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Extending Operational Zone of Rotary Power Flow Controller 
by Controlling Tap-Changers of Transformers 
 
 
M. Tolue Khayami*(C.A.) and H. A. Shayanfar** 
 
 
 

Abstract: This paper proposes a method for extending the ability of Rotary Power Flow 
Controller (RPFC) using tap-changer of the RPFC’s transformers. A detailed model of the 
device is presented to analyze the effects of the tap changer operation on the performance 
of the RPFC. To evaluate the results, the RPFC model is simulated using PSCAD/EMTDC 
software. Dynamic operation of the RPFC on a 400 kV transmission line is studied. Based 
on the results, using tap-changer of transformers can extend the RPFC ability to control the 
active power of the transmission line about 25%. 
 
Keywords: Active Power Control, Dynamic Stability, Rotary Phase Shifting Transformer, 
Rotary Power Flow Controller (RPFC), Tap-Changing Transformer. 

 
 

1 Introduction 
Power flow control is important in the steady state and 
dynamic operation of an interconnected power system. 
In its general form, power flows through the network 
are mainly determined by the magnitude and phase 
angle of transmission line voltage and impedance. 
Transmission lines with lower impedance take a more 
share of power flows than those with higher impedance 
[1]. However, Flexible AC Transmission Systems 
(FACTS) devices such as Unified Power Flow 
Controller (UPFC) and rotary power flow controller 
(RPFC)can control power flow of a transmission line 
according to the operator command. Moreover, FACTS 
devices can increase capacity, flexibility and 
controllability of the electric transmission network [1-
4].1 

For the first time, in 1998 the RPFC concept was 
presented based on Rotary Phase Shifting Transformer 
(RPST) structure [5, 6]. The RPFC can balance active 
power flow in a parallel transmission corridor in normal 
and contingency conditions [7, 8]. 

The RPFC performance is similar to UPFC. The 
high power semiconductor switches of the UPFC 
increase the dynamic response speed. The disadvantages 
of these switches are high cost and low reliability. 
Therefore, UPFC has higher cost and lower reliability 
compared to devices consisting transformer and rotating 
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machinery components such as RPFC. Operation and 
maintenance costs of the RPFC are lower than UPFC. 
Therefore, using the RPFC for expanding the 
transmission line capability and power flow control is 
more economic than installation of the UPFC or 
building new lines [9, 10]. 

A dynamic model for double shaft RPFC is 
presented in [7]. The shunt and series branch are 
modeled using current and voltage sources. The 
transformers and RPSTs magnetizing inductances are 
neglected. 

Based on the model presented in [7], the 
performance of RPFC for controlling the power flow in 
a transmission corridor is simulated in [8]. Moreover, 
the influence of the RPST number of poles on the RPFC 
performances is studied. It is shown that the utilization 
of the RPFC allows more flexible control of power flow 
in normal and contingency conditions. 

The remaining researches are focused on single-
shaft RPFC. An approximate dynamic model for single-
shaft RPFC is presented and the effects of transformers 
voltage ratio and the angle between rotor and stator of 
the RPSTs are analyzed. The dynamic performance of 
the RPFC during faults and other switching operations 
has been studied [10]. Potential advantages of RPFC 
are: (a) continuous adjustment of transmission line 
voltage phase shift, (b) longer thermal time constants 
than power electronic based devices, (c) consistency 
with other transmission equipment such as transformers, 
(d) absence of harmonics and generator interaction 
issues associated with power electronic based devices, 
and (e) reliable operation during network transients [11, 
12]. 
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The magnetic current of RPSTs is: 
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which CR  is shunt branch resistance of RPST and mX  
is magnetizing reactance of RPST. Therefore, from Eqs. 
(16) and (17), we will have: 
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the RPFC can be obtained by the following equation: 

( )
1 2

1 2

2 2
2

2 2

2 2
2

2

.2. ( ) ...
.

2( )1 .( ) .
2.( . )

j j
j j

rpfc rt sh
ser ser rpst

j
j j sh

se
C m shser rpst

e eZ Z e e Z
T T T

Z e
Z e e

R jX ZT T

θ θ
α α

θ
α α

− −
− −

−
− −

= + −

+ − −
+  

(19) 

Thus, from Eqs. (18) and (19) we have: 
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3.3  Effect of RPFC Installation on Sending Side 

Voltage 
To evaluate the effect of the RPFC installation on 

the active and reactive power flow of the network, the 
sending side voltage variations due to presence of the 

RPFC are calculated. The relation between sV  and gV
is: 

2Sergs VVV += (21) 
By changing the RPSTs angles, the injected voltage 

( 2serV ) and consequently the power flow varies. 

