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Time Domain Analysis of Graphene Nanoribbon Interconnects 
Based on Transmission Line Model 
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Time domain analysis of multilayer graphene nanoribbon (MLGNR) interconnects, based 
on transmission line modeling (TLM) using a six-order linear parametric expression, has 
been presented for the first time. We have studied the effects of interconnect geometry 
along with its contact resistance on its step response and Nyquist stability. It is shown that 
by increasing interconnects dimensions their propagation delays are increased and 
accordingly the system becomes relatively more stable. In addition, we have compared time 
responses and Nyquist stabilities of MLGNR and SWCNT bundle interconnects, with the 
same external dimensions. The results show that under the same conditions, the 
propagation delays for MLGNR interconnects are smaller than those of SWCNT bundle 
interconnects are. Hence, SWCNT bundle interconnects are relatively more stable than 
their MLGNR rivals. 
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1. Introduction
 
 

Recent developments in science and technology of 
graphene nanoribbons (GNRs) have stimulated up major 
interest in GNR potential applications, particularly as 
transistors and interconnects [1-3]. Since each GNR can 
be considered as an unrolled single wall carbon 
nanotube (SWCNT), most of GNR electronic properties 
are similar to those of SWCNT. Depending on its 
geometry, GNR can be either metallic or 
semiconducting [4-6]. In a high-quality sheet of 
graphene, carriers’ mean free path (MFP) can be as long 
as λ=1 µm, the thermal conductivity can be as large as 
3-5×103 W/mK, and it is capable of conducting current 
densities as high as 108 A/cm2 [7]. Moreover, its 
electrical conductivity is a linearly increasing function 
of temperature beyond T=300 K [8, 9]. The major 
advantage of GNR over CNT is its more straightforward 
fabrication processes [10]. 
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These extraordinary properties have made GNR a 
potential material for signal and power interconnects. 
Interconnects made of GNRs can potentially be used 
either as intra-cell interconnects linking GNR transistors 
in a seamless fashion [1, 3] or in a multilevel 
interconnect network as conventional interconnects 
[11]. The former interconnects reduce the number of 
metal-to-graphene connections resulting in elimination 
of some contact and quantum resistances, which in turn, 
improves the circuit performance. The latter 
interconnects; on the other hand, require more versatile 
growth approaches for graphene. This, in turn, can 
potentially reduce the propagation delays and power 
dissipations, so improving the system reliability. 

While each GNR has desirable material properties, it 
suffers from an intrinsic ballistic (quantum) resistance 
that is independent of GNR′s length (l) and is 
approximated by h/2e2Nch≈12.5/Nch (KΩ), wherein h, e, 
and Nch are the Planck′s constant, electron charge, and 
the number of conduction channels in a GNR, 
respectively [7]. Such a high intrinsic resistance that is 
length independent leads to excessive delay for 
interconnects applications. On the other hand, 
multilayer GNRs (MLGNRs) with reduced equivalent 
resistance have been physically demonstrated to be 
suitable media for local, intermediate, and global 
interconnects [10]. 

Most of the feasibility studies toward the use of 
GNRs as interconnects medium, in recent years, have 
been devoted to physical prospects [2, 6, 12-15], 
technological aspects [7, 10] and some physical-based 
circuit modeling of GNRs [10]. In spite of all these 
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valuable research works, only one paper has focused on 
Nyquist stability analysis [16] and no efforts have been 
reported on time domain analysis of GNR interconnects, 
so far. 

On the other hand performance of local (on-chip) 
interconnects are vital to the analog ICs designed for 
radio frequency (RF) applications [17]. In other words, 
possible high overshoots/undershoots in the time 
domain responses of on-chip interconnects used in an 
RF-IC can deteriorate the IC performance. In order to 
analyze the performance of MWCNT interconnects 
designed for such on-chip applications, we need to 
evaluate their time domain responses and stabilities. 

