
96                                                         Iranian Journal of Electrical & Electronic Engineering, Vol. 10, No. 2, June 2014 

Stabilization of Networked Control Systems with Variable 
Delays and Saturating Inputs 
 
 
M. Mahmodi Kaleybar* and R. Mahboobi Esfanjani* (C.A.) 

 
 
 

Abstract:In this paper, less conservative conditions for the synthesis of static state-
feedback controller are introduced to stabilize networked control systems subject to 
actuator saturation. Both of the data loss and latency which deteriorate the performance of 
the closed-loop system are modeled as the variable delays. Two different techniques are 
employed to import actuator saturation in the controller design procedure. The novelty of 
the proposed schemes is to utilize an improved Lyapunov-Krasovskii functional, free-
weight matrix and parameter tuning method to obtain more efficient conditions to 
determine state-feedback gain for a constrained system which is controlled over the 
communication network. Moreover, optimization problem is formulated in order to find the 
largest possible estimate for the region of attraction corresponding to maximum allowable 
delays. Numerical examples are presented to demonstrate the outperformance of the 
suggested approaches compared to the existing results in the literature. 
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1 Introduction1 
Networked Control System (NCS) is a feedback 
structure wherein the control loop is closed through a 
communication network. The advantages of NCSs such 
as low cost and simple installation and maintenance 
make them more and more popular in many real-world 
applications including industrial automation and multi-
agent systems [1]. However, the presence of 
communication network in the control loop complicates 
the analysis and design of the control system. Main 
issues are the delay and dropout of data packets which 
occur when sensors, actuators and controller exchange 
information across the network. The design of NCSs 
with considering the effects of data delay and dropout 
has been studied by many researchers [2-4]. On the 
other hand, physical constraints, especially actuator 
saturation are encountered in practical systems [5]. So, 
the input saturation in the analysis and synthesis of 
time-delay systems has attracted recently many 
attentions [6-16]. 

In [6], stabilizing controller was designed for NCSs 
with actuator saturation and sampling period variation. 
A continuous functional whose values at the sampling 
instants coincides with a discrete-time Lyapunov 
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function is utilized to derive sufficient condition in 
terms of linear matrix inequality (LMI) for computing 
the stabilizing controller. In [7], stabilization problem of 
networked stochastic systems subject to actuator 
saturation was studied. The nonlinearity of actuator 
saturation was modeled as a convex polytope of linear 
systems. In [8], the problem of designing state-feedback 
stabilizing controller and enlarging the controller 
domain of attraction is formulated as an optimization 
problem with LMI constraints. In [9], simple sufficient 
LMI conditions are derived for stabilization of systems 
with polytopic uncertainty for regional stabilization of 
systems with sampled-data saturated state-feedback via 
descriptor approach. The regional stabilization and H∞ 
control problem have been studied in [10] by combining 
the descriptor model transformation and Moon's 
inequality which is used to get a less conservative 
bound for the cross terms. Using a new Lyapunov-
Krasovskii functional and generalized sector relation, 
conditions were extracted in [12] for the controller 
design, aiming at the enlargement of the region of 
attraction, as well maximizing the upper bound of the 
sampling period. In [13], stabilization problem of 
neutral delay systems in the presence of control 
saturation is solved based on the descriptor approach 
and the use of a modified sector condition. 

This paper presents less conservative procedures to 
synthesis asymptotically stabilizing state-feedback 
controller for networked control systems subject to 
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actuator saturation. The NCS model developed in [2] is 
adopted and the nonlinearity of actuator saturation is 
tackled in two ways: In the first approach, the saturation 
is represented by a convex polytope of linear systems. 
In the second scheme, generalized sector condition 
(decentralized dead zone nonlinearity) is used to handle 
the saturation effects. The key ideas in the proposed 
methods are first, to use an improved Lyapunov-
Krasovskii functional and second, to utilize the free-
weight matrix and parameter tuning methods for 
extracting improved conditions to obtain the controller 
gain for networked systems with saturating input, 
aiming at enlarging the estimate of the region of 
attraction and maximizing maximum allowable delay 
bound. 

A challenging issue in the controller synthesis for 
the nonlinear processes is stabilizing the closed-loop 
systems while achieving the largest possible domain of 
attraction, i.e. enlargement the set of initial states for 
which the asymptotic convergence of the system 
trajectories to the origin is ensured. Thus, in this note, a 
computationally tractable optimization problem with 
LMI constraints is formulated to find a less conservative 
estimate for the domain of attraction. Simulation results 
demonstrate that the designed controller leads to larger 
domain of attraction while increases the maximum 
allowable delay bound. 

