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Abstract: Congestion management in electricity markets is traditionally done using 
deterministic values of power system parameters considering a fixed network 
configuration. In this paper, a stochastic programming framework is proposed for 
congestion management considering the power system uncertainties. The uncertainty 
sources that are modeled in the proposed stochastic framework consist of contingencies of 
generating units and branches as well as load forecast errors. The Forced Outage Rate of 
equipment and the normal distribution function to model load forecast errors are employed 
in the stochastic programming. Using the roulette wheel mechanism and Monte-Carlo 
analysis, possible scenarios of power system operating states are generated and a 
probability is assigned to each scenario. Scenario reduction is adopted as a tradeoff 
between computation time and solution accuracy. After scenario reduction, stochastic 
congestion management solution is extracted by aggregation of solutions obtained from 
feasible scenarios. Congestion management using the proposed stochastic framework 
provides a more realistic solution compared with the deterministic solution by a reasonable 
uncertainty cost. Results of testing the proposed stochastic congestion management on the 
24-bus reliability test system indicate the efficiency of the proposed framework. 
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1   Introduction1 
Congestion in a competitive electricity market occurs 
when the transmission network is unable to 
accommodate all of the desired transactions due to a 
violation in the power system operating limits. 
Especially, in systems having weak connections among 
different areas, the congestion problem frequently 
occurs due to overloading or security requirements. 
Using a congestion management method, the system 
operator tries to make possible power market 
transactions. 

Usually, there is a spot market for short term 
electricity transactions. In the sport market, market 
participants submit their next-day hourly generation or 
demand bids to the Independent System Operator (ISO). 
With submitted bids, the ISO clears the market to 
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schedule the powers and determine the Market Clearing 
Price (MCP) [1]. In case of no congestion, the cleared 
market remains valid. However, in case of congestion, 
rescheduling generations and demands is done to relieve 
congestions, assuming that the system configuration has 
already been set. Generators participate in the 
congestion management market by bidding for up and 
down their production. Also, demands can bid as 
Demand Side Bidding (DSB) [2] for up and down their 
loads. While choosing generators or demands for re-
dispatching, the least cost option is picked up to 
minimize total rescheduling cost or to maximize total 
social benefit. After rescheduling, the network is 
operated with no violation or congestion. The 
congestion management is usually done by the ISO 
using deterministic values of generations, loads, and 
power system configuration. 

However, the power system has a stochastic 
behavior in practical operations due to uncertainties in 
the availability of generation, load, and transmission 
equipment [3]. For generating units, the uncertainties 
are caused by unplanned outages, equipment failures, 
protective relaying, economic factors including fuel 
prices and market prices, reserve availability, reactive 
power requirements, climactic variables such as 
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precipitation and hydro-power availability, and 
environmental regulations and emissions restrictions. 
The renewable sources such as wind, photovoltaic, fuel 
cells, and gas micro turbines will have even more 
randomness than traditionally generation sources. For 
transmission system, the uncertainties are caused by line 
ratings, environmental factors such as ambient 
temperature and lightning, unplanned outages and 
equipment failures. For loads, uncertainties are caused 
by weather-related factors including temperature and 
precipitation, economic growth, new types of 
electronically-controlled loads, and variations in load 
power factors. 

Recent major blackouts in North America and 
Europe [4] have rekindled the security requirements of 
power systems, which have been regretfully neglected 
in favor of more financial concerns in recent years. This 
renewed interest is motivating research also into the 
congestion management solutions that account for a 
more complete set of power system security constraints. 
It is suggested in [5] that power system security analysis 
methods should evaluate the “credibility” of failures and 
their “expected” consequences by means of 
probabilistic methods [6]. Such probabilistic security 
analysis of power systems however is generally cursed 
by computational intractability because of the need to 
evaluate the probabilities and consequences of a very 
large number of possible failure modes. These 
drawbacks have led to hybrid deterministic/probabilistic 
security analysis methods instead of purely probabilistic 
ones that require the full enumeration of the possible 
system states [7-9]. In the hybrid methods, the 
probabilities or the expected consequences of a 
restricted set of a priori-defined event are used as 
security metrics instead of considering all the possible 
failure modes. For example, in structural design, [8] 
addressed the criticism related to the uncertainty of the 
failure probabilities and the complicating computational 
aspects of probabilistic metrics. In the context of power 
system planning, [9] proposed the use of a 
deterministic/probabilistic method to evaluate local and 
system-wide impacts of pre-defined failures of 
components. 