Aim of this paper is to report the results of our 
studies on time domain analysis of the driver-MLGNR-
load system, using a transmission line model (TLM). In 
this study, we have examined the effects of the MLGNR 
geometry and its contact resistance on interconnects 
time domain response and stability. Finally, numerical 
results for MLGNR were compared with those obtained 
for interconnect composed of single wall carbon 
nanotube (SWCNT) bundles of the same external 
dimensions. 

 
2. Time Domain Response 
Figure 1(a) illustrates a schematic representation of a 
typical RLC model for MLGNR interconnects made of 
N Parallel GNRs of the same lengths l and widths W. In 
this figure, RC, RQ, and RS represent the equivalent 
resistances introduced by the imperfect contacts, the 
quantum effect, and the carriers’ scatterings, 
respectively. The equivalent quantum resistance for this 
MLGNR equals that of each constituent GNR divided 
by N; i.e., RQ≈12.5/NNch (KΩ). When the length of each 
GNR is greater than its carriers′  mean  free  path  (i.e., 
l>λ), the equivalent distributed ohmic resistance (per 
unit length), introduced by carriers scatterings with 
defects, substrate-induced disorders, and phonons, can 
be written as RS ≡RQ/λ≈12.5/λNNch (KΩ-cm−1) [10]. Also 
shown in Fig. 1(a) CE (F-cm−1)≈εW/d and CQ ≈ 
{RQvF}−1=(NNch/1.25) pF-cm−1 are the per unit length 
values of the equivalent capacitances induced by the 
electrostatic and quantum effects, respectively, in which 
ε and vF (=108 cm-s−1) are the dielectric permittivity and 
the Fermi velocity in graphite, respectively. Note, in 
order to approximate CE, MLGNR is assumed to be a 
bundle of parallel ribbons displaced from a ground 
plane by the same distance, d [7]. Since the separation 
between any two subsequent layers is much smaller than 
d, the effect of the electrostatic capacitances between 
any two subsequent GNR layers is negligible. 
Furthermore, LK=RQ/vF=(125/NNch) μH-cm−1 and 
LM ≈μd/WN represent the per unit length values of the 
kinetic and the magnetic inductances, in presence of the 
ground plane, wherein μ is the graphene permeability. In 
a practical case with μ≈μ0=4π nH-cm−1, d/W~1-10, and 
Nch~1-10, the ratio of LM /LK<10−4 is ignorable. 

In order to obtain the number of conducting channels in 
each GNR, one can add up contributions from all 
electrons in all nC conduction sub-bands and all holes in 
all nV valence sub-bands [10]: 
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where i(=1, 2, 3, …) is a positive integer, EF, k, T, and 
Ei= ihvF/2W are the Fermi energy, the Boltzmann 
constant, temperature, and the quantized energy of the i-
th conduction or valence subband, respectively. This 
quantization is due to width confinement introduced by 
the ribbon′s finite width. 
As illustrated in TLM equivalent circuit model of Fig. 
1(b), MLGNR interconnect, is driven by a repeater of 
output resistance Rout and output parasitic capacitance 
Cout. It is driving an identical repeater with an input 
capacitance of CL=Cout. In order to calculate the input-
output transfer function for the configuration, shown in 
Fig. 1(b), one can use the ABCD transmission 
parameter matrix for a uniform RLC transmission line 
of length l as in [18]. 
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where s=jω is the complex frequency, 
,2/)( QCex RRR +=  )/()(0 sCsLRZ S

T += and 

sCsLRS

T )( +=γ . Elements of matrix Ttotal are given 

in Appendix A. 
The input-output transfer function of the configuration 
in Fig. 1 can be written as: 
 

 
 (a) 
 

 
 (b) 
 
Fig. 1 Schematic of (a) a typical RLC model for MLGNR 
interconnects, and (b) a transmission line circuit model for a 
driver-MLGNR interconnect-load configuration [16]. 
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(a) 

 

 
(b) 

Fig. 2 Time domain responses (a) and Nyquist diagrams (b) 
calculated for driver-MLGNR interconnect-load configuration 
of Fig. 1, with Rout=100 Ω, CL=Cout=1 fF, RC=0, W=10 nm, 
and l=10, 30, and 50 µm. 
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For simulation purposes, by expanding sinh(γTl) and 
cosh(γTl) in terms of Taylor series and keeping the 
appropriate terms, we can obtain a sixth order 
parametric linear approximation for (3). 