The paper is organized as follows: In section 2, the 
NCS model is described and then the problem of 
interest is explained. Section 3 presents some 
preliminary facts which will be used in the derivation of 
the main results of the paper. The proposed procedures 
to determine controller gain, maximum allowable delay 
and domain of attraction are derived in section 4. In 
section 5, numerical examples are given to illustrate the 
superiority of the proposed methods compared to the 
existing results in the literature. Section 6 concludes the 
paper. 

Notations: nℜ  denotes the n dimensional Euclidean 
space with vector norm  and n m×ℜ  is the set of all 
n×m real matrices. The notation P>0 (P≥0) means that 
P is symmetric and positive definite (positive semi 
definite). The subscript T

 stands for matrix 
transposition. Co{} symbolizes the convex hull. diag{} 
is used as an ellipse for block-diagonal matrix. ( )σ  
denotes the largest singular value of the matrix. The 
symbol * shows the symmetric entry in a symmetric 
matrix. Finally, the space of continuously differentiable 
vector function over [-η, 0] is represented by C1[-η, 0]. 
 
2 Problem Statement 

A typical networked control system is shown in Fig. 
1, wherein the controller, sensor and the actuator are 
assumed to be separated and connected through a 
communication network. The controlled system is linear 
and time invariant, sensor is time-driven and controller 
and actuator are event-driven. In the considered 

network, all the data are lumped together into one 
packet and transmitted at the same time (single packet 
transmission) and the sent packets are time stamped. 
The controller and actuator always use the new data 
packets and discard the old ones. When an old data 
packet arrives, it is dealt with as a packet loss. A zero-
order-hold is placed in the input of the plant and the 
input is zero before the first controller packet arrives. 

Regarding the above assumption on the NCS, the 
following equations can describe the closed-loop system 
behavior: 

( ) ( ) ( )t t t= +x A x Bu                                                    (1) 

11( ) sat( ( ) ), [ , )
k k ki k i k it t t i h i hτ τ τ

++= − ∈ + +u K x  (2) 
where ( ) nt ∈ℜx  and ( ) mt ∈ℜu  are the state and the 
control vectors, respectively. A and B are two constant 
matrices with appropriate dimensions. K is the state 
feedback gain matrix. h stands for the sampling period. 
k = 1, 2, 3,…is the number of the controls which act on 
the system, ik is an integer denoting the sampling instant 
of the state feedback corresponding to the k-th effective 
control. Transmission delay and loss induced by the 
network is composed of two parts: sensor-to-controller 

scτ  and controller-to-actuator caτ . Since the controller 
is static, these two values can be lumped together as 

,
ki sc caτ τ τ= +  where time-varying 

ki
τ  represents the 

network-induced delay and dropout at the instant ikh. 
The function sat( ): m m⋅ ℜ → ℜ  denotes standard 

saturation: sat ( ) sign ( ) min ( , )i i i iu u u u=  with 
max( ).i iu u=  

The closed-loop system model in Eqs. (1)-(2) can be 
represented as ( ) ( ) sat( ( ) )kt t i h= +x A x B K x  for 

11[ , )
k kk i k it i h i hτ τ

++∈ + + . Now, by definition of 

( ) kt t i hτ = − ,
11[ , )

k kk i k it i h i hτ τ
++∈ + + , this relation can 

be rewritten as Eq. (3): 
( ) ( ) sat( ( ( )) )t t t tτ= + −x A x B K x                              (3) 

which is a continuous-time system with delayed input. 
Note that the varying delay is bounded as follows: 

110 ( ) ( )
k ki k k it i i hτ τ τ η

++≤ ≤ ≤ − + ≤            (4) 

ZOH )()()( tutt BAxx += )(tx

Controller

scτcaτ

satsat

Fig. 1 Schematic Diagram of the Saturated NCS. 
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Furthermore, the initial condition for system of Eq. 
(3) is a continuous differentiable function which is 
shown as the following: 

( ),φ θ=0x [ , 0]θ η∈ −                                                  (5) 

Briefly, the NCS is modeled as the nonlinear time-
delay system in Eq. (3), wherein the variable delay 
characterized in Eq. (4) represents both of the data loss 
and latency in the network. The problem of interest is to 
determine the state-feedback gainK such that the 
controller in Eq. (2) renders the closed-loop system of 
Eqs. (1)-(2) asymptotically stable; as well an estimate of 
the domain of attraction is obtained. 
 
3 Preliminaries 

In this section, some useful facts which are needed 
to solve the explained problem are recalled. First, the 
stability theorem of time-delay system is presented and 
afterward, essential definitions and relations to 
formulate the actuator saturation are reviewed. 
 