The solution of congestion management could 
become cumbersome when system uncertainties are 
considered. Since the ISO uses congestion management 
signals for future system planning, it is crucial to 
correctly detect congestion using the real availability of 
power system components. Consequently, the ISO has 
to take into account contingencies considering their 
probability to retain an enough level of security after 
congestion management using stochastic rather than 
deterministic power system parameters. Such a network 
will be able to withstand expected contingencies 
without losing stability. 

Recently, some techniques are presented for 
congestion management considering voltage security 
using deterministic parameters [10-12]. Some of them 

are limited to only the power system DC model, 
ignoring power system details compared with the more 
accurate AC model [10, 12]. In [11], a multi-objective 
model based on the weighting factors is presented to 
consider voltage stability by maximizing both the social 
benefit and the distance to the maximum loading point. 
In [12], a method ensuring the voltage security 
considering a fixed load growth after congestion 
management is proposed. On the other hand, some 
research is done to model uncertainties in the power 
market. In [13], a methodology is proposed to determine 
the optimal amount of transmission system usage. In the 
proposed approach, the maximum flow at each 
connection is represented as a random variable in order 
to obtain the distribution probability of the transmission 
charges as a function of the transmission system usage. 
In [14], a hybrid stochastic model with discrete and 
continuous variables is implemented to evaluate the 
available transfer capacity, where the availability of 
generators and circuits are considered as random 
variables and binomial distributions and fluctuations of 
loads are taken into account as normally distributed 
variables. In [15], a stochastic model for long-term 
solution of security-constrained unit commitment is 
presented. In the model, outages of generation units and 
transmission lines as well as load forecasting 
inaccuracies are modeled as scenario trees using Monte-
Carlo simulation (MCS). However, based on the 
knowledge of the authors of this paper, almost no 
research up to now is presented for congestion 
management considering the real stochastic nature of 
power systems [10]. 

Due to stochastic behavior of power systems such as 
the outages of generators and branches and uncertainty 
of system demand, the security of power systems was 
traditionally handled by the worst outage case. This is a 
conservative approach which could lead to a very high 
cost of operating the power system. Furthermore, 
outages of multiple components may not be considered 
in this approach, making unable to cover the possible 
operational states of power systems. In this paper, a new 
stochastic framework is proposed for congestion 
management in power markets considering uncertainty 
of power system components. Forced Outage Rate 
(FOR) is used to model the uncertainty of equipment 
comprising generators and transmission branches. The 
FOR is defined for an individual component as (mean 
down time) / (mean up time + mean down time). For 
instance, FOR=2.5% for a generation unit implies that 
the out of service time of the unit in average will be 
0.025×8760=219 hours per a year. Also, the normal 
probability distribution is used to model the load 
forecast errors. Considering these uncertainty sources, a 
set of probable scenarios is generated for power market. 
Each scenario would represent a possible system state 
which would include outages of system components and 
a possible system demand. Scenario reduction is 
adopted in this paper as a tradeoff between computation 



Iranian Journal of Electrical & Electronic Engineering, Vol. 6, No. 1, Mar. 2010 38 

time and solution accuracy. Using MCS method [16], a 
weight to each scenario that reflects the possibility of its 
occurrence is assigned. After solving the optimization 
problem for the reduced set of scenarios, the results are 
aggregated to get the expected values of power system 
parameters. As a result, using the proposed method, the 
system operator does congestion management 
considering the most probable uncertainties of power 
system components. 

The contribution of this paper is to present a new 
framework for congestion management that is able to 
consider the stochastic behavior of power system 
parameters. Using the proposed method, the ISO gets 
more realistic solution for congestion management than 
the deterministic solution at a reasonable cost. Indeed, 
the deterministic solution reflects only one of the 
probable states of a power system. The solution given 
by the proposed method captures more uncertainty 
spectrum than the deterministic solution, as shown in 
section IV. This implies that the proposed stochastic 
congestion management leads to a more economically 
realistic solution than the deterministic method. 

The remaining parts of the paper are organized as 
follows. In section two, the stochastic formulation used 
in this paper to model the uncertainty sources of power 
system is illustrated. In section three, congestion 
management considering stochastic variables is 
introduced. In section four, numerical results of testing 
the proposed method on a well-known test system are 
presented and discussed. Section five concludes the 
paper. 

