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Influence of the Parameters of Disk Winding on the Impulse 
Voltage Distribution in Power Transformers 
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Abstract: Overvoltage distribution along the transformer winding must be uniform to 
certify the safety of the operation of the power transformer. Influence of the parameters 
variation on the Impulse Voltage Distribution (IVD) in disk winding transformer is going to 
be analyzed which hasn’t been analyzed on this type of winding in the previous papers. In 
this research, a transformer with disk winding and rectangular cross-section is analyzed. 
Equations for capacitances between winding turns and also equations for capacitances 
between turns and core are deduced. Noting that the relationships presented are dependent 
on the parameters of the transformer winding, so with changing these parameters, the 
capacitances of turn –turn and turn – core and finally the capacitances of total series and 
parallel of the winding will be changed. The purpose of this paper is to show the effect of 
the variations of these parameters on the IVD in disk winding of transformer. This paper, 
will assess how to change the parameters of disk winding in order to achieve a uniform 
initial IVD along the winding and to reduce the Amplitude of Impulse Voltage Fluctuations 
(AIVF) in winding and which parameters have more effect in making uniform the IVD on 
the disk winding. 
 
Keywords: Constant of Winding Voltage Distribution, Disk Winding, Impulse Voltage 
Distribution, Series and Parallel Capacitances. 

 
 
 
1 Introduction1 
Frequency pattern of impulse voltage caused by 
lightning contains fundamental frequencies up to several 
megahertz. Thus, in these high frequencies, 
capacitances of transformer winding should be 
considered in calculations. But they ignored in power 
frequency [1-3]. These capacitances are considered 
between windings and grounded components (i.e. core, 
tank, etc) and between disks, layers and turns. With 
presence of these capacitances, IVD along the winding 
isn’t uniform. Non-uniform IVD along the winding 
produces severe stress on the winding which can be 
resulted in electric breakdown of transformer insulation. 
In power frequency, voltage distribution along the 
winding is uniform and there is not stress on the 
transformer insulation. Therefore, IVD on the winding 
disks must be uniform in order to reduce the AIVF. 

Distribution of the impulse voltage along the 
winding depends on the winding capacitive network that 
is consisting of parallel and series capacitances [1]. 
Capacitors between winding turns are known as series 
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and capacitors between turns and core are known as 
parallel capacitors. 

According to Fig. 1, the voltage of any point in 
capacitive network in the time of the strike of impulse 
voltage, U, with assuming the transformer winding is 
grounded is deduced from Eq. (1) [3]:  
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In Eq. (1), U is the amplitude of the applied impulse 

voltage to the winding terminal, l is the total length of 
winding and x is the coordinates of point for calculating 
the voltage. Also in Eq. (2), Cs is the total series 
capacitance of the winding, and Cp is the total parallel 
capacitance of the winding. 

Constant of winding voltage distribution (α) shows 
the rate of uniformity of IVD along the transformer 
winding [1]. This coefficient depends on the total series 
and parallel capacitance of winding. Total series 
capacitance of the winding is equivalent to the 
capacitances of turn-turn and total parallel capacitance 
of the winding is equivalent to the capacitances of turn-
core. 
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Fig. 5 Regions between two adjacent turns. 
 
 

 
Fig. 6 Series combination of capacitances in the distance of 
between two adjacent turns. 
 
 

2.2  Parallel Capacitance 
For calculation of parallel capacitance (turn-core 

capacitor), like section 2.1 the curvature of the turns are 
ignored. Also the core is considered as a plane. Also the 
core is considered as a plane. Also in this section the 
basic equation is Eq. (3) which will be more accurate 
later. In this method [14-19], the distance between the 
turn and the core is divided into two regions. According 
to Fig. 7, first region is the insulating coating of the turn 
and the second region is the insulation between turn and 
core (oil). 

In this section, for calculation of the capacitance of 
first region (the capacitance of insulating coating of the 
turn) is used from Eq. (8):

 
t

hDC T
ric

....0
πεε=

                                                 
(8) 

 

 
Fig. 7 Regions between turn and core. 

 
Fig. 8 Series combination of capacitances in the distance of 
between turn and core. 
 

