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Online State Space Model Parameter Estimation in 
Synchronous Machines 
 
 
Z. Gallehdari*, M. Dehghani**(C.A.) and S. K. Y. Nikravesh* 
 
 

Abstract: In this paper a new approach based on the Least Squares Error method for 
estimating the unknown parameters of the 3rd order nonlinear model of synchronous 
generators is presented. The proposed approach uses the mathematical relationships 
between the machine parameters and on-line input/output measurements to estimate the 
parameters of the nonlinear state space model. The field voltage is considered as the input 
and the rotor angle and the active power are considered as the generator outputs. In fact, the 
third order nonlinear state space model is converted to only two linear regression equations. 
Then, easy-implemented regression equations are used to estimate the unknown parameters 
of the nonlinear model. The suggested approach is evaluated for a sample synchronous 
machine model. Estimated parameters are tested for different inputs at different operating 
conditions. The effect of noise is also considered in this study. Simulation results declare 
that the efficiency of the proposed approach. 
 
Keywords: Identification, Nonlinear Model, Regression Equation, State Space Model, 
Synchronous Machine. 

 
 
 
1 Introduction1 
As the power system becomes more complicated and 
more interconnected, modeling and identification of its 
elements become more essential. Synchronous 
generators play an important role in the stability of 
power systems, so the accurate modeling of 
synchronous generators is essential for a valid analysis 
of dynamic and stability performance in power systems 
[1]. 

There are many different methods for synchronous 
machine modeling [2-4], but we can categorize all 
modeling techniques to three classes: white box [5-6], 
grey box [7-9] and black box [10-12]. The first category 
assumes a known structure for the synchronous machine 
such as the traditional methods, which are specified in 
IEEE and IEC standards [13]. These approaches are 
often conducted under off-line condition. The 
parameters obtained by these methods may not truly 
characterize the synchronous machine under various 
loading conditions [8]. 

According to the disadvantages of off-line methods, 
on-line parameter estimation approaches are of more 
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interest in the recent years. The second and the third 
categories both use online measurements to estimate 
synchronous generator parameters, but they act in 
different ways. 

In the second type of identification methods, a 
known mathematical model for synchronous generator 
is assumed and on-line measurements are used to 
estimate machine’s physical parameters. In the third 
one, input data set is mapped to the output data set 
without considering any known structure for the model. 

In synchronous generators modeling, we have two 
kinds of nonlinearities. The first kind of nonlinearities is 
structured nonlinearities, such as sine and cosine 
functions of the rotor angle, which are modeled in the 
well-known nonlinear structures of synchronous 
models. On the other hand, the unstructured 
nonlinearities e.g. magnetic saturation in the iron parts 
of the rotor and stator are not usually considered in the 
structure of the models and instead are reflected by 
adjusting the physical parameters of the nonlinear 
model based on the online measurements [14]. 

In this paper, an analytical identification procedure 
for the 3rd order model of synchronous generators is 
suggested. The proposed method estimates physical 
parameters of synchronous machine. In [1, 9, 14-15] 
different algorithms for estimation of physical 
parameters of synchronous machine are presented. In 
[9] an approach for synchronous generator parameter 
estimation is suggested which needs to apply a short 
circuit on the generator terminals. This short circuit test 
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where: 
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To avoid complexity in equations, we define 
unknown parameters in Eq. (5) as p1, p2, …, p7. The 
linear dynamical model can be written as follows: 
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The corresponding nonlinear model will be: 
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Comparing the above equations, it is obvious that 
the linear and the nonlinear models have some common 
parameters, which are independent from the operating 
point condition. These common parameters are used to 
identify the nonlinear model. 
 
3 Identification Method 

In the identification methods, the signals are 
sampled and the samples are used to identify the model. 
On the other hand, the discrete equations are difference 
not differential type; this causes the discrete equations 
to be easy for implementation. Because of these two 
reasons, we discretize the synchronous generator model 
with sample time ‘h’ and use the discrete model instead 
of the continuous one. 

The discrete model of the system in Eq. (10) is given 
in the following: 
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Since our goal is to find the relation between the 
machine’s parameters and its outputs, we write the 
states in terms of the machine’s outputs. 
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Substitute the values of x2(k) and x3(k) from Eqs. 
(15) and (16) in Eq. (12) to conclude the followings: 
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The Eq. (17) can be written as follows: 
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Since Eq. (19) is a linear regression equation, we can 
use the Least Square Error (LSE) method to identify the 
unknown parameters 2 7,p p . If we apply N different 
time points to the above formula, the following 
equation, which is a proper format for LSE method will 
be obtained [19]. 
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                                                                                    (20) 
where from [20], we can estimate the parameters as 
follows: 

1
1 1 1 1 1( )T TH H H Yθ −=                                                 (21) 

From Eqs. (20) and (21), the values of D and J can 
be calculated as follows: 
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After estimating the mechanical parameters (D and 
J), consider Eq. (18) and divide it by p6 , then rewrite it 
in a suitable form for the LSE method, as follows: 
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                                                                                    (24) 
To reduce the effect of measurement noise, the formula 
is considered for N different time points (see Eq. (25). 