2 Stochastic Formulation of Power System 
Uncertainties 

Potential sources of uncertainty that are modeled in 
the proposed stochastic congestion management 
formulation include the outage of generating units and 
transmission equipment as well as load deviation from 
the forecasted value. In the proposed formulation, the 
normal distribution function with roulette wheel 
mechanism is used to model the load forecast error. 
Also, the outage probability of generators and branches 
is modeled using their FOR values based on the two-
state continuous-time Markov chain model [17]. The 
stochastic programming [18] is used to consider the 
uncertainty of loads and equipment.  

2.1   Scenario Generation and Reduction 
In the proposed framework, load uncertainty is 

considered based on the load forecast error. A normal 
probability distribution function is assumed for the total 
load of the network. The probability distribution 
function for an individual load can be determined by its 
participation in the total load referred to as load 
distribution factor. A typical probability distribution 
function of the forecast error of system total load is 
shown in Fig. 1. The continuous function is discretized 

as shown in the figure using a few intervals, all of 
which have the same width of standard deviation (σ) 
and are centered on the zero mean. Here, seven intervals 
are considered as recommended in [17, 19]. 

On the basis of different levels of load forecast and 
their probabilities obtained form the probability 
distribution function, roulette wheel mechanism [20, 21] 
is implemented to generate scenarios. For this purpose, 
at first, the probabilities of different load forecast levels 
are normalized so that their summation becomes equal 
to unity. Then, the range of [0,1] is occupied by the 
normalized probabilities as shown in Fig. 2. To create 
scenarios, random numbers are generated between 0 and 
1. Each random number falls into the normalized 
probability range of a load forecast level in the roulette 
wheel. This makes that the load forecast level is 
selected by the roulette wheel mechanism for the 
respective scenario. As expected, in the stochastic 
selection process of the roulette wheel, load forecast 
levels with larger probabilities have more chance to be 
selected. 

Concurrently, MCS is performed to model the 
uncertainty associated with the outage of power system 
facilities including generator and transmission 
equipment using their FOR values. One of the 
advantages of MCS is that the required number of 
samples for a given accuracy level is independent of 
system size [15]; this makes it suitable for large scale 
simulations such as modeling of the power system 
uncertainty sources. Considering the two-state 
continuous-time Markov chain model, in each scenario  

 

L1

L2

L4

L6

L3

L5

L7

3γ

4γ

2γ

1γ
4σ− 3σ− 2σ− σ− 0 σ 2σ 3σ

Load forecast error (MW)

P
ro

ba
bi

lit
y 

de
ns

ity
 (%

)

 
Fig. 1 Typical probability distribution of the load forecast 
error and its discretization 
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Fig. 2 The roulette wheel mechanism for the normalized 
probabilities of the load forecast levels 
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of the MCS, a random number between [0,1] is 
separately generated for each generating unit/branch 
and compared with its FOR. If the random number is 
greater than the equipment's FOR, then the equipment is 
considered in service in this scenario. Otherwise, the 
equipment is out of service in the scenario. In the 
proposed stochastic optimization framework, one 
scenario is constructed by the load level determined 
from the roulette wheel mechanism along with the 
status of the generators and branches determined by the 
MCS. For the problem under study, a given number of 
scenarios are generated. A higher number of scenarios 
results in more accurate modeling of uncertainties of 
course by increasing the cost of computation burden. 

Considering the procedure of scenario generation, 
the probability of each generated scenario is calculated 
as follows:  

( ) ( ) ( )( ), , ,
1 1

. . . 1 1 .
NeNL

L
s k s k e s e e s e

k e

w w FOR w FORπ γ
= =

= − + −∑ ∏
  (1) 
where ,

L
k sw  is a binary variable obtained from the 

roulette wheel mechanism in the scenario generation 
stage indicating whether kth load level in the sth scenario 
is triggered (when , 1L

k sw = ) or not (when , 0L
k sw = ). 

Also, kγ indicates the probability of kth load level. NL 
and Ne indicate the number of load levels and 
equipment, including generators and branches, 
respectively. It is worthwhile to note that only one load 
level, out of NL possible levels, is triggered for a 

scenario; that is ,
1

1
NL

L
k s

k
w

=

=∑ . According to Fig. 1, NL=7. 

,e sw  is the status of equipment e in the scenario s that is 
generated by the MCS. Finally, eFOR and sπ are the 
FOR value of equipment e and the probability of 
scenario s, respectively.  

