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Abstract: Torque ripple minimization of switched reluctance motor drives is a major 
subject based on these drives’ extensive use in the industry. In this paper, by using a well-
known cascaded torque control structure and taking the machine physical structure 
characteristics into account, the proposed energy-based (passivity-based) adaptive sliding 
algorithm derived from the viewpoint of energy dissipation, control stability and algorithm 
robustness. First, a nonlinear dynamic model is developed and decomposed into separate 
slow and fast passive subsystems that are interconnected by negative feedbacks. Then, an 
outer loop speed control is employed by adaptive sliding controller to determine the 
appropriate torque command. Finally, to reduce torque ripple in switched reluctance motor 
a high-performance passivity-based current controller is proposed. It can overcome the 
inherent nonlinear characteristics. The performance of the proposed controller algorithm 
has been demonstrated in simulation, and experimental using a 4KW, four-phase, 8/6 pole 
SRM DSP-based drive system. 
 
Keywords: Feedback Dissipative Hamiltonian Realization (FDHR), Passivity-Based 
Control (PBC), Switched Reluctance Motor (SRM), Torque Ripple Minimization. 

 
 
 
1 Introduction1 
In recent years, there is a growing concern in use of 
switched reluctance motor. The major reasons for SRM 
are robustness, high efficiency, low cost, high speed, 
simple structure, easy to maintain, high controllability, 
high torque to inertia ratio, simple power converter 
circuits with reduced number of switches and smaller 
dimension of the motor in comparison to the other 
motors [1]. The main problems with SRM include high 
torque pulsation and noise. Several control methods and 
schemes have been proposed to overcome these 
problems. For example, variable structure controller 
made the SRM drive system insensitive to parameter 
variations and load disturbance [2]. Artificial neural 
network and fuzzy controller needs a lot of designer 
experience [3]. Nonlinear internal model control for 
SRM drive required very complicated computations and 
implementation of the system is very difficult [4]. Some 
studies have succeeded in torque ripple reduction of SR 
motors using DTC method [5]. In the methods 
mentioned above, controller design procedure only done 
for speed or torque tracking and just speed loop as an 
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outer loop is considered and the current loop is 
neglected. However, the torque is usually controlled via 
an inner current loop, with a nonlinear relationship 
between torque and current. That means the torque 
ripple, acoustic noise, speed performance and motor 
efficiency will be fractional affected by improving the 
current control. Also, for the above-mentioned control 
strategies of the SRM it is assumed that its parameters 
are known exactly or the unknown parameters can be 
identified by the adaptive technique. However, the 
parameters of the SRM are not exactly known and 
always vary with current and position. Actually, control 
is difficult to implement owing to its complex algorithm 
when considering the structural information of SRM in 
design. Improving the applicability of the SRM on the 
basis of taking the structural characteristics into account 
is a significant step in designing the controller of the 
SRM. In this paper, a cascaded torque control structure 
for its well-known advantages is used. First an adaptive 
sliding mode controller for speed loop control is 
designed and then compared to a PI controller. Then to 
achieve high performance torque control a nonlinear 
feedback current controller using energy-based 
technique called passivity-based control (PBC) theory 
which effectively uses the natural energy dissipation 
properties of the SRM, is proposed. PBC, introduced to 
define an energy-based nonlinear controller design 
methodology which achieves stabilization by 
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passivation [6]. The algorithms is first simulated by 
MATLAB/SIMULINK and then tested experimentally 
on a four-phase 8/6 pole 4kW oulton SRM. 
 
2 Nonlinear Construction and Modeling of SRM 

Owing to the doubly salient construction, the SRM 
presents a highly nonlinear load to the current 
controller, thus the design of a high-performance current 
controller for an SRM drive is a challenge [7]. For SRM 
drives, the mutual coupling between phases is usually 
neglected for low-speed applications, so the phase 
currents can be controlled independently. Voltage 
equation for one phase of an SRM is [8]: 

k k
k k k

k k k
k k k k

d ( , i )
v r i

dt
d i ( , i )