16

0

( ) i
i

i

H s b s
−

=

⎛ ⎞≈ ⎜ ⎟
⎝ ⎠
∑  (4) 

Coefficients bi are given in Appendix B. 
By varying the dimensions of interconnects (10 μm≤ l 
≤50 μm and 10 nm≤W≤50 nm) and generating various 
step responses and Nyquist diagrams, we have studied 

the effect of MLGNR geometry on the step responses 
and relative stability of interconnects. 
Using the fourth-order Padé’s approximation, we have 
already studied the effects of MLGNR interconnect 
dimensions on its relative stability, when the contacts 
are perfectly ohmic (RC = 0) [16]. Here, using a more 
accurate analysis (i.e., the sixth order linear 
approximation), by showing the Nyquist diagrams, we 
demonstrate the correspondence of interconnects 
relative stabilities with propagation delays, as 
nanoribbons′ dimensions and contact resistance are 
varied. 
 
3. Results and Discussion 
According to (1) and assumption of metallic GNRs with 
EF=0.1 eV, the number of conducting channels in each 
ribbon for W=10, 30, and 50 nm equals Nch=2, 4, and 6, 
respectively. In this analysis, we have assumed 
Cout=CL=1 fF, Rout=100 Ω, N=147 for MLGNR of 
thickness t≈50 nm (i.e., the separation between two 
adjacent GNRs δ~0.34 nm), and d=100 nm. The 
graphene permeability is also assumed to be μ=μ0=4π 
nH-cm−1. 
By keeping MLGNR width constant and varying its 
length (l), we have realized that as l increases the 
propagation delay also increases. Note that as the length 
of the interconnect increases all of the resistances, 
inductances, and capacitances are increased. Therefore, 
delay of the interconnect increases. This, in turn, results 
in decrease in the amplitude overshoot. Figure 2 
illustrates an example for the step responses (Fig. 2(a)) 
and Nyquist diagrams (Fig. 2(b)) for three interconnects 
of the same widths (W=10 nm), and lengths of l=10, 30, 
and 50 µm, with perfect ohmic contacts (i.e. RC=0). As 
shown in Fig. 2(a), for l=10 µm (solid line) the 
propagation time is less than 2.5 ps (i.e. the time at 
which the step response reaches to 90% of its 
maximum), amplitude of the step response experiences 
an overshoot, and fluctuations are significant. Whereas, 
for l=30 µm (dashed line), the propagation delay has 
increased to ~17 ps, the overshoot has disappeared, and 
fluctuations has become less significant. For l=50 µm 
(dotted-dashed line) the propagation delay has increased 
further to values above 48 ps, and the fluctuations have 
disappeared. Figure 2(b) illustrate the corresponding 
Nyquist diagrams for interconnects of the given 
example, as for Fig. 2(a). As seen in this figure, the 
critical point (−1, 0) is outside the diagrams, for all three 
interconnects. To our expectation, as l increases, the 
Nyquist diagrams for l=30 and 50 µm move farther 
away from the critical point about 35% and 62% 
respectively. So the system′s relative stability is 
increased. This behavior, in fact, is in accordance with 
that observed in Fig. 2(a). 
Next, while keeping interconnect length constant, we 
have varied its width. We have observed that as W 
increases the propagation delay increases and the 
overshoot amplitude decreases. This is because, as W 
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increases CE and Nch both increase and LM decreases. On 
the other hand, with an increase in Nch, CQ increases but 
RQ, RS, and LK decrease. However, while CE and CQ 
have dominant role in determining the switching delay, 
role of RQ, RS, LM, and LK is insignificant. As an 
example, Fig. 3 illustrates the step responses (Fig. 3(a)) 
and Nyquist diagrams (Fig. 3(b)) of three interconnects 
of the same length (l=10 μm) and widths of W=10, 30, 
and 50 nm. Comparison of Fig 3(a) and Fig. 2(a) reveals 
that, interconnects step responses are less sensitive to 
the variations in ribbons widths than to the variations in 
their lengths. As observed in this comparison, when l is 
increased by a factor of three/five, the raise in 
propagation delay is ten times larger than that for the 
case in which W experiences the same relative increase. 
Propagation delays for W=30 and 50 nm are 
respectively equal to 5.3 and 6.7 ps. In accordance with 
the behavior observed in Fig. 3(a), Fig. 3(b) 
demonstrate that as W increases Nyquist diagrams move 
farther away from the critical point (−1, 0) that is 
outside all three. Nyquist diagrams for W=30 and 50 nm 
 