Computational requirements for solving scenario-
based optimization models depend on the number of 
scenarios. So, an effective scenario reduction technique 
[22] could be very lucrative for solving large scale 
models. The reduction technique is a scenario-based 
approximation with a smaller number of scenarios and a 
reasonably good approximation of the original system. 
In the scenario reduction of this paper, first, the 
identical scenarios are discarded. That is, only one of 
the similar scenarios with the same load level and with 
the same status of generators and branches is retained. 
Second, the scenarios whose probability is very low can 
be discarded to raise the computational efficiency of the 
proposed framework. This reduction is adopted in this 
paper as a tradeoff between computation time and 
solution accuracy. After generating scenarios and 
applying the scenario reduction technique, the proposed 
congestion management, as formulated in the next 
section, is run for the accepted scenarios. Then, the 
outputs of congestion management solutions are 

aggregated to construct expected values of power 
system parameters. 

2.2   Aggregation of Solutions 
The idea of stochastic programming is to construct 

or sample possible states of uncertain circumstances, 
solve the congestion management problem for the 
possible states, and select a good combination of 
outcomes to represent the stochastic solution. As stated, 
the roulette wheel mechanism and MCS method are 
adapted to simulate random characteristics of power 
systems and then the scenario aggregation technology is 
used to solve the stochastic congestion management 
problem. A major advantage of scenario aggregation 
technique is that not only individual scenario problems 
become simple to interpret but also the underlying 
problem structure is preserved. After running the 
proposed congestion management for the accepted 
scenarios resulted from the scenario reduction, the 
results are aggregated according to the probability of 
scenarios to get the expected operating point parameters 
considering uncertainties. The aggregation can be done 
for solution variables such as generation or demand 
shifts as well as cost. The aggregation is done as: 

1

1

NS

S S
S

NS

S
S

f
f

π

π

=

=

×

=
∑

∑
  (2) 

where, f is the parameter that is aggregated. Also, 
Sf and Sπ are the parameter value at scenario S and the 

probability of scenario S, respectively. NS is the number 
of the accepted scenarios after scenario reduction. 

3   The Proposed Stochastic Congestion Management 
The objective function of the proposed congestion 

management is the cost that the ISO pays to market 
participants to alter their powers so that congestion is 
mitigated. The objective function that should be 
minimized is as: 

j
Cost ( )
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up up down down
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k SD
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∈
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∈
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Δ + Δ +

Δ

∑

∑

∑

  (3) 

where, the cost consists of three parts. The two first 
parts are the payment that the system operator pays to 
generators and demands to alter their powers as per their 
bid. The third part is related to the payment of 
involuntary load shedding that the ISO may apply to 
loads to manage the congestion in some difficult 
scenarios. SG and SD are the set of in service generators 
and demands, respectively. It is noted that the set SG 
depends on the status of generators in each scenario. 
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up
GjB  and down

GjB  are the bid prices of generator j to 
increase and decrease its power to relieve congestion, 
respectively. Also, up

GjPΔ  and down
GjPΔ are up and down 

generation shifts of unit j that will be determined by the 
congestion management procedure. Similarly, up

DkB , 
down
DkB , up

DkPΔ , and down
DkPΔ  are analogous parameters of 

demand side bidding. Also, LS
DkPΔ  and DkVOLL  are the 

amount of involuntary load shedding and the Value Of 
Lost Load (VOLL), respectively. The VOLL, paid to 
demands for the load shedding, depends on the power 
market policy and is usually much higher than the bids 
offered by demands to participate in the congestion 
management market. In the proposed method, load 
shedding is done when total generation is inadequate to 
satisfy demands and losses, a phenomenon that may 
happen in some scenarios with outages of large 
generation units. 

The optimization problem is solved subject to 
following constraints. 

min max
Gj Gj GjP P P≤ ≤                     (4) 

min max
Gj Gj GjQ Q Q≤ ≤   (5) 

min max
Dk Dk DkP P P≤ ≤   (6) 

max0 LS
Dk DkP P≤ ≤   (7) 

( )Dk Dk DkQ P  tan φ=   (8) 

, ,| | | || | cos( )Gn Dn n n h h n h n h
h SN

P P V Y V δ δ θ
∈

− = − −∑  (9) 

, ,| | | || | sin( )Gn Dn n n h h n h n h
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Q Q V Y V δ δ θ
∈