r i L ( , i )
dt

λ θ

λ θ
θ ω

θ

= +

∂
= + +
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where ku
 
is the phase voltage, ki  is the phase current, 

kr  is the phase resistance, k a,b,c,d=  is the active 
phase, θ  is the rotor position and k k( ,i )λ θ  is the flux 
linkage, k k k k kL ( , i ) ( , i ) iθ λ θ= ∂ ∂  is the incremental 
inductance, d dtω θ=  is the motor speed and 

k ke . ( , i )ω λ θ θ= ∂ ∂  is the back EMF. Fig. 1 (a) and 
(b) shows the experimentally measured static flux 
linkage and torque characteristics of a four-phase 8/6 
SRM whose parameters are specified in the Table 1 (in 
the Appendix) and used in this investigation. Using 
numerical methods, the incremental inductance and 
back-EMF characteristics of the SRM can be obtained 
from the measured flux linkage data. Fig. 1(c) and 1(d) 
shows the curves of calculated incremental inductance 
and back-EMF coefficient ( k k( , i )λ θ θ∂ ∂ ) against 
rotor position and phase current. Both incremental 
inductance and back-EMF coefficient are nonlinear 
functions of rotor position and phase current. 
 
3 The Proposed Nonlinear Controller Design 

In this section, we present a passivity-based adaptive 
sliding mode control method for designing SRM 
controller. A complete model of an SRM possesses two-
time-scale characteristics and can be decomposed as the 
feedback interconnection of the two linked subsystems 
(electrical and mechanical subsystem) [9]. Also, in [10] 
it is proven that these two subsystems are passive linked 
subsystems as: 

( )

k k
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θ

⎡ ⎤ ⎡ ⎤
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The overall control block diagram, shown in Fig. 2 
is separated into the inner loop and the outer loop 
controller. Based on the assumption that stator current 
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Fig. 1 Nonlinear characteristics of tested 8/6 SRM. (a) 
Measured Flux linkage. (b) Measured Torque. (c) Calculated 
incremental inductance. (d) Calculated back EMF coefficient. 
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ki  as well as rotor speed ω  are available for 
measurement, controller design procedures can be 
divided into three steps. First step is to design an 
adaptive sliding speed controller for speed tracking of 
the overall system. The next step is passivity-based 
current control of the electrical subsystem by injecting a 
nonlinear electrical damping term and a set of reference 
current vectors ki *  are found out to achieve current 
tracking. The sake of the outer loop is to generate the 
appropriate torque command fed for the inner loop. 
Finally, passivity-based inner loop current controller 
will produce the appropriate switching functions. 
 

3.1   Speed Loop Controller Design 
A sliding mode control scheme is proposed for the 

speed control and then compared to PI controller. The 
conventional adaptive sliding mode control estimates 
the unknown uncertainty upper boundary which causes 
the chattering phenomenon. Therefore, a method has 
been adapted to estimate the unknown uncertainties of 
lump without using )sgn(⋅  that it reduces chattering 
[11]. For speed controller design, consider the 
mechanical equation e k L(1/ J) T ( , i ) T Dω θ ω= − −⎡ ⎤⎣ ⎦&

 
with uncertainties as: 

e L
d (a a) (b b)(T T )
dt
ω

Δ ω Δ= + + + −      (3) 

where a B j, b 1 j= − = . Defining the state variable of 
speed error as e ω ω∗= − , switching surface as 

dS e eσ= + & , [ ]T T
1 2x x x e ω= =⎡ ⎤⎣ ⎦ &&  and choosing 

Lyapunov function as 
2

1 dV 1 2S= , we have: 

1 d d

d L

e L

V S S
ˆS ( a) bu bT b(P P)

Where
ˆP(t) 1 b a b(T T ) ; P(t) P(t) P(t)

σ ω
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=

⎡ ⎤= − + − + − +⎣ ⎦
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The estimated value of the lumped uncertainty is 
P̂(t)  and P(t)%  is the estimated error between the actual 
value P(t)  and the estimated value of the lumped 
uncertainty. Therefore, the new candidate function is 

( )2 2
2 dV 0.5 S (1 ) Pρ= +& % , then we have 

2 d L 1 d

2
d 1 d

ˆV S ( a) b(u P) bT K S

1 ˆP( P bS ) K S

σ ω

ρ

⎡ ⎤= − + − + + +⎣ ⎦

− + −

& &&

&%
 (5) 