 
(a) 

 

 
(b) 

Fig. 3 Time domain responses (a) and Nyquist diagrams (b) 
calculated for driver-MLGNR interconnect-load configuration 
of Fig. 1, with Rout=100 Ω, CL=Cout=1 fF, RC=0, l=10 µm, and 
W=10, 30, and 50 nm. 

move farther away from critical point about 10% and 
17% respectively. So the system's relative stability 
increases with W. Then, we examine the effect of 
contact resistance, RC, on the step reposes and the 
relative stability of interconnects. 

Figure 4 illustrates the results of this study, for three 
interconnects of the same lengths (l=10 μm) and widths 
(W=10 nm) and contact resistances of RC=0, 1, and 10 
kΩ. As shown in Fig. 4(a), the propagation delay 
increases significantly, as RC increases from 0 (solid 
line) to 1 k Ω (dashed line) and then to 10k Ω (dotted-
dashed line). The propagation delay for RC= 1 and 10 
kΩ equals to 9.7 ps and 77 ps respectively. In 
accordance with the behavior observed from this figure, 
Fig. 4(b) shows that corresponding Nyquist diagrams 
move farther away from the critical point (−1, 0) as RC 
increases. For RC= 1 and 10 kΩ the Nyquist diagrams 
move farther from critical point about 75% and 87% 
respectively. Hence, the system relative stability 
increases accordingly. 

Figure 5 compares the results by the 4th and 6th order 
Pade’s approximations for the MLGNR interconnect of 
l=10 µm, W=10 nm and RC=0, that was shown to be the 
 

 
(a) 

 

 
(b) 

Fig. 4 Time domain responses (a) and Nyquist diagrams (b) 
calculated for driver-MLGNR interconnect-load configuration 
of Fig. 1, with W=10 nm, l=10 µm, Rout=100 Ω, CL=Cout=1 
fF, RC=0, 1 kΩ, and10 kΩ. 
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worst case, as far as the stability is concerned, so far. 
The comparison shows that the peak overshoot of 1.087 
V and the corresponding delay of 3.677 ps for the 4th 
order approximation are respectively about 23 mV 
higher and 2.145 ps shorter than the peak overshoot and 
delay obtained by the 6th order approximation. These 
correspond to a 26% overestimate for the peak 
overshoot and a 58% underestimate in the delay time. 
Furthermore, it reveals that the Nyquist diagram 
obtained by the 4th order is about 15% closer to critical 
point (-1, 0) compared to that obtained by the 6th order 
approximation. 

Finally, we compare the step responses and Nyquist 
diagrams calculated for interconnects made of MLGNR 
and SWCNT bundle, considering all efficacious 
conditions to be same for both systems. Further 
assumptions made for this particular analysis are l=2 
and 10 μm, W=t=50 nm, and SWNTs are identical with 
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Fig. 5 Comparison of (a) Time domain responses and (b) 
Nyquist diagrams for driver-MLGNR interconnect-load 
configuration of Fig. 1, with W=10 nm, l=10 µm, Rout=100 Ω, 
CL=Cout=1 fF, RC=0, calculated by the 4th and the 6th order 
pade approximation. 

diameters of D=1 nm. For this diameter, the number of 
conduction channels in each SWNT, including the 
crystal and spin degeneracy, is Nch=4. For the given 
dimensions, the number of SWCNTs in the bundle is 
N=1369. Figure 6 illustrates the results of this 
comparison. 