− = − −∑  (10) 

j
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∈
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Q Q
∈
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Dn Dk
k SDn
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∈
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Dn Dk
k SDn

Q Q
∈
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min max
n n nV V V≤ ≤   (15) 

max| ( , ) |m mS V Sδ ≤   (16) 
upMC down

Gj Gj GjGjP P P P= + Δ −Δ   (17) 

upMC down
Dk Dk DkDkP P P P= + Δ −Δ   (18) 
LS LS

Dk Dk DkP P P= −Δ   (19) 

, , , , 0up updown down LS
Gj Dk DkGj DkP  P  P  P PΔ Δ Δ Δ Δ ≥  (20) 

j SG∈ , k SD∈ , n SN∈ , m SB∈  

where, SN and SB are the set of nodes and in service 
branches, respectively. Also, SGn and SDn indicate the 

set of in service generators and demands connected to 
bus n, respectively. It should be noted that out of service 
generators and branches in different scenarios are 
excluded from SG, SB, and SGn sets. Equations (4) and 
(5) set active and reactive power limits for generators, 
respectively. These limits are ones that generators 
would like to declare to the system operator as the 
permissible range of power for congestion management 
market and they may not necessarily be the operating 
limits of machines. Equation (6) sets active power limits 
offered by demands as the power range for demand side 
bidding. After rescheduling the demand active power by 
system operator to relieve congestion, its reactive power 
is changed according to a constant power factor [12]. 
Equation (8) adjusts reactive power of demands 
considering a constant power factor when their active 
power is rescheduled. AC load flow equations of the 
power system are represented by Eqs. (9) and (10). 
Equations (11) and (12) give the total active and 
reactive generation at buses as the sum of generation 
units when multiple units are connected to a bus. 
Similarly, Eqs. (13) and (14) give the total active and 
reactive load powers at buses when multiple demands 
present at a bus. Voltage security limits for all buses are 
set by Eq. (15). The thermal rating of in service 
branches including lines and transformers is limited by 
Eq. (16) in terms of apparent power (MVA). In Eq. 
(17), MC

GjP indicates determined powers by the market 
clearing procedure before congestion management. 
Accepted generation shift of generator j in up and down 
directions in the congestion market, as determined by 
the proposed method, is given by up

GjPΔ  and down
GjPΔ , 

respectively. Also, PGj is the final rescheduled active 
power of generator j due to congestion management. In 
Eq. (18), MC

DkP is the demand k stochastic power that is 
determined by the market clearing procedure according 
to the roulette wheel and load probability distribution 
function. PDk gives demand k rescheduled power to 
relive congestion only considering demand side bidding. 
In Eq. (19), LS

DkP  gives demand k final rescheduled 
power after relieving congestion considering the effect 
of both demand side bidding and involuntary load 
shedding ( LS

DkPΔ ). Equation (7) sets the limits of LS
DkP . 

Eq. (20) confines all up and down power changes due to 
congestion management to positive values. 

It is noted that each of the NS accepted scenarios has 
Eq. (3) as the objective function and Eqs. (4)-(20) as the 
constraints. Only the load level and status of generators 
and branches are varied in the scenarios. In the 
proposed stochastic framework, after solving the NS 
congestion management problems, the desired 
stochastic output variables such as power shifts and cost 
are aggregated using the obtained solutions of the 
scenarios based on Eq. (2). 
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4    Numerical Results 
The proposed method is examined on the RTS-24 

test system, a well-known power system with 24 buses, 
32 machines, 33 lines, 5 transformers, and 17 loads. The 
reason why this test system is selected to examine the 
proposed method is that standard reliability data such as 
the FOR of equipment are available for this test system. 
The single line diagram of the system is depicted in Fig. 
3 and data of the test system can be obtained from [23]. 
As an additional assumption in this paper, the rating of 
branches 3-24, 10-11, 14-16, and 16-17 is set to 200, 
150, 300, and 250 MVA, respectively. Also, market 
data used in the simulations including powers 
determined by market clearing, lower and upper limits 
of powers, and bids of generators and demands to 
participate in the congestion management market are 
presented in the appendix. VOLL is assumed 20 times as 
much as demand bids to decrease their demand. 