Capacitance of second region (i.e. the region filled 
with oil) is calculated according to the Eq. (9): 

twZ
hDC T

oilroil
−−

=
)2(
.... )(0

πεε                                       (9) 

Parameters of Eq. (9) are shown in Fig. 4. In this 
equation, Z is distance between the center of turn’s 
cross-section and the outer surface of the core. 
According to Fig. 8, in the distance between the turn 
and core capacitance associated with the first region 
make a series combination with the capacitance 
associated with the second region. 

This series combination can be shown as Eq. (10): 

oilic
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tc CC

CCC
+

=
.                                                           (10) 

It should be noted that in this section, there is only 
one capacitor Cic but in section of 2.1 there were two 
capacitors Cic which were series. So by substituting Eqs. 
(8) and (9) in Eq. (10), the total capacitance between the 
turn and core (turn-core capacitor) using Eq. (11) is 
calculated: 
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Eqs. (4) - (11) are based on references [14-19]. 
 
3 Study of Capacitive Network of the Disk Winding 

In Fig. 9, view of a disk winding is shown. In this 
type of winding, each disk has several turns that are 
placed in one horizontal plane. In this winding, the turns 
 

Fig. 9 Disk winding with 4 disks that each disk has 5 turns.
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of first disk are wrapped from outside to inside and next 
disk is wrapped in different direction (from inside to 
outside) and this procedure is repeated to final disk. 

The advantages of disk winding is that they can be 
used in high power and high voltage transformers and 
provide high cooling capability, mechanical strength 
and good impulse voltage distribution. 

Capacitive network of the disk winding is shown in 
Fig. 10. In this capacitive network, there are two kinds 
of series capacitors and one kind of parallel capacitor. 
Series capacitors are as follow: 
1- Turn-Turn capacitors, between adjacent turns in one 
disk (

)( stttC ). 
2- Turn-Turn capacitors, between adjacent turns in two 
adjacent disks ( )( sdttC ). 

Also Turn-Core capacitors (Ctc) in disk winding are 
as a parallel capacitor. 

Series capacitors in the capacitive network of the 
disk winding from Eq. (7) and parallel capacitors from 
Eq. (11) are calculated. Proportional to change in each 
parameter of the winding, one or more parameters in 
Eqs. (7) and (11) will be changed and caused to change 
the capacitive network of the winding. With variations 
in the capacitive network of the winding, the IVD and 
AIVF on the winding and also the impulse voltage on 
each disk will be changed. 
 
4 Impulse Voltage Distribution Analysis on the 
Disk Winding 

A typical transformer with disk winding is 
considered for this section. The parameters of the 
transformer winding are introduced in Table 1. 

The results of the change in winding parameters 
according to VOLNA software are shown in the 
following tables and figures. Figures 11-14 which are 
based on Fig. 2 show how the IVD on the winding 
changes as the parameters of winding change. Tables 2-
5 show the change of impulse voltage on each disk of 
the winding as the winding parameters variation 
(voltage on each disk is a percent of applied impulse 
voltage). 

By increasing the distance of the core outer surface 
from the winding (Bcw), DT in Eqs. (7) and (11) and also 
Z in Eq. (11) will be increased. This variation causes to 
increase the proportion of total series to total parallel 
capacitances. According to Fig. 11, these variations will 
be caused the IVD on the winding to be uniform and it 
will be also decreased α. Also from Table 2 it can be 
seen that with increasing Bcw, the impulse voltage on 
each disk was decreased. Thus the risk of electrical 
breakdown is reduced in the winding insulation. 
 
Table 1 Parameters of simulated disk winding. 

20 Number of disks (N) 
4 Number of turns in each disk (n) 
Paper=4.2 
oil=2.25 

Relative permittivity of insulation 

9.5 mm Height of turn’s cross-section without 
insulating coating (h) 

6.5 mm Width of turn’s cross-section without 
insulating coating (w) 

0.5 mm Thickness of paper insulation of the 
conductor in one side(t) 

500 mm Diameter of core (Dc) 
30 mm Distance of the outer surface of the core 

to winding (Bcw) 
4.5 mm Length of the channel between 

winding’s disks (Hch) 

 
Table 2 Changes of the impulse voltage on the disks caused 
by the changes of Bcw. 