Theorem (Lyapunov-Krasovskii): Suppose that f 
maps a bounded set fromC1[-η, 0] into a bounded set 
into nℜ , and 1 2 3 0 0, , :α α α ≥ ≥ℜ → ℜ  are continuous, 
non-decreasing functions with α1(0)=α2(0)=α3(0)=0 
andα1(s)>0, α2(s)>0 for s>0. If there exists a continuous 
functional 1

0: [ , 0]V C η ≥− → ℜ  such that 

1 2 3
[ ,0]

( (0) ) ( sup ( ) ) , ( ( ) )
t

x V x t V x t
η

α α α
∈ −

≤ ≤ < −     (6) 

Then the equilibrium of Eq. (3) is stable. If, in 
addition, α3(s)>0 for s>0, then it is asymptotically 
stable. 
 

Definition 1 [17]: Let ik  be the i th row of the 
matrix K , a polyhedron region ( )L K  in the state space 
is defined as follows: 

{ }( ) : , 1,2, ,n
i iL u i m= ∈ℜ ≤ =K x k x .               (7) 

Furthermore, an ellipsoid E  in the state space is 
characterized as the following: 

( ,1) { : 1}n TE = ∈ℜ ≤P x x Px                                      (8) 

wherein, n n×∈ℜP  is a positive definite matrix. 
 

Definition 2 [17]: The set ν  consists of all m m×  
diagonal matrices whose diagonal elements are either 1 
or 0; so, the number of members in ν  are 2m . Let the 
matrix , 1,2, ,2m

jD j =  be a member of the set ν , 

and define: j jD I D− = − . It is clear that the matrix jD−  

is also a member of ν  , i.e. ,j jD D ν− ∈ . 
In the Lemma 1, based on the definitions 1 and 2, 

the saturation function of vectors belong to a 
polyhedron region is described as a convex combination 
of well-defined vertices. 

Lemma 1 [17]: Let , m n×∈ℜK H  are given; for all 
n dimensional vector ( )L∈x H , the following holds: 
sat ( ) { , 1, , 2 }m

j jCo D D j−∈ + =K x K x H x     (9) 
Hence, sat ( )K x can be expressed as follows: 

2

1
sat( ) ( )

m

j j j
j

D Dλ −

=

= +∑K x K H x                                (10) 

in which,
2

1
1

m

j
j
λ

=

=∑  and 0jλ ≥ . 

 
Definition 3 [18]: Decentralized dead-zone 

nonlinearity is the vector function ψ  which is defined 
as follows: 

( ) ( )satψ = −Kx Kx Kx                                              (11) 
 

Lemma 2 [18]: Consider the function 
( )ψ Kx defined in Eq.(11). For n∈ℜx  if ( )L∈ −x K H , 

the following is hold: 
( ) ( ( ) ) 0Tψ ψ − ≤Kx U Kx Hx                                      (12) 

for any diagonal positive definite  matrix m m×∈ℜU . 
The result of Lemma 2 which is known as 

generalized sector condition will be utilized later to 
transform the design conditions into LMI form. 
 

Definition 4: Let ( , )tϕ 0x  be the state trajectory 
ofthe system of Eq. (3), starting from the initial function 

1[ , 0]C η∈ −0x ; the domain of attraction of the origin is 
defined as the following: 

1{ [ ,0] : lim ( , ) 0 }
t

S C tη ϕ
→∞

= ∈ − =0 0x x                (13) 

Furthermore, an estimate of the domain of attraction 
DOA SΧ ⊂  can be obtained as follows: 

{ }1 2:max | | , max | |DOA S δ δΧ = ∈ ≤ ≤0 0 0x x x             (14) 
by maximizing positive scalars ( 1, 2)i iδ = . 
 
4 Main Results 

In this subsection, the sufficient conditions are 
derived to determine state-feedback gain to 
asymptotically stabilize the system of Eq. (3). Based on 
the convex representation of saturation function in 
Lemma 1, design condition is introduced in Theorem 1 
to obtain the controller gain. The result of Theorem 1 is 
used in Corollary 1 to determine the largest possible 
estimate of the domain of attraction. In Theorem 2, 
using the property of decentralized dead zone 
nonlinearity in Lemma 2, another criterion is derived to 
obtain the controller gain and corresponding domain of 
attraction. 
 