If control input u is chosen as: 

L 1 d
1 ˆu ( a) bP bT K S
b

σ ω⎡ ⎤= − + − + +⎣ ⎦
&&  (6) 

One can obtain 2
2 1 dV K S 0= − ≤& and it can be 

achieved that 
t

d d0
W( )d V S (t) V S (0)τ τ = −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫ . Since 

dS (t)  and dS (0)  are bounded, according to Barbalet 
lemma [12], can be obtained that 

t
lim W( ) 0τ

→∞
= . It 

means that e 0→  as t → ∞  and as a result, the 
proposed SRM drive system is stable. Finally in this 
step a proportional-integral (PI) controller is designed 
here to compare with the nonlinear controller. The 
parameters of the PI controller are tuned by pole 
placement [13]. By assumption of 1.25ξ =  and 

n 0.7 rad / secω =  the parameters of the PI controller 
obtained as P IK 0.466, K 7.47= = . 
 

3.2  Passivity-Based Current Control Design using 
Feedback Dissipative Hamiltonian Realization 
As mentioned in previous section the electrical 

subsystem is passive. Therefore, in this section the 
feedback dissipative Hamiltonian realization method for 
passivity-based current controller design of SRM is 
proposed. Control design procedures can be divided into 
two steps. First, a suitable control that transfers dynamic 
model to a dissipative Hamiltonian system is fined. 
Finally, this section presents the PBC technique and 
then the current control law obtained. The feedback 
dissipative Hamiltonian realization method considers 
the problem of designing a state-space controller for the 
stabilization of a desired equilibrium point of a 
nonlinear system [14]: 

x f (x) g(x)u= +&  (7) 

where nx R∈  are system states, mu R∈  are system 
inputs. System (7) is said to have a feedback 
Hamiltonian realization if there exists a control law 
u (x)ϕ= , Such that the closed loop is of the form: 

d dx F (x) H (x)
x
∂

=
∂

&  (8) 

System (7) is said to have a feedback dissipative 
Hamiltonian realization if the closed loop is a 
dissipative Hamiltonian system, its structure matrix 
satisfies: 

T
d dF (x) F (x) 0+ ≤  (9) 

where (n) (n)
dF R ×∈  are called the structure matrices and 

dH (x)  the Hamiltonian function. The key idea behind 
the technique is to match the closed-loop dynamics to a 
port-controlled Hamiltonian system form: 

d df (x) g(x)u F (x) H (x)+ = ∂  (10) 
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Fig. 2 The closed-loop SRM drive system based on current control strategy 
 

To enforce dissipativity, the constraint of (9) on the 
dF  matrix is required. In this case, dF  decomposed as 

d d dF (x) J (x) R (x)= − . The interconnection structure is 

captured in the matrix T
d dJ (x) J (x)= − . The dissipation 

effects are captured by the matrix T
d dR R 0= ≥ . In 

general, this leads to a set of partial differential 
equations. But for a real physical system, according to 
its physical meaning and the control objectives, we may 
find a natural candidate Hamiltonian function, then (9) 
becomes a set of algebraic equations. 

 
Lemma 1: Necessary and sufficient condition for the 

existence of feedback dissipative Hamiltonian 
realization for fixed dF (x) , which satisfy (10), and for 
fixed Hamiltonian function dH (x) , is that there exists a 
feedback such that (10) holds if and only if the projected 
matching equation: 

( )d dg (x) f (x) F (x) H (x) 0⊥ − ∂ =  (11) 

Holds for an arbitrary full-rank left annihilator 
g (x)⊥ . By defining state an input vector respectively as 

T
a a b b c c d dx L i L i L i L i jω= ⎡ ⎤⎣ ⎦  and using (1), 

then dynamic system for current loop controller design 
can be represented as: 
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For convenience, first following pre-feedback to the 
original system is used to simplify the controller design: 

i 5k k
k i k

k k

x xr dL
u x v

L d jLθ
= + +  (13) 

So, affine dynamic system (12) converts to: 

0

2d,4
k k i

L 52
k a,i 1 k

x f (x) g v
0

gv
dL ( ,i ) x1 BT x

2 d jL
θ
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⎛ ⎞
⎜ ⎟
⎜ ⎟= +⎜ ⎟
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∑