Impulse voltage on the disks [%] 

Bcw=80 
mm 

Bcw=50 
mm 

Bcw=30 
mm 

Bcw=10 
mm 

Disk 
Number 

96.82 97.02 97.79 100.21 1 
96.06 96.33 97.19 100.29 2 
90.76 91.43 93.31 100.85 3 
89.99 90.70 92.75 100.90 4 
83.99 84.78 88.67 100.00 5 
83.08 83.88 88.07 99.87 6 
75.80 77.53 83.11 96.85 7 
74.70 76.69 82.36 96.27 8 
66.02 69.99 76.04 90.77 9 
64.72 69.00 75.07 89.85 10 
56.96 61.17 67.41 81.54 11 
55.87 59.99 66.26 80.23 12 
46.89 51.36 56.71 68.99 13 
45.57 50.09 55.24 67.31 14 
34.97 39.40 44.11 53.32 15 
33.40 37.75 42.47 51.28 16 
21.73 24.90 28.93 34.44 17 
20.04 23.01 26.86 32.15 18 
8.17 9.42 11.13 13.76 19 
6.48 7.48 8.85 11.01 20 

 
 

Fig. 10 Capacitive network of the disk winding. 
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Table 3 Changes of the impulse voltage on the disks caused 
by the changes of Hch. 

Impulse voltage on the disks [%] 

Hch=20 
mm 

Hch=10 
mm 

Hch=4.5 
mm 

Hch=0 
mm 

Disk 
Number 

99.99 99.99 97.79 99.99 1 
100.57 99.08 97.19 91.85 2 
100.57 99.08 93.31 91.85 3 
100.32 97.943 92.75 83.56 4 
100.32 97.94 88.67 83.56 5 
97.76 94.67 88.07 74.93 6 
97.76 94.67 83.11 74.93 7 
91.91 89.17 82.36 65.94 8 
91.91 89.17 76.04 65.94 9 
83.37 80.59 75.07 56.41 10 
83.37 80.59 67.41 56.41 11 
71.57 69.39 66.26 46.84 12 
71.57 69.39 56.71 46.84 13 
56.77 55.42 55.24 35.74 14 
56.77 55.42 44.11 35.74 15 
39.59 39.16 42.47 23.66 16 
39.59 39.16 28.93 23.66 17 
20.96 20.57 26.86 11.71 18 
20.96 20.57 11.13 11.71 19 
2E-07 2E-07 8.85 2E-07 20 

 
 
Table 4 Changes of the impulse voltage on the disks caused 
by the changes of t. 

Impulse voltage on the disks [%] 

t=1.5 
mm 

t=1.0 
mm 

t=0.5 
mm 

t=0.125 
mm 

Disk 
Number 

98.33 98.07 97.79 97.53 1 
97.90 97.56 97.19 96.77 2 
95.25 94.41 93.31 91.63 3 
94.87 93.95 92.75 90.90 4 
91.53 90.30 88.67 85.56 5 
91.01 89.76 88.07 84.78 6 
86.68 85.21 83.11 78.90 7 
86.02 84.50 82.36 78.04 8 
79.93 78.27 76.04 71.32 9 
78.99 77.31 75.07 70.33 10 
71.00 69.60 67.41 62.46 11 
69.82 68.40 66.26 61.29 12 
59.79 58.56 56.71 52.47 13 
58.27 57.07 55.24 51.16 14 
46.16 45.48 44.11 40.09 15 
44.49 43.86 42.47 38.40 16 
30.69 30.04 28.93 25.47 17 
28.56 27.91 26.86 23.57 18 
11.90 11.58 11.13 9.72 19 
9.46 9.21 8.85 7.73 20 

 
 

As it is seen from Fig. 12, with decreasing the length 
of the channel between winding’s disks (Hch), the IVD 
along the winding will be more uniform, that means the 

AIVF on the winding will be decreased. This is because 
by reducing the Hch, P in Eq. (7) will be reduced and the 
total series capacitance will be increased. The decrease 
of impulse voltage on each disk with decreasing Hch in 
the Table 3 can be observed. 