Theorem 1: Given scalars 0η >  and , 2,3, 4ip i =  
the system of Eq. (1) with the networked memoryless 
state-feedback controller in Eq. (2) is asymptotically 
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stable if there exist matrices 0,T= >P P  0,T= >Q Q  
0,T= >R R  ,G Y  and nonsingular matrix 

1 2 2
T= + +Φ Ω Ω Ω  of appropriate dimensions such that 

the following matrix inequalities hold: 
0, 1,2,..., 2mj< =Φ                                                (15) 

0, 1, 2,...,
*

s s

s

u
s m

u
⎡ ⎤

≥ =⎢ ⎥
⎣ ⎦

g
P

                                       (16) 

where 1 2 2
T= + +Φ Ω Ω Ω  with: 

1 2

* 2
* *
* * *

η

⎡ ⎤−
⎢ ⎥

−⎢ ⎥=
⎢ ⎥
⎢ ⎥

− −⎢ ⎥⎣ ⎦

Q R R P 0
R 0 RΩ

R 0
Q R

                       (17) 

2 2 2
2

3 3 3

4 4 4

( )
( )
( )
( )

T T
j j

T T
j j

T T
j j

T T
j j

D D
p p D D p
p p D D p
p p D D p

−

−

−

−

⎡ ⎤− − +
⎢ ⎥− − +⎢ ⎥= ⎢ ⎥− − +
⎢ ⎥
− − +⎢ ⎥⎣ ⎦

A X B Y G X 0
A X B Y G X 0

Ω
A X B Y G X 0
A X B Y G X 0

  (18) 

and gs is the s-th row of G; Furthermore, T−=K Y X  

and T−=H G X . An estimate of the domain of 
attraction is in the form of Eq. (14) with 1δ  and 2δ  
satisfying: 

( )2 1 1
1

3
2 1
2

( ) ( )

( ) 1
2

T T

T

δ σ η σ
η δ σ

− − − −

− −

+

+ ≤

X P X X Q X

X R X
              (19) 

Proof: Regarding the Lemma 1, the closed-loop 
system in Eq. (3) is represented as a more tractable form 
of Eq. (20):

 2

1
( ) ( ) ( ) ( )

m

j j j k
j

t t D D i hλ −

=

= + +∑x A x B K H x             (20) 

provided that ( )L∈x H , wherein 0 1jλ≤ ≤ and 
2

1
1

m

j
j
λ

=

=∑ . Therefore, the system equation in vertex j  

is as follows: 
( ) ( ) ( )j kt t i h= +x Ax A x                                             (21) 

in which ( )j j jD D−= +A B K H  for 1, ,2mj = . 
In what follows, the derivative of an appropriate 

energy functional on every vertex of the system, 
represented in Eq. (21) is set to be negative. Improved 
Lyapunov-Krasovskii functional candidate is considered 
as follows: 

( ) ( ) ( ) ( ) ( )
tT T

t
V t t t s s ds

η−
= + ∫x P x x Q x  

0

( ) ( )
t

T

t

s s ds d
η θ

η θ
− +

+ ∫ ∫ x Rx                        (22) 

in which, 0, 0T T= > = >P P Q Q  and 0T= >R R  are 
to be determined. Calculating the time derivative of 

( )V t  along the trajectories of the system of Eq. (21) 
yields to: 

2

( ) 2 ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T T T

t
T T

t

V t t t t t t t

t t s s ds
η

η η

η η
−

= + − − −

+ − ∫
x Px x Qx x Qx

x Rx x Rx  (23)

 
To obtain design condition in terms of matrix 

inequalities, first, a quadratic upper bound is derived for 
the integral term in ( )V t . To this end, the following 
relation is used: 

( ) ( )

( ) ( ) ( ) ( )
k

k

t
T

t
i h t

T T

t i h

s s ds

s s ds s s ds

η

η

η

η η

−

−

− =

− −

∫

∫ ∫

x R x

x R x x R x
  (24) 

On the other hand, regarding the Jensen Lemma [3], 
the following inequalities hold: 

( ) ( )

[ ( ) ( )] [ ( ) ( )]
k

t
T

i h
T

k k

s s ds

t i h t i h

η− ≤

− − −

∫ x Rx

x x R x x
          (25) 

( ) ( )

[ ( ) ( )] [ ( ) ( )]

ki h
T

t
T

k k

s s ds

i h t i h t
η

η

η η
−

− ≤

− − − − −

∫ x Rx

x x R x x
 (26) 

So, substituting Eqs. (25) and (26) in Eq. (24) results 
in the following upper bound for ( )V t : 

2

2 ( ) ( ) ( ) ( ) ( ) ( )
[ ( ) ( )] [ ( ) ( )]

( ) ( ) [ ( ) ( )] [ ( ) ( )]

T T T

T
k k
T T

k k

V t t t t t t
i h t i h t

t t t i h t i h

η η
η η

η

≤ + − − −
− − − − −
+ − − −

x Px x Qx x Qx
x x R x x

x Rx x x R x x
 (27) 

Now, let us define 
[ ]( ) ( ) , ( ), ( ), ( ) T

kt t i h t t η= −ξ x x x x ; it is obvious that 
for any matrix M , the following relation is true: 

2 ( ) [ ( ) ( ) ( ) ( )] 0T
j j kt t t D D i h−− − + =ξ M x Ax B K H x    (28) 