&
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Obviously, achieving the regulating objective is 
equivalent to asymptotically stabilizing the equilibrium 
x * . In order to stabilize the desired equilibrium point, 
one can use a Hamiltonian function as: 

T
d

2 251
1 1 5 5

1H (x) (x x*) (x x*)
2

(x x *) (x x *)
2 2

λ

λλ

= − −

= − + + −K

 (15) 

The feedback law to make desired equilibrium 
point x *  asymptotically stable is used as: 

( )T
i i 1 1 4 4v (x ) (x ) (x )ϕ ϕ ϕ= = L  (16) 

Such that d df (x) g(x) F (x) H (x)ϕ+ = ∂ . Where 

dF (x)  is a n n×  dissipative matrix. According to 
Lemma 1, such a feedback exists if and only if (16) 
holds. The dF (x)  matrix is chosen in order to facilitate 
the solution of the resulting algebraic equations. 
Furthermore, in order to simplify the control structure, 
we want to assign one output to each control action and 
also to obtain a controller as simpler and robust 
(minimum parameter dependence) as possible. In the 
stability analysis, the damping coefficient (which is 
present in all real machines) plays a fundamental role to 
ensure convergence to the equilibrium point. The 
presented method allows decoupling the outputs, 
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improving the robustness and facilitating the gain tuning 
[15]. Therefore, dF (x)  matrix is chosen in order to 
render the resulting Hamiltonian system dissipative 
using (9) and facilitate the solution of the resulting 
algebraic equations as: 

1 1

2 2

3 3d

4 4

1 2 3 4

0 0 0
0 0 0
0 0 0F (x)
0 0 0

Γ β
Γ β

Γ β
Γ β

β β β β α

− −⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟− −=
⎜ ⎟

− −⎜ ⎟
⎜ ⎟
⎝ ⎠

 (17) 

where i 0Γ >  are arbitrary positive constants. From (12) 
and assuming B 0≅ , a particular solution is: 

i k
i 2

k i

x dL
, 0

d2L
β α

θλ
= =  (18) 

We can solve for the feedback i iv (x )ϕ=  from (10) 
as: 

d dk
i i i i2

i 5k i

H HdL1(x ) x
x d x2L

ϕ Γ
θλ

∂ ∂
= − −

∂ ∂
 (19) 

The resulting closed-loop system is: 

( )d d dx J (x) R (x) H (x)= − ∂&  (20) 

in which 
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In order to prove that x *  is asymptotically stable, 
now calculate the derivative of dH (X)  along the 
trajectories of the closed loop as follows: 

T
d d d d

2 2
1 1 1 1 4 4 4 4

H H R H

(x x *) (x x *) 0λ Γ λ Γ

= − ∂ ∂⎡ ⎤⎣ ⎦
= − − − − − ≤

&

L
 (21) 

Hence, dH (X)  qualifies as a Lyapunov function. 
Closed loop system (8) with x *  (locally) stable 
equilibrium is asymptotically stable if, in addition, the 
largest invariant set under the closed–loop dynamics (8) 
contained in Tn

d d d{x R | H R H 0}∈ ∂ ∂ =⎡ ⎤⎣ ⎦  Equals 
x * . Asymptotic stability follows immediately invoking 
LaSalle’s invariance principle and the above condition. 
Finally, combining the two controls (13) and (19), it is 
easy to obtain: 

k
k i i k k k k k k

k
k 52

k i

dL
u L (i i *) r i i

d
dL1 i j ( *)
d2 L

Γ λ ω
θ

λ ω ω
θλ

= − − + −

− −
 (22) 

 
4 Simulation Results 

The proposed controllers are simulated using the 
SIMULINK software. The model takes magnetic 
saturation into account. The drive system simulations 
are used for comparison purposes to investigate the 
performance of the proposed PBC approach at different 
load conditions. From the imposed pole locations, the 
gains of current PI controller are computed and the 
damping parameter values of passivity-based controller 
have been obtained by using a trial-and-error procedure. 
The desired rotor speed is set to 200 RPM and the 
external load torque is suddenly changed at t=0.05 
second from Nm5  to Nm10 . Simulation result 
obtained for proposed controllers shows in Fig. 3(a) and 
3(b). As it can be considered higher tracking 
performance of reference speed achieved in the case of 
using passivity-based current loop controller with 
adaptive sliding speed loop control. 
 