Equation (25) is a linear regression equation. We can 
write: 

1
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where (see Eq. (27)): 
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                                                                                    (25) 
7 5 7 1 51 4

2
3 6 3 6 3 6 3 6 6

[ , , , ]T p p p p pp p
p p p p p p p p p

θ = −                            (27) 

Now we use θ2 to estimate the unknown parameters 
of synchronous machine. Due to Eq. (22) and Eq. (27), 
we have: 

1
3 6

2
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                                                                 (29) 

From Eq. (5), Eq. (7), Eq. (8) and Eq. (10), p5 and 
p3p6 can be written in terms of the machine’s 
parameters. We can write: 

0
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From the above equation we can estimate xd as 

follows: 
5 10

3 6

sinB
d

p V yx
p p J

=                                                 (31) 

It should be noted that we can substitute the values 
of p5, p3p6 and J from Eq. (28), Eq. (29) and Eq. (22), 
respectively. Moreover, looking at θ2(2), θ2(1) and θ2(4) 
in Eq. (27), p1 and p4/p6 can be calculated as follows: 
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Using Eq. (33) and Eqs. (9)-(10), p4 and p6 can be 
written in terms of the machine’s parameters. Their ratio 
is given below: 
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dx  and p4/p6 are estimated before, so it can be used to 

estimate dx′ . 

4

6 10

11 ( )( )
sin

d
d

B

xx p
p V y

′ =
−

 
                                       (35) 

Since dx  and dx′  are known, Eq. (5)-(10) can be 
used to calculate doT ′  as follows: 

5

d
do

d

xT
p x

′ = −
′

                                                          (36) 

The only unknown remained parameter is xq From 
Eq. (2), we have: 

2 1 1sin ( ) sin(2 )
2

cos

B B
e q

d q d

q B d d

V VP e
x x x

e V x i

δ δ

δ

′= + −
′ ′

′ ′= +

               (37) 

Substituting qe′  into eP  and rewrite it into the 
following form: 

2 1sin sin(2 )
2
B

e B d
q

VP V i
x

δ δ− =                           (38) 

Thus we will achieve the following formula: 
2 s in (2 )

2 ( sin )
B

q
e B d

Vx
P V i

δ
δ

=
−                                    (39) 

Writing Eq. (39) in operating point o, xq is calculated 
as follows: 

2
10

0 0 10

sin(2 )
2( sin )

B
q

B d

V xx
P V i x

=
−

                                      (40) 

In the above equation, Po is the active power, ido is 
the direct axis current and x10 is the value of rotor angle 
at the operating point. It is assumed that the value of Po 
and x10 are measured and ido is calculated from the 
following relations [16, 17]: 

2 2

arctan( ), , sin( )d
B

P QQ I i I
P V

ϕ δ ϕ+
= = = +     (41) 

2 2
0 0 1 0

0 10
0

sin( tan ( ))d
B

P Q Qi x
V P

−+
= +                    (42) 

In the above equation, Qo is the reactive power at the 
operating point. 

Since the equations in Eq. (20) and Eq. (25) can be 
updated online, we can use the whole algorithm for 

online identification of the machine parameters. It 
means that we can estimate the machine parameters 
when it is in service and we do not need to turn it off. 
 
4 Simulation Results 

In this section, the proposed approach is evaluated 
by simulating the system presented in Fig. 1. The 
estimated parameters are compared to the simulated 
ones and the model is validated under different 
operating conditions. Finally, the effect of noise on the 
parameters is examined. 
 

4.1  Model Simulation 
Our goal is to find a practical approach for 

synchronous generator model identification, so the 
mechanical torque is assumed to be constant and only 
the field voltage, which can be perturbed more easily, is 
perturbed. To evaluate the proposed method, a Pseudo-
Random Binary Sequence (PRBS) with amplitude of 
5% of the nominal value is applied to the field voltage 
[18]. Since the change in the field voltage is very small 
compared to the nominal value, it will not disturb the 
normal operation of the system too much. 

When the field voltage is perturbed with the PRBS, 
the active output power, the rotor angle and the field 
voltage are sampled with sample time h=2 millisecond. 
The operating point is considered to be P=0.9, Q=0.1, 
vt=0.98. The input/output data collected from the system 
model in this operating point are shown in Fig. 2. 