Substituting 2serV  from Eq. (20) into Eq. (21) follows: 
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The secondary current of the series transformer can 
be calculated by the following equation: 

Line
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Thus, from Eqs. (23) and (22), we have: 
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Supposing rpstsersheq TTTT ××= , it can be found: 
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(25) 

The minimum and maximum of Teq can be 
calculated using following equations: 

(26) rpstsersheq TTTT ××= minminmin  

(27) rpstsersheq TTTT ××= maxmaxmax  
 
3.4  Effect of RPFC Installation on Network Power 

Flow 
The transmission line can be modeled by an 

inductance as follows: 
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LLLine jXZZ ==  (28) 
The active power flowing through the line is: 

)(
.

1 rg
L
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Line Sin

X

VV
P θθ −=  (29) 

Therefore, the active power flowing through the line 
after the RPFC installation is: 

)(
.

2 rS
L

rS
Line Sin

X
VV

P θθ −=  (30) 

From Eqs.(29) and (30) the active power variation 
is: 

12 LineLineLine PPP −=Δ  (31) 

The reactive power flowing through the line before 
the RPFC installation is obtained by the following 
equation: 
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.
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L

g
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X

V
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After installation of the RPFC, we have: 

)(
.2
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L
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L

S
Line Cos

X
VV

X
V
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Therefore, the reactive power variation due to 
installation of the RPFC is: 

12 LineLineLine QQQ −=Δ  (34) 

The variations in active and reactive powers are 
dependent on each other. To show this coupling, the 
locus of active and reactive powers in the P-Q plane is 
illustrated in Fig. 3. The active and reactive power 
variations are confined to the circle area. 
 
4 RPFC Operation Region 

The RPFC equations presented in the previous 
section are used to calculate the operation region of the 
device. The RPFC and network parameters are shown in 
Tables 1 and 2. 
 
 

 
Fig. 3 Active and reactive power coupling of the RPFC. 

Table 1 RPFC parameters. 
Secondary 

voltage (kV) 
Primary 

voltage (kV) 
Power 
(MVA) Component 

25 25 250 RPST 

25 400 500 Shunt 
transformer 

125 50 500 Series 
transformer 

 
Table 2 Transmission line parameters. 

Value Parameter 
kV5.74400∠  Sending end voltage (

gV ) 

400 72.6 kV∠  Receiving end voltage ( rV ) 

0.032+j0.336 Ω.km-1 Line impedance LZ  

150 km Line length 

400 kV Base voltage 

1000 MVA Base power 
 
 
4.1   Limitations of Amplitude and Phase of Sending 

Side Voltage 
The variations of amplitude as a function of the 

RPSTs phase shifts are shown in Fig. 4. The device 
operates as an ordinary RPFC when the tap-changer is 
located at its nominal place. In this case, amplitude 
varies from 0.91 to 1.1. Using the tap-changer, 
amplitude can be varied between 0.87 and 1.15. 

The variations of phase are depicted in Fig. 4. Phase 
variations ranges from 69.25ο to 78.84ο for ordinary 
RPFC and from 67.44ο to 80.55ο for RPFC with tap-
changing transformers. Therefore, the operation region 
of the RPFC can be extended using the tap-changing 
transformers. 
 

4.2   Limitations of Active and Reactive Powers of 
the Line 

When the tap-changing transformers are used, due to 
the variation of amplitude and phase, the ability of the 
RPFC for controlling the active and reactive powers 
increases compared to the ordinary RPFC. Fig. 5 shows 
the effect of the RPFC installation on the variation of 
the active and reactive power passed through the 400 
kV line. Using the RPFC, the active power of the line 
can vary between -0.305 and 0.275 p.u. The rise in 
reactive power is up to 0.677 p.u. However, the RPFC 
with tap-changing transformers can give the active 
power a range from -0.423 to 0.392 p.u. and the reactive 
power a range from 0 to 1 p.u. 
 
4.3  Comparison between RPFCs with Ordinary and 

Tap-Changing Transformers 
In this section, based on the previously presented 

results, comparisons are made between the abilities and 
operational region of the RPFC with and without tap-
changing transformers. Table 3 concludes the results of 
the previous section. It is clear that the ability to control 
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the active and reactive power of the line has increased 
up to 40% and 47%. Therefore, using tap-changing 
transformers without increasing the RPFC rating 
increases the operator flexibility to control the 
transmission network. 