5 Experimental Setup and Results 

The validity and effectiveness of the proposed 
control approach are shown by adopting the same 
objectives as the simulation results. The controller gains 
are nearly the same as used in the system simulation. A 
DSP-based drive system using a four-phase 8/6 4KW 
oulton SRM which has the nonlinear static flux linkage 
and torque characteristics shown in Fig. 1 is used to test 
speed controllers experimentally. The work presented 
here employs a conventional digital-control platform. It 
is based on the eZdsp F2812 board as a suitable 
platform for implementing motor controllers. This board 
is built around the TMS320F2812 digital signal 
processor (DSP). This platform is compatible with 
Simulink, and includes four dual pulse-width-
modulation (PWM) channels (8 channels total), 4 
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Fig. 3 (Simulation results) Motor Speed comparison. (a) 
Between PI and adaptive Sliding mode without using 
passivity-based current controller. (b) with and without using 
PBC technique. 
 
analog-to-digital converters (ADCs), and a speed-
encoder input. The processor is a 32-bit DSP with fixed-
point arithmetic; thus, discrete and fixed-point math 
blocks from Simulink can be used to program it. The 
complete experimental hardware used for evaluating the 
8/6 SRM drive is shown in Fig. 4. a conventional 
asymmetric converter used for our four-phase SR drive 
circuit. Simulink is able to compile a block diagram into 
C code and then call CCS to generate assembly code for 
the DSP. A project is generated in CCS to be loaded 
into the DSP. Fig. 5 shows a summary of the setup. The 
experimental results were obtained for the SRM speed 
controls shown in Fig. 6. Speed reference tracking 
improvement was performed through the proposed idea 
in 200 rpm on 5Nm load condition. 

Since a torque sensor was not available, for the 
electromagnetic torque, only simulation results 
comparing the response of three controllers are 
presented. Fig. 7 shows that performance of 
electromagnetic torque has been increased to a value 
corresponding to the load and obviously can be 
observed that torque ripple associated with using 

passivity-based controller operation is significantly 
decreased. Fig. 8 shows current and voltage waveforms 
for case of using passivity-based adaptive sliding mode 
control algorithm. Experimental waveforms show an 
acceptable current control mode. 
 
 

 
Fig. 4 SRM drive test setup used for experimentation. 
 
 

 
Fig. 5 Hardware and software interconnections. 
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Fig. 6 (Experimental results) Speed response comparison. 
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Fig. 7 SRM torque comparison of simulation results. (a) 
Without using PBC. (b) With using PBC. 
 

 
(a) 

 

  
(b) 

Fig. 8 Phase-one current and voltage for passivity-based 
adaptive sliding mode control. (a) Phase current (1.5A/div).  (b) 
Phase voltage (50 v/div). 

6 Conclusions 
A nonlinear controller has been presented for a four-

phase SRM drive based on the passivity-based adaptive 
sliding technique. Complete model of SRM possesses 
two-time-scale characteristics and decomposed as the 
feedback interconnection of the two electrical and 
mechanical passive linked subsystems. Hence, by using 
cascaded torque control structure, the proposed PBC 
algorithm is designed. Because of tacking the machine 
physical structure characteristics into account, it can 
overcome the inherent nonlinear characteristics of the 
system. The simulation and experimental results show 
the proposed controller has improved dynamic 
performance of rotor speed and torque, also produces 
lower torque ripple for SRM drives. The controller is 
not deigning to compensate for the uncertainties caused 
by the parameter variations and external load 
disturbance. Future research includes a dynamical 
extension keeping the Hamiltonian structure to improve 
the robustness (basically on the electrical parameters) 
and the performance. 
 
Appendix 

Table 1 Motor specifications 

Rated power 
Rated phase current 
Rated speed 
Number of pole 
Phase resistance 
Inertia (J) 
Damping Factor (B) 

4 kW 
9 A 
1500 rpm 
8/6 
0.75Ω  
0.008 2.msN  
0.00078 Nms 
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