All optimizations in this paper are carried out using 
the CONOPT solver of GAMS 22.7 (General Algebraic 
Modeling System) software package [24] using its non-
linear programming model. It is worthwhile to mention 
that since generators 22 and 23 are nuclear power 
plants, they do not participate in congestion 
management market. Furthermore, generators 24-29, all 
located at bus 22, are also not participated in the market 
as they are hydro generators and operate at their 
maximum output of 50 MW. It is noted that for the sake 
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Fig. 3 One line diagram of the RTS-24 test system 

of simplicity, only uncertainties due to generator and 
branch outages are considered in the simulations. 
Indeed, load forecast will be more accurate when the 
time is getting closer to the market happening time. 

Before applying congestion management, the system 
is not feasible. In fact, there are some overloaded 
branches with the generations and loads determined by 
the market-clearing process. Lines 3-24, 10-11, 14-16, 
and 16-17 are overloaded to 122.0%, 120.2%, 117.9%, 
and 142.1% of their rating, respectively. Thus, the 
system operator has to mitigate the branch overloads 
keeping system security using a congestion 
management mechanism.  

The congested power market is solved using both 
the deterministic and stochastic congestion management 
methods. In the deterministic model, all components of 
the system are considered in service regardless of their 
FOR value. The rescheduling in generation and demand 
powers as determined by the deterministic model 
minimizing the total cost is graphically depicted in Fig. 
4. 

The cost of congestion relieving by the deterministic 
model is 4,380.72 $/h. The ISO pays 1,623.98 $/h to 
generators and 2,756.74 $/h to demands to alter their 
powers in order to mitigate congestion. Here, the 
demands are more participated than generators in 
congestion management. 

It is worthwhile to note that the deterministic 
method assumes fully reliable components of power 
system and then, the obtained congestion management 
cost is only valid for fully reliable components with 
FOR=0. Nevertheless, power system components 
experience some hours of outage annually in practical 
operations. As a result, the deterministic model can not 
give a real solution. 

To run the proposed stochastic method, a set of 200 
scenarios are generated using the FOR values of 
generators and branches. The resulted cases present the 
probable states of power system. It imposes a high 
computational burden to solve the congestion 
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Fig. 4 Rescheduling of generations (a) and demends (b) as 
determided by the deterministic and stochastic models 
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management model for all of these scenarios. So, the set 
of generated scenarios is reduced using the scenario 
reduction technique. In the scenario reduction stage, the 
set is reduced to 132 scenarios after discarding similar 
ones. After discarding low probable scenarios, the set is 
more reduced to 20 scenarios. The scenario probability 
threshold is considered as 0.003; that is, scenarios with 
the probability less than this threshold are ignored. For 
the remaining set of scenarios, congestion management 
is run considering the status of generators and branches 
in an individual scenario. The results are shown in 
Table 1. 

In Table 1, the number of out of service generators 
and branches are shown for each scenario. According to 
the given FOR values of generators and branches, the 
resulting set of scenarios presents the most probable 
operating states of the power system. 

As seen in Table 1, all selected contingencies are 
single contingencies with the outage of a generation unit 
or a branch. As expected, according to the well-known 
probability laws, the occurrence of double and triple 
contingencies is much less probable. In the next 
columns, the probability and cost of congestion 
management is shown for each scenario. In the 
implemented simulations, congestion in the all scenarios 
is mitigated without requiring involuntary load 
shedding. Scenarios with the same probability are 
resulted from the outage of equipment with the same 
FOR value. As seen in Table 1, in scenario 4, which has 
the highest probability, neither any generator nor any 
branch is out of service. Indeed, this scenario represents 
 
Table 1 Congestion management solutions for the most 
probable scenarios 

No. Scenario 
number 

Out of 
service 
units  

Out of 
service 

branches 

Probability 
( Sπ ) Cost ($/h) 

1 4 --- ---      0.143 4,380.72 
2 7 --- 15(9-12)      0.014 5585.78 
3 16 22 ---      0.019 7,143.12 
4 19 12 ---      0.008 6,119.67 
5 21 2 ---      0.016 4,564.27 
6 24 23 ---      0.019 7,104.67 
7 26 --- 16(10-11)      0.014 4,536.70 
8 30 10 ---      0.006 5,930.65 
9 35 32 ---      0.012 11,459.68 
10 49 --- 14(9-11)      0.014 6,843.52 
11 61 1 ---      0.016 4,564.27 
12 65 --- 7(3-24)      0.014 11,944.16 
13 67 6 ---      0.016 4,567.84 
14 69 5 ---      0.016 4,572.84 
15 79 21 ---      0.006 7,456.24 
16 91 --- 17(10-12)      0.014 9,919.86 
17 116 30 ---      0.006 7,305.49 
18 149 9 ---      0.006 5,940.65 
19 194 31 ---      0.006 7,305.49 
20 196 20 ---      0.006 5,578.95 