It should be noted that M  is a free-weight matrix 
which is injected in upper bound of ( )V t  to increase the 
degree of freedom in the final design condition to 
reduce the conservativeness of the obtained sufficient 
criterion. Adding Eq. (28) to Eq. (27) and arranging the 
obtained relation yields to: 

( ) ( ) ( )TV t t t≤ ξ Φ ξ                                                 (29) 

where 1 2 2
T= + +Φ Ω Ω Ω  and 

1 2

* 2
* *
* * *

η

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥

− −⎣ ⎦

Q R R P 0
R 0 R

Ω
R 0

Q R

                      (30) 

2 ( ) .j jD D−⎡ ⎤= − − +⎣ ⎦Ω MA MB K H M 0           (31) 
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If 0<Φ , the Lyapunov-Krasovskii Theorem 
ensures that the system of Eq. (21) and consequently, 
the system of Eq. (20) is asymptotically stable. The 
inequality condition 0<Φ  is a nonlinear matrix 
inequality which is transformed to LMI by changing 
variable technique. For this purpose, first, the matrix 
M is partitioned as follows: 

1 2 3 4

TT T T T⎡ ⎤= ⎣ ⎦M M M M M                                        (32) 

Afterward, let M1=M0, M2=p2M0, M3=p3M0, 
M4=p4M0,X=M 1

0
−  and Z=diag(X,X,X,X). Define: 

1 2 2
T T= = + +Φ Z Φ Z Ω Ω Ω , wherein, 

T
i i=Ω ZΩ Z  for i = 1, 2, ,T=P X P X  ,T=Q X Q X  

,T T= =R X R X Y K X  and T=G H X . The 

inequality 0<Φ  implies that 0<Φ . Briefly, this 
proves the sufficiency of the condition of Eq. (15) to 
asymptotic stability of the closed-loop system. 

Employing the Lemma 1 to derive Eq. (20) requires 
that ( )L∈x H  is assured. In the following, condition is 
derived to guarantee the belonging of the state to the 
mentioned region. Let the ellipsoid ( ,1)E P  is a subset 
of the region ( )L H , so the following inequality is 
satisfied: 
2 ( 1 ) 2 , 1, ,T

i i iu u i m≤ + ≤ =h x x P x    (33) 
Since: 

[ ] 1
2 (1 ) 1 0

*
i iT

i i
i

u
u

u
⎡ ⎤ ⎡ ⎤

≤ + = ± ≥⎢ ⎥ ⎢ ⎥±⎣ ⎦⎣ ⎦

h
h x x P x x

P x
 (34)

 
The following holds: 

0
*

i i

i

u
u

⎡ ⎤
≥⎢ ⎥

⎣ ⎦

h
P                                                         (35) 

If both sides of the above inequality pre and post 
multiplied simultaneously with ( , )diag I X and its 
transpose respectively, the inequality of Eq. (16) is 
obtained with T

i i=g h X . 
Finally, an estimate of the domain of attraction in 

the form of Eq. (14) is computed. From ( ) 0V t < , it 
follows that 0( ) ( )tV V<x x and therefore for 0t > : 

0( ) ( ) ( ) ( )T
tt t V V< <x P x x x                                (36) 

Regarding Eq. (14), the following inequalities hold: 
2

0 [ ,0]
32

[ ,0]
3

2 2
1 2

( ) max ( ) ( ( ) ( ))

max ( ) ( )
2

( ( ) ( )) ( )
2

V
θ η

θ η

φ θ σ ησ
ηφ θ σ

ηδ σ ησ δ σ

∈ −

∈ −

≤ +

+

≤ + +

x P Q

R

P Q R

           (37) 

So, if: 
3

2 2
1 2( ( ) ( ) ) ( ) 1

2
ηδ σ ησ δ σ+ + ≤P Q R                      (38) 

then, for all the initial functions belong to DOAΧ  in Eq. 
(14), the trajectories of the closed-loop system remain in 
the ellipsoid ( ,1) ( )E L⊂P H  and the polyhedron 
representation of saturation function is valid. 

Theorem 1 gives a systematic approach to determine 
controller gain K  via feasible solution of inequalities in 
Eq. (15) and Eq. (16) after tuning of the parameters 

, 2,3, 4ip i = ; if the controller gain is known a-priori, the 
conditions of Eq. (15) and Eq. (16) can be used for the 
stability analysis of the constrained networked system 
of Eq. (3). The details are expressed in Corollary 1 
which presents LMI conditions to check the stability of 
the closed-loop. 
 

Remark: In contrast to [9] and [12], the Lyapunov-
Krasovskii functional considered in Eq. (22), contains 
integral term of state and double integral term of state 
rate. Moreover, in Eq. (25) and Eq. (26), Jensen 
inequality is employed to attain tighter bound for the 
integral phrases. In addition, differently from [9], free-
weight matrix is incorporated in derivative of energy 
functional via Eq. (28). These ingredients lead to 
improved design conditions compared to [9] and [12] 
which will be illustrated later in section 5. 
 