As shown in Fig. 6(a), SWCNT bundle 
interconnects experience longer propagation delays and 
smaller fluctuations in their time responses, in 
comparison with their MLGNR rivals. In figure 6(a) 
propagation delay for MLGNR interconnects with l=2 
and 10 µm equals 1.4 and 7.9 ps, respectively. Whereas, 
the propagation delay for SWCNT bundles with l=2 and 
10 µm equals 19.9 and 99 ps, respectively. This is 
because, for SWCNT bundle interconnects, CE and CQ, 
which play the dominant role in determining the 
propagation delay, are larger than those of their 
MLGNR rivals are. Note, 

( ){ } ( ){ }Bundle MLGNR2 logE EC d D W D Cπε δ= × + > . On 
the other hand, the total number of conducting channels 
(i.e., NNch) in the given SWCNT bundle 
 

 
(a) 

 

 
(b) 

Fig. 6 Comparison of time domain responses (a) and the 
corresponding Nyquist diagrams (b) for MLGNR 
interconnects with those of their SWCNT bundle rivals, with 
l=2 and 10 µm, W=t=50 nm, DSWCNT=1 nm, NGNR=147, 
NSWCNT=1369, Rout=100 Ω, and Cout=CL= 1 fF, RC=0. 
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interconnects (i.e., 2738) are more than three times 
larger than those for their MLGNR rivals (i.e., 882). As 
a result, for a SWCNT Bundle, CQ is by the same factor 
larger than that for its MLGNR counterpart. Although 
RQ, RS, and LK are all proportional to the inverse of 
NNch, their role in determining propagation delay is 
insignificant, as pointed out earlier. 

The corresponding Nyquist diagrams shown in Fig. 
6(b) demonstrates that interconnects made of SWCNT 
bundles are relatively more stable than those made of 
similar MLGNR. The Nyquist diagrams for SWCNT 
bundles with l=2 and 10 µm move about 0.66% and 
88% further away from the critical point with respect to 
those of MLGNR interconnects of the same lengths, 
respectively. This behavior is in accordance with that 
observed from Fig. 6(a). 

 
4. Conclusion 
We have examined the dependence of multilayer 
graphene nanoribbon (MLGNR) interconnects on their 
dimensions and contact resistances. In doing so, we 
have used transmission line circuit modeling and linear 
parametric expression for the transfer function of a 
driver–MLGNR interconnect–load configuration. Using 
this formulation, which is a sixth order linear parametric 
approximate relation, we have simulated the step 
response of the cited configuration. Meanwhile, we 
have performed Nyquist stability analysis. Correlation 
between the step responses and their corresponding 
Nyquist diagrams are excellent. Simulations show that 
as MLGNRs′ lengths, widths, or contact resistances are 
increased, the propagation delays become longer and the 
systems become relatively more stable. We have also 
compared the time domain output responses and 
Nyquist diagrams of MLGNR interconnects with those 
of single wall carbon nanotube (SWCNT) bundle 
interconnects of the same external dimensions. 
Simulations show that propagation delays for SWCNT 
bundle interconnects are longer than those of their 
MLGNR counterparts. Hence, former interconnects are 
relatively more stable than latter interconnects. It was 
also shown that the 4th order approximation results in a 
considerable error with respect to the 6th order 
approximation. In order to reduce the error further, one 
needs to use a higher order approximation, in expense of 
more tedious mathematical relations and longer 
computational time. An alternative approach is to use a 
more exact matrix formulation which is under 
consideration by the authors. 
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APPENDIX A 
With some mathematical manipulations Elements of 
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APPENDIX B 

Coefficients bi in (4) are b0=1, 
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