After simulating the model at operating point P=0.9, 
Q=0.1 and vt=0.98, the field voltage, the rotor angle and 
the active power signals are sampled, then matrixes in 
Eq. (20) and Eq. (25) are obtained. Afterward, θ1 and θ2 
are estimated using LSE method. Finally, using the 
procedure of the previous section, the machine 
parameters can be calculated. The results of this 
procedure are given in Table 1. 

According to the third column of the Table 1, we can 
conclude that the estimation error is acceptable. In 
reality, we don’t know the real value of the parameters. 
To validate the results, the outputs of real model and the 
identified one are compared. In the next part, the 
procedure of model validation is discussed. 
 

4.2  Model Validation 
In this section the state space model, achieved in the 

previous section is validated. For this purpose, several 
different input signals are applied to the field voltage 
and the model performance in different operating 
conditions is observed. The first operating point is 
considered as P=0.8 pu, Q=0, vt=1.05 pu. The system is 
excited by a PRBS input and the power and the rotor 
angle are measured. The results are presented in Fig. 3. 

To calculate the estimation error, we use the 
following indexes [20]:  

2

1

1 ˆ( ( ) ( ))
N

k
I y k y k

N =

= −∑                                           (43) 
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Fig. 5 data collected at operating point P=1.1, Q=0.2, vt=1.02, 
when the input is step signal. 
 
 

 
Fig. 6 autocorrelation function of Fig. 5. 
 
 

 
Fig. 7 data collected at operating point P=1, Q=0.4, vt=0.95, 
when the input signal is triangular. 
 
 

The value of I and FPE for pulse input would be: 

_ 9.2595e-007, _ 1.6253e-007
_ 9.2817e-007, _ 1.6292e-007

I I P
FPE FPE P

δ
δ
= =

= =
      (48) 

Since in most real cases the measurements are noisy, 
in the next Section the effect of noise is studied. 

 
Fig. 8 data collected at operating point P=1.2, Q=0.15, vt=0.9, 
when the input signal is a pulse signal. 
 

4.3  Noise Effect 
In this part, the effect of white noise on the proposed 

approach is examined by adding the white noise with 
different SNR (Signal to Noise Ratio) to the measured 
outputs. The estimation procedure is done for noisy 
measurements and the results are presented in Table 3. 

According to Table 3, we conclude that for SNR 
more than 110 the estimated parameters are close to the 
real values, but for less than it, the estimation error is 
increased especially for parameters D and J. In addition, 
we see that the value of xq is robust with respect to the 
noise. 
 
 
Table 2 Synchronous machine parameters when the input 
signal is triangular. 

Parameters Real Values 
Estimated 

Values 
Error 
[%] 

J 0.0252 0.0252 0 
D 0.500 0.511 2.2 

dx 2.072 2.0117 2.91 

qx 1.559 1.5592 0.0012 

dx′ 0.568 0.5544 2.39 

′T pdo  0.131 0.1344 2.59 

 
 
Table 3 estimated parameters for noisy measurements with 
different SNR. 
          SNR 
Parameters 

500 150 120 100 90 

D 0.0511 0.0511 0.0523 0.134 0.26 
J 0.0252 0.0252 0.0250 0.0174 0.0048 

qx 1.5588 1.5588 1.5588 1.5588 1.5588 

dx′ 0.6068 0.6068 0.6068 0.6091 0.631 

dx 2.1164 2.116 2.116 2.1207 2.1575 

doT ′  0.1299 0.1299 0.1299 0.1283 0.115 
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5 Conclusion 
In this paper, the theoretical relation based approach, 

which uses the known least square error method, has 
been presented to identify the nonlinear 3rd order 
synchronous generator state space model parameters. 
The most important point about the method is to use the 
linear least square error method to estimate the 
nonlinear model. In this paper, the field voltage is 
considered as the machine’s input and the rotor angle 
and active powers are as the outputs of the machine. 
Simulation results show that the proposed method has 
good accuracy for estimation of state space synchronous 
generator parameters. 
 
Appendix 

The main variables of the model in Eq. (1) are: 
,J D : rotor inertia and damping factor 

doT ′  : direct-axis transient time constant 

dx : direct axis reactance 

dx′ : direct axis transient reactance 

qx  : quadrature axis reactance 

δ  : rotor angle with respect to the machine terminals 
ω : rotor speed 

mT  : input mechanical torque 

eT  : output electric torque 

FDE : The equivalent EMF in the excitation coil 

qe′ : transient internal voltage of armature 

,P Q : terminal active and reactive power per phase 

tv : generator terminal voltage 
VB : Infinite bus voltage 

,d qi i : direct and quadrature axis stator currents 
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