Corollary 1: Let m n×∈ℜK, H  be given. The closed-
loop system of Eq. (3) is asymptotically stable if there 
exist matrices 0, 0> >P Q , 0>R  and M  such that 
the following LMIs hold: 

0, 1,2,..., 2mj< =Φ                                                (39) 

0, 1,2,...,
*

s s

s

u
s m

u
⎡ ⎤

≥ =⎢ ⎥
⎣ ⎦

h
P                               (40) 

where, 1 2 2
T= + +Φ Ω Ω Ω  with: 

1 2

* 2
* *
* * *

η

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥

− −⎣ ⎦

Q R R P 0
R 0 R

Ω
R 0

Q R  

 
 
                   (41) 

and 
2 [ ( ) ].j jD D−= − − +Ω M A M B K H M 0      (42) 
Based on the result of Corollary 1, an optimization 

problem with LMI constraints is formulated to obtain a 
large estimate of the domain of attraction. To simplify 
the procedure, it is assumed that 1 2 maxδ δ δ= =  and 
parameters 0 , 1, 2,3iw i> =  are introduced to bound the 
matrices P, Q  and R  to get a less conservative 
estimate of the domain of attraction. 

Following the computation of the matrices K  and 
H  using Theorem 1, the subsequent optimization 
problem is solved via YALMIP Toolbox, to attain a 
maximal estimate of the domain of attraction. 
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1

2

3

min
. .

conditions of Corollary 1
0
0
0

s t

w
w
w

γ

− ≥
− ≥
− ≥

I P
I Q
I R

                                       (43) 

where 3
1 2 30.5w w wγ η η= + + . Thus, the radius of 

maximal estimate of the domain of attraction is 
computed as: 

max 3

1

( ) ( ) 0.5 ( )
δ

σ ησ η σ
≤

+ +P Q R
                       (44) 

In Theorem 2, generalized sector condition 
presented in Lemma 2 is employed to obtain a new 
synthesis condition for stabilizing state-feedback 
controller gain. 
 

Theorem 2: Given scalars 0η >  and , 2,3, 4ip i = , 
the system of Eq. (1) with the networked memoryless 
state-feedback controller in Eq. (2) is asymptotically 
stable if there exist 0,T= >P P  0,T= >Q Q  

0,T= >R R  ,G  Y , diagonal positive definite U  and 

nonsingular matrix 1 2 2
T= + +Φ Ω Ω Ω  of appropriate 

dimensions such that the following matrix inequalities 
hold: 

0,<Φ                                                                  (45) 

0, 1,2,...,
*

s s s

s

u
s m

u
−⎡ ⎤

≥ =⎢ ⎥
⎣ ⎦

y g
P                          (46) 

where 1 2 2
T= + +Φ Ω Ω Ω  with. 

2
1

2 2 2 2

2 3 3 3 3

4 4 4 4

* 2
* * 0 0
* * * 0
* * * * 2

T

T T

T T

T T

T T

p p p p
p p p p
p p p p

η

⎡ ⎤−
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⎡ ⎤− −
⎢ ⎥
− −⎢ ⎥
⎢ ⎥= − −
⎢ ⎥
− −⎢ ⎥
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Q R R P 0 0
R 0 R G

Ω R
Q R

U
AX BY X 0 BU
AX BY X 0 BU

Ω AX BY X 0 BU
AX BY X 0 BU
0 0 0 0 0

        (47) 

in which sy  and sg  are the s -th row of Y  and G , 

respectively. Moreover, T−=K YX  and T−=H G X . An 
estimate of the domain of attraction is in the form of Eq. 
(14) with 1δ  and 2δ  satisfying: 

( )2 1 1
1

3
2 1
2

( ) ( )

( ) 1
2

T T

T

δ σ ησ

η δ σ

− − − −

− −

+

+ ≤

X P X X Q X

X R X
               (48) 

Proof: The sketch of proof runs along the lines of 
Theorem 1. Regarding Definition 3, the closed-loop 
system of Eq. (3) is represented as follows: 

( ) ( ) ( ) ( ( ))k kt t i h i hψ= + −x Ax BKx B Kx                     (49) 
Improved Lyapunov-Krasovskii functional is 

designated as Eq. (22) and its derivative on the 
trajectories of the system of Eq. (49) is forced to be 
negative. In what follows, free-weight matrix M is 
defined to be incorporated in the upper bound of ( )V t  
to reduce the conservativeness of the final design 
condition. Let us define 

