288 2 1 0 
VE 0 1 1 0 3 45 0 0 
PB 2 0 1 1 0 2 394 0 
VF 0 0 0 2 0 0 0 198  

 
On the other hand, for instance,the third column of this 
table illustrates that 10, 4, 3, 0, 1,0 and 0 beat numbers 
from the Normal, RBBB, PVC, APB, VE, PB and VF 
categories, respectively were falsely classified as LBBB 
class, i.e., the number of fusion classifier false positive 
(FP) detections for the LBBB class equals is 18. 
 

3.4  Arrhythmia Classification Performance 
Comparison with Other Works 

In the final step, in order to show the marginal 
performance improvement of the proposed arrhythmia 
hybrid classification algorithm, the method is assessed 
relative to other high-performance recent works. The 
result of comparison of the proposed method and other 
works is shown in Table 5. 
 
4 Conclusion 

In this study, a new supervised heart arrhythmia 
hybrid (fusion) classification algorithm based on a new 
QRS complex geometrical features extraction technique 
as well as an appropriate choice from each beat RR-
tachogram was described. In the proposed method, first, 
the events of the ECG signal were detected and 
delineated using a robust wavelet-based algorithm. 
Then, each QRS region and also its corresponding DWT 
were supposed as virtual images and each of them was 
divided into eight polar sectors. Next, the curve length 
of each excerpted segment was calculated and is used as 
the element of the feature space. 
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Table 5 Performance evaluation of the presented fusion classification algorithm. 
(a) Results obtained from several classification algorithms implemented in this study including three MLP and ANFIS classifiers. 
(b) summary of previous studies. 
 

(a) 

Classifier
sensitivity Total 

Accuracy
(%) Normal LBBB RBBB PVC APB VE PB VF 

MLP-BP1 96.06 93.85 94.37 93.72 91.34 90 94.25 95.5 94.45 
MLP-BP2 95.49 91.39 93.28 89.58 89 74 92.5 94 92.45 
MLP-BP3 97.2 96.77 95.1 93.143 92.67 96 97 95.5 95.7 

ANFIS 98.36 98.31 98 98.43 96 90 98.51 99 98.08  
 

(b) 
Authors Method Signal Dataset Accuracy

Linh 
and 

Osowski [78] 

Feature extraction: 
Hermite Coefficients 
Classification: anfis 

 

ECG 

7279 beats from MIT-BIH; 
3611 training-3668 testing; 

[Normal: 2344, LBBB: 1250, 
RBBB: 1050, PVC:1400, 

APB:658,VE:105, VF: 472] 

96 

 
N.Kannathal 

and 
C.M. Lim 

[14] 

Feature extraction: 
Largest Lyapunov exponent, Spectral 

entropy, Poincare geometry 
Classification: anfis 

RR 
interval 

600 dataset from MIT-BIH; 
320 training-280testing; 

10 classes 
94 

Osowski and 
Linh [73] 

Feature extraction: 
cumulants of the second, third and fourth 
order Classification: fuzzy hybrid neural 

network 

ECG 

7185 beats from MIT-BIH; 
4035 training—3150 testing 
[Normal: 2250, APB: 658, 

LBBB: 1200, 
PVC: 1500, RBBB: 1000, VF: 

472, VE: 105] 

96.06 

Dokur and 
Olmez [67] 

Feature extraction: 
discrete wavelet transform 
Classification: intersecting 

spheres network 

ECG 

3000 beats from MIT-BIH; 
Normal, LBBB, 

RBBB, P, p, a, VE, PVC, F, f: 
300 from 

each category; 1500 
training—1500 testing 

 

95.7 

S. N. Yu  
and 

Y. H. 
Chen[46] 

Feature extraction: 
higher order statistics of subband 

components 
Classification: feedforward neural network 

 

ECG 
 

7185 beats from MIT-BIH; 
4035 training—3150 testing 
[Normal: 2250, APB: 658, 

LBBB: 1200, 
PVC: 1500, RBBB: 1000, VF: 

472, VE: 105] 

97.53 
 

Hu et al. [74] 

Feature extraction: 
PCA in 29 points 

from QRS, instantaneous 
and average RR-interval, 

QRS complex width 
Classification: mixture 
of experts (SOM, LVQ) 

ECG 

25 min from each record in 
MIT-BIH 200 series excluding 

records 212, 217, 220, 222 
and 232 [Normal: 43897, PVC: 

5363] 
 

95.52 
 

Tsipouras 
et al. [30] 

Feature extraction: 
RR-interval 

Classification: 
knowledge-based system 

RRinterval 
signal 

 

30000 beats from MIT-BIH [N, 
P, f, P, Q, LBBB, RBBB: 25188, 

PVC, F: 2950, 
APB, a, J, S: 1213, e, j, n, 

VE: 265, VF: 384] 
 

95.85 
 

 
 

This study 
 
 

Feature extraction: Geometrical properties 
obtained from segmentation of each detected-
delineated QRS complex virtual image as well 

as RR-tachogram 
Classification: A fusion structure consisting 

of three MLP and ANFIS classifiers 

ECG 
 

8079 beats from MIT-BIH; 
4011 training—4068 testing 
[Normal: 2344, LBBB: 1250, 

RBBB: 1050, PVC:1400 ,  
APB:658,VE:105 ,PB:800, VF: 

472] 

98.08 
 

 
 

To increase the robustness of the proposed classification 
algorithm versus noise, artifacts and arrhythmic outliers, 
a fusion structure consisting of different classifiers 
namely three MLP-BP neural networks with different 
topologies and one ANFIS were designed. To show the 
merit of the new proposed algorithm, it was applied to 
all 48 MITDB records and the discrimination power of 
the classifier in isolation of different beat types of each 
record was assessed and as the result, the average value 
of Acc=98.27% was obtained as the accuracy. Also, the 

proposed method was applied to 8 number of 
arrhythmias namely as Normal, LBBB, RBBB, PVC, 
APB, VE, PB, VF belonging to 19 number of the 
MITDB and the average value of Acc=98. 08% was 
achieved showing marginal improvement in the area of 
the heart arrhythmia classification. To evaluate 
performance quality of the new proposed hybrid 
learning machine, the obtained results were compared 
with several similar studies. 
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