Because maximum transformer voltage variation due 
to the existence of the tap changer is assumed to be 
±10% and considering parameters shown in Table 3, 
rotor voltage of both RPSTs rise up to 27.8 kV and the 
stator voltage rises up to 55.5 kV. Therefore, expanding 
the control region results in a rise in the voltage rating 
of the RPSTs. Temporary use of tap-changer to extend 
the operation region of a transmission line is permissible 
without increasing the RPST rating. The thermal 
capacity of the RPSTs limits the duration of this 
extended capability operation. 
 
5 Simulation Results 

A 400 kV line and an RPFC as shown in Fig. 6 are 
simulated using PSCAD/EMTDC software. A step up 
230/400 kV and a step down 400/230 kV transformer 

are installed at sending and receiving sides of the line. A 
150 km line connects the sending and receiving buses. 
The RPFC is installed at the HV side of the step up 
transformer. A 132 MVAr capacitor bank is connected 
to the primary side of the shunt transformer to supply 
the reactive power consumed by the RPFC. The RPFC 
is used to control the active power flow of the line. 
Table 3 shows the parameters used in the simulation. 
Also, Table 4 shows comparison between analytical and 
simulation results of RPFC with tap-changing 
transformers and Ordinary RPFC. 
 
Table 3 Operation region of the RPFC with/without tap-
changing transformers. 

Variation of 
line power 

Ordinary 
RPFC 

RPFC with 
tap-changing 
transformers 

Percentage 
of variation

Active power 
(p.u.) 

-0.305 to 
0.275 -0.423 to 0.392 +40% 

Reactive 
power (p.u.) 0 to 0.677 0 to 1 +47% 

 
 

 
(a) 

 

Fig. 5 Transmission line power after installation of the RPFC. 
(a) active and (b) reactive. 

 
(a) 

 

(b) 
Fig. 4 (a) Amplitude and (b) phase as a function of α1-α2. 
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Fig. 10 The RMS voltage of the buses, #1 and 3. 

 

 
Fig. 11 The transmission line active power increased using 
RPFC with tap-changer. 
 

 
Fig. 12 Variation of RMS voltages of buses #1 and 3 due 
operation of the RPFC with tap-changer. 
 

 
Fig. 13 Variation of active and reactive power of the RPFC. 

5.3  Reactive Power Consumption 
The active and reactive powers received by the 

RPFC shunt transformer are illustrated in Fig. 13. The 
active power received by the RPFC is injected into the 
network by the series transformer and supplies the 
internal losses. An increase in the received active power 
will result in a rapid rise of the reactive power. 
According to Fig. 13, the relation between the active 
and reactive power received by the RPFC from the 
network can be approximated using the following 
equation; 

5.85 29.9Q P= × + (35) 

Consequently, for each unit of active power 
variation, the reactive power varies approximately 6 
units. This indicates the RPFC consumes large amounts 
of reactive power. Increasing the capacity of the shunt 
capacitor bank can reduce the reactive power drawn 
from the network. However, this may cause overvoltage 
problem. The capacity of the capacitor bank used in the 
simulation is chosen based on the reactive power 
consumption when the RPFC operates at the midpoint 
of its active power control region (about 130 MW). 

Increasing tap-changer of shunt and series 
transformers causes extending operation range of RPFC, 
but decreasing tap-changer of shunt transformer causes 
controlling voltage RPFC and protect from RPFC 
against network overvoltage. The control loop of the 
RPFC takes line active power as an input. By comparing 
line power with reference power, an error signal is 
generated. Therefore if configuration of the 
transformers varies, the changes will be appeared in the 
line active power and the input of the control algorithm 
will change. According to new inputs, the control 
algorithm generates new set point for RPFC operation. 
Moreover, because the RPST phase can be controlled 
continuously, the discreet steps in power flow caused by 
tap-changer variations can be compensated by RPFC 
control algorithm after a short time needed for change 
of RPST phase. 
 
6 Conclusion 

It has been shown that the operational region of the 
RPFC can be extended by using tap-changer in its series 
and shunt transformers. The increase in the operation 
region is calculated using the precise model of the 
system components. The RPFC is simulated on a 400 
kV transmission line. The effects of the tap-changers 
operation on the device performance have been 
evaluated. It has been shown that the active power 
control region is expanded. The detailed modeling 
shows that by using the tap-changer the RPFC ability to 
control the active power of the transmission line 
increases about 40%. However, the simulations show 
that in the real case, the upper limit of the active power 
control ability increases 25% and the system is unstable 
after this point. Therefore, considering the temperature 
limitation of the components, the control region of the 
RPFC can extend using tap-changing transformers. 
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