the non-contingent state of the deterministic case, in 
which all components are in service. The congestion 
management cost for this scenario is the same as that of 
the deterministic model. In fact, according to the 
obtained results, the probability of this scenario is only 
14.3%. This means that the deterministic solution, 
assuming all components in service, is expected to 
happen with the low probability of 14.3%. In other 
words, considering only the non-contingent state, as in 
the deterministic model, captures 14.3% of the 
uncertainty spectrum of the power system. 
Consequently, the deterministic model can not give a 
proper solution by itself. After the non-contingent case, 
single contingency states including outage of less 
reliable equipment (generating unit or branch with 
higher FOR values) are selected as the more probable 
scenarios. 

On the other hand, using the proposed stochastic 
method, all accepted scenarios contribute into 
determining the operating point of the power system 
according to their probability values, whereas the 
deterministic method relies on scenario 4 as the only 
contribution to solve the congestion management 
problem. To relieve congestion, it is expected that the 
scenario 4 with all components in service requires the 
least cost generation and demand shifts to satisfy the 
security requirements. Consequently, this scenario 
imposes the least cost of congestion management 
compared to the later contingent scenarios. In other 
words, the non-contingent scenario has the largest 
solution space to optimize the congestion management 
cost shown in Eq. (3). Any deviation from the non-
contingent scenario, like the outage of generation units 
or branches, limits the solution space and at the same 
time may intensify the congestion problem, which can 
totally lead to more costly generation or demand shifts 
and so more congestion management cost. 

The aggregated solution in the stochastic model for 
up

GjPΔ and down
GjPΔ  is obtained as per Eq. (2) using the 

accepted scenarios. The results are shown for 
generations in Table 2 as determined by both 
deterministic and stochastic solutions. Only nonzero 
values of power shifts are shown. As seen in Table 2, 
the dispatch pattern of the stochastic model is different 
from that of the deterministic model. In order to more 
precisely study the difference of deterministic and 
stochastic solutions, the rescheduling of the major 
different generators in all accepted scenarios is depicted 
in Fig. 5. The horizontal axis of this figure indicates 
scenario number (in the range of 1 to 200) and vertical 
axis represents generation shifts. As seen, all plotted 
generators have no rescheduling in the non-contingent 
scenario 4. However, in subsequent contingent 
scenarios, the congestion management reschedules these 
generators to satisfy the security constraints of Eqs. (4)-
(20) while minimizing the cost of Eq. (3). 
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To mitigate congestion in the contingent scenarios 
as seen in Fig. 5, generators 2, 9, and 11 have been the 
best candidates to increase generation because of the 
lowest bid and free generation capacity. Furthermore, 
generators 20 and 21 that are selected to decrease 
generation have both the best bid and free capacity to 
decrease power. In view of the fact that the final 
solution of the proposed stochastic framework is given 
by the aggregating of scenario results, rescheduling of 
generators 2, 9, 11, 20 and 21 appear in the stochastic 
solution of Table 2, whereas there is no need to 
reschedule these generators in the deterministic 
solution. 

In Table 3, demand shifts determined by the 
deterministic and stochastic models are also shown. 
Similar to the generators discussed in Table 2, demands 
with the best bid and free capacity participate to relieve 
congestion in the contingent scenarios. This makes 
differences between rescheduling of the stochastic and 
deterministic models. 
 
Table 2 Generation shifts using deterministic and stochastic 
congestion management 

 Deterministic  
 Stochastic  

Gen. 
up

GjPΔ  

(MW) 

down
GjPΔ  

(MW) 

up
GjPΔ  

(MW) 

down
GjPΔ  

(MW) 
1 4.9 0 6.1 0 
2 0 0 4.2 0 
5 10.0 0 8.8 0 
6 10.0 0 8.7 0 
7 60.8 0 58.5 0 
8 18.0 0 17.3 0 
9 0 0 4.8 0 
10 0 0 2.6 0 
11 0 0 5.3 0 
12 0 0 0.6 0 
20 0 0 0 2.2 
21 0 0 0 3.1 
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Fig. 5 The generation rescheduling of the generators whose 
generations are different in the deterministic and stochatic 
congestion management 

The cost of congestion relieving for generator and 
demand sides using the deterministic and stochastic 
methods are separately shown in Table 4. 