[ ]( ) ( ) , ( ), ( ), ( ), ( ( )) T
k kt t i h t t i hη ψ= −ξ x x x x Kx  and let 

M be of the form: 

1 2 3 4

TT T T T⎡ ⎤= ⎣ ⎦M M M M M 0                                  (50) 
It is obvious that the following equation holds: 

[ ( ) ( ) ( ( )) ( ( ))] 0T
k kt t x i h i hξ ψ− − + =M x Ax BK B Kx (51) 

On the other side, by Lemma 2, the following 
relation is true: 

( ) ( ( ) )Tψ ψ− − ≥Kx U Kx Hx 0                                     (52) 
provided that ( )L∈ −x K H . Including Eqs. (51) and 
(52) in the upper bound of V in Eq. (27) yields to: 

2
2 ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) [ ( ) ( )] [ ( ) ( )]
[ ( ) ( )] [ ( ) ( )] (53)
2 ( ( ) [ ( ( ) ( )]
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T T T
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T
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k k k
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V t t t t t t
t t t i h t i h

i h t i h t
i h i h i h
t t x i h i h

η η
η

η η
ψ ψ

ψ
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+ − − −
− − − − −
− −
+ − − +

x Px x Qx x Qx
x Rx x x R x x

x x R x x
Kx U Kx Hx

ξ M x Ax BK B Kx

which can be rearranged as ( ) ( ) ( )TV t t t≤ ξ Φ ξ ; where 

1 2 2
T= + +Φ Ω Ω Ω  with: 

[ ]

2
1

2

* 2
* *
* * *
* * * * 2

0

T

η
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Q R R P 0 0
R 0 R H U

Ω R 0 0
Q R 0

U
Ω MA MBK M MB

             (54) 

If 0<Φ , the Lyapunov-Krasovskii Theorem 
guarantees that the system of Eq. (49) is asymptotically 
stable. The condition 0<Φ  is nonlinear; thus by the 
changing variable method, it is transformed to LMI 
condition. Let 1 0 ,=M M  2 2 0 ,p=M M  3 3 0 ,p=M M  

4 4 0 ,p=M M  
1

0
−=X M  and diag ( )=Z X, X, X, X . 

Define: 1 2 2
T T= = + +Φ Z Φ Z Ω Ω Ω  with 

i =Ω T
iZ Ω Z , 1,2i = , ,T=P X P X  ,T=Q XQX  
,T=R XRX  ,T=Y K X  ,T=G H X  

1−=U U . The 

condition 0<Φ  implies that 0<Φ . This proves the 
sufficiency of the condition in Eq. (45) to asymptotic 
stability of the closed-loop system. The rest of proof is 
the same as Theorem 1 and omitted for the sake of 
brevity. 
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The inner ellipse in Fig. 2 shows the estimate of the 
domain of attractions. The outer ellipse in Fig. 3 shows 
the ellipsoid 1T β −≤x Px , as seen all trajectories begin 
on the periphery of the inner ellipse never leave the 
outer ellipsoid and end up at the origin. Figs. 2 and 3 
together with the information in Table 1 clarify that 
there is inverse relation between η and δmax. 
 
6 Conclusion 

In this paper two less conservative criteria have been 
presented to synthesis stabilizing controller for 
networked control system subject to input saturation. In 
the first method, the saturated linear system has been 
represented with a set of linear systems embedded 
within a convex polytope. In the second method, 
actuator saturation has been tackled via a generalized 
sector condition. Furthermore, an estimate of domain of 
attraction has been obtained through the LMI 
optimization. Illustrative example demonstrates the 
outperformance of the suggested methods compared to 
the existing approaches in the literature. 
 
References 
[1] A. Fereidunian, H. Lesani, C. Lucas, M. Lehtonen 

and M. M. Nordman, “A System Approach to 
Information Technology Infrastructure Design for 
Utility Management Automation Systems”, 
Iranian Journal of Electrical and Electronic 
Engineering, Vol. 2, No. 3, pp. 91-104, 2006. 

[2] C. Peng, Y.-C. Tian and M. O. Tade, “State 
Feedback Controller Design of Networked 
Control Systems with Interval Time-varying 
Delay and Nonlinearity”, Int. Journal of Robust 
and Nonlinear Control, Vol. 18, No. 12, pp. 
1285-1301, 2008. 

[3] B. Tang, G.-P. Liu and W.-H. Gui, “Improvement 
of State Feedback Controller Design for 
Networked Control Systems”, IEEE Trans. on 
Circuits Systems II, Express Briefs, Vol. 55, No. 
5, pp. 464-468, 2008. 

[4] R. A. Gupta and M-Y. Chow, “Networked 
Control System, Overview and Research Trends”, 
IEEE Transactions on Industrial Electronics, 
Vol. 57, No. 7, pp. 2527-2535, 2010. 