Decreasing the thickness of paper insulation of the 
conductor (t) has a little effect on the IVD of the disk 
winding. Since in the capacitive network of disk 
winding the number of series capacitances is more than 
the parallel capacitances, the decrease of t has more 
effect on the value of total series capacitance. So with 
the decrease of t, the proportion of total series to total 
parallel capacitances will increase and according to Fig. 
13, the IVD along the winding become linear but it is 
not significant. Also according to Table 4, the impulse 
voltage on disks will decrease by decreasing t. 

To analyze IVD on the winding with respect to 
changing the dimensions of conductor cross-section, it 
has been tried to consider the area of conductor cross-
section to be constant but with changing its height (h) 
and width (w). According to Fig. 14, the most uniform 
IVD on the disk winding can be seen that when the 
cross-section of each turn of disk has its maximum h 
and its lowest w. Also Table 5 shows the impulse 
voltage variation on each disk of winding for various 
values of w and h. 
 
 
Table 5 Changes of the impulse voltage on the disks caused 
by the changes of w and h. 

Impulse voltage on the disks [%] 
w=9.5, 
h=6.5 
mm 

w=6.5, 
h=9.5 
mm 

w=30.875, 
h=2 
mm 

w=2, 
h=30.875 

mm 

Disk 
Number

96.97 97.79 98.15 97.98 1 
96.19 97.19 97.54 97.32 2 
90.95 93.31 93.25 92.66 3 
90.22 92.75 92.62 91.97 4 
85.06 88.67 87.93 86.35 5 
84.31 88.07 87.26 85.49 6 
78.54 83.11 82.12 78.76 7 
77.68 82.36 81.35 77.77 8 
70.92 76.04 75.26 70.37 9 
69.92 75.07 74.35 69.28 10 
62.16 67.41 66.99 60.85 11 
61.00 66.26 65.88 59.59 12 
51.92 56.71 56.96 49.77 13 
50.55 55.24 55.60 48.32 14 
40.05 44.11 44.74 37.65 15 
38.51 42.47 43.10 36.15 16 
26.01 28.93 29.70 24.13 17 
24.11 26.86 27.72 22.34 18 
9.93 11.134 11.90 9.17 19 
7.90 8.85 9.62 7.287 20 

 
In Fig. 15, the maximum and minimum of impulse 

voltage on the second disk of the winding for various 
parameters (in Table 1), has been shown. These values 
have been taken from Tables 2-5 for the second disk. 



Heidarzadeh & Besmi: Influence of the Parameters of Disk Winding on the Impulse Voltage …                                  149 

As it is observed from Fig. 15, the decrease of Hch 
has the most impact on decreasing of impulse voltage 
on the second disk. 
 
 

 
Fig. 11 Changes of IVD on the winding caused by the changes 
of Bcw. 
 
 

 
Fig. 12 Changes of IVD on the winding caused by the changes 
of Hch. 
 
 

 
Fig. 13 Changes of IVD on the winding caused by the changes 
of t. 

 
Fig. 14 Changes of IVD on the winding caused by the changes 
of w and h. 
 
 

 
Fig. 15 Max and min of the impulse voltage on the second 
disk for the various parameters. 
 
 
5 Conclusions 

In this paper, a typical transformer with disk 
winding and with the introduced parameters was 
modeled using software VOLNA and then with 
changing the parameters of the winding by this 
software, the variations of the impulse voltage 
distribution on the winding and the rate of the variation 
of impulse voltage on each disk of the winding were 
analyzed. In this study, a disk winding with rectangular 
cross-section was considered. 

In the curves obtained from the software, reducing 
the amplitude of impulse voltage fluctuations means to 
reduce the constant of winding voltage distribution and 
reduction in these two factors means a more uniform 
impulse voltage distribution along the winding. 

In this paper was shown that a change in each 
parameter of the winding causes the capacitive network 
and the proportion of total series to parallel capacitance 
to change and this will cause a change in impulse 
voltage distribution of the winding. 

It was observed that the thickness of paper insulation 
of the conductor has lowest effect on impulse voltage 
distribution of the winding but the increase of the 
distance of the core outer surface to the winding and the 
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decrease of the length of the channel between disks will 
improve impulse voltage distribution along the winding. 

This result was also obtained that if in the cross-
section of each turn of disk the height (on metal) be 
maximum and the width (on metal) be minimum, the 
most uniform of the impulse voltage distribution on the 
disk winding will obtained. 
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