[5] M. Maboodi, M. H. Ashtari Larki and M. Aliyari 
Shoorehdeli, “An Under Load Servo Actuator 
Identification and Comparison between the 
Results of Different Methods”, Iranian Journal of 
Electrical and Electronics Engineering, Vol. 8, 
No. 3, pp. 227-233, 2012. 

[6] A. Seuret and J. M. Gomes da Silva Jr., 
“Networked Control: Taking into Account 
Sample Period Variations and Actuator 
Saturation”, Proceeding of the 18th IFAC World 
Congress, pp. 1-6, 2011. 

[7] Z. Xiaomeri, T. Hangji and L. Guoping, 
“Stabilization of Networked Stochastic Systems 

Subject to Actuator Saturation”, Proceedings of 
26th Chinese Control Conference, pp. 33-37, 
2007. 

[8] Z. Zuo, Y. Wang and G. Zhang, “Stability 
Analysis and Controller Design for Linear 
TimeDelay Systems with Actuator Saturation”, 
Proceedings of the 2007 American Control 
Conference, pp. 5840-5844, 2007. 

[9] AE. Fridman, A. Seuret and J-P Richard, “Robust 
Sampled-data Stabilization of Linear Systems: an 
Input Delay Approach”, Automatica, Vol. 40, No. 
8, pp. 1441-1446, 2004. 

[10] E. Fridman, A. Pila and U. Shaked, “Regional 
Stabilization and ∞H  Control of Time Delay 
systems with saturating actuators”, International 
Journal of Robust and Nonlinear Control, Vol. 
13, No. 9, pp. 885-907, 2003. 

[11] E. Fridman, “A Refined Input Delay Approach to 
Sampled-data Control”, Automatica, Vol. 46, No. 
2, pp. 421-427, 2011. 

[12] A. Seuret and J. M. Gomes da Silva Jr., “Taking 
into Account Period Variations and Actuator 
Saturation in Sampled-data Systems”, Systems 
and Control Letters, Vol. 61, No. 12, pp. 1286-
1293, 2012. 

[13] J. M. Gomes da Silva Jr., A. Seuret, E. Fridman 
and J. P. Richard, “Stabilization of Neutral 
Systems with Saturating Control Inputs” Int. 
Journal of Systems Science, Vol. 42, No. 7 , pp. 
1093-1103, 2011. 

[14] Z. Zuo, D. W. C. Ho, Y. Wang and C. Yang, “A 
New Approach for Estimating the Domain of 
Attraction for Linear Systems with Time-varying 
Delay and Saturating Actuators”, Proceedings of 
Seventh Asian Control Conference, pp. 274-279, 
2009. 

[15] J. M. Gomes da Silva Jr. and S. Tarbouriech, 
“Anti-windup Design with Guaranteed Regions 
of Stability for Discrete-time Linear Systems”, 
Systems and Control Letters, Vol. 55, No. 3, pp. 
184-192, 2006. 

[16] J. Sun, G. P. Liu, J. Chen and D. Rees, “Improved 
Stability Criteria for Linear Systems with Time 
Varying Delay”, IET Control Theory and 
Application, Vol. 4, No. 4, pp. 683-689, 2010. 

[17] T. Hu, Z. Lin and B. M. Chen, “An Analysis and 
Design Method for Linear Systems Subject to 
Actuator Saturation and Disturbance”, 
Automatica, Vol. 38, No. 2, pp. 351-359, 2002. 

[18] S. Tarbouriech, J. M. Gomes da Silva Jr. and G. 
Garcia, “Delay-dependent Anti-windup Strategy 
for Systems with Saturating and Delayed 
Outputs”, International Journal of Robust and 
Nonlinear Control, Vol. 14, No. 7, pp. 665–682, 
2004. 

 
 



104                                                       Iranian Journal of Electrical & Electronic Engineering, Vol. 10, No. 2, June 2014 

Masod Mahmodi Kaleybar received his 
B.Sc. degree from Islamic Azad 
University of Tabriz, Tabriz, Iran, in 
2008, and M.Sc. degree from Sahand 
University of Technology, Tabriz, Iran, 
in 2011, both in Electrical Engineering. 
His current research interests are analysis 
and design of networked control system. 
 

 
 

Reza Mahboobi Esfanjani received his 
B.Sc. degree from Department of 
Electrical Engineering, Sahand 
University of Technology, Tabriz, Iran 
in 2002; He received the M.Sc. and 
Ph.D. degrees from Amirkabir 
University of Technology (Tehran 
Polytechnic) in 2004 and 2009, 
respectively. He has held faculty 

position at the Electrical Engineering Department, Sahand 
University of Technology, since 2010. His research interests 
include analysis and control of time-delay and networked 
systems. 

 

 