As seen from Table 4, the ISO pays 4,380.72 $/h to 
market participants to relieve congestion if the 
deterministic model is used. According to Table 1, the 
probability of the deterministic solution is only 14.3%. 
This means that this scenario has a low probability by 
itself and the other probable scenarios should be taken 
into account according to their probability to obtain a 
more realistic solution. This is done in the proposed 
stochastic method by aggregating the most probable 
scenarios. Indeed, the stochastic framework based on 
the scenario reduction technique tries to capture the 
uncertainty spectrum as much as possible regarding the 
computation burden. The cost of the stochastic 
framework is a bit more than the deterministic one as 
much as 5,447.92 − 4,380.72 = 1,067.20 $/h. This extra 
cost is turned up because the contingent scenarios, 
participated in the aggregated solution, have a 
congestion management cost greater than the non-
contingent scenario. In a fully reliable power system 
with FOR=0, the stochastic and deterministic solutions 
coincide to a unique solution and this extra cost is zero. 
By increasing FOR, it is expected to increase the extra 
cost. Then, here we call it the uncertainty cost. 
Considering the uncertainty cost, we reach the cost of a 
more realistic congestion management solution. In fact, 
by paying this fee, the ISO establishes an operating 
point for the power system considering the possible 
scenarios of power system configuration, due to 
unreliable equipment, according to the probability of the 
scenarios. That is, the system is tolerant of probable 
 
Table 3 Demand shifts using deterministic and stochastic 
congestion management 

 Deterministic Stochastic 

Dem.
up

DkPΔ  
(MW) 

down
DkPΔ  

(MW) 

up
DkPΔ   

(MW) 

down
DkPΔ   

(MW) 
3 0 0 0 7.1 
5 0 0 0 1.1 
6 0 0 0 3.0 

10 0 0 0 7.2 
12 0 11.2 0 11.1 
13 0 0 0 8.1 
14 0 0 0 12.2 
15 132.1 0 117.4 0 
16 0 0 0 1.8 
17 0 0 0 4.3 

 
Table 4 Payment to market participants due to rescheduling 
given by deterministic and stochastic methods 

 Deterministic ($/h) Stochastic ($/h) 

Generations 1,623.98 1,999.67 
Demands 2,756.74 3,448.25 
Total 4,380.72 5,447.92 



Iranian Journal of Electrical & Electronic Engineering, Vol. 6, No. 1, Mar. 2010 44 

contingencies under the stochastic solution. 
As noted, it is expected to increase the uncertainty 

cost of the stochastic congestion management solution 
for less reliable systems including more intensified 
uncertainty sources. In other words, the solution 
obtained by the stochastic congestion management 
depends on the FOR values of power system 
components. To verify this dependency, the stochastic 
problem of Table 1 is solved with different FOR values; 
the nominal FOR values of the test system is multiplied 
by a coefficient in steps of 0.25. The results are shown 
in Table 5. In the second column, the probability of the 
scenario in which all components are in service is 
reported as all-in-service scenario. The all-in-service 
scenario indeed reflects the deterministic solution of 
congestion management. In the next column, the 
aggregated cost of the stochastic framework for 
congestion management is shown. In the last column, 
the uncertainty cost is represented. 

As seen from Table 5, the case of FOR=0 
corresponds to the deterministic solution with only one 
accepted scenario. In fact, in this case, components of 
power system are assumed fully reliable. Assuming this 
FOR, solutions of the deterministic and stochastic 
methods are the same and the uncertainty cost becomes 
zero. By increasing the FOR coefficient, the uncertainty 
sources are strengthened and the probability of 
contingencies is increased. This leads to less 
contribution for the non-contingent scenario and so the 
probability of the all-in-service scenario is decreased in 
a less reliable system. This reduction can be seen in 
column 2. Also, the aggregated cost of stochastic 
congestion management is increasing because of the 
fact that the uncertainty in the system increases. As a 
fact, the uncertainty cost is higher in a less reliable 
power system. As a result, the deterministic solution, 
which is used traditionally in congestion management 
applications, becomes less realistic in less reliable 
power systems with a high rate of outages. However, 
the proposed stochastic framework is proper to evaluate  
the real congestion management for any power system 
considering its reliability level. 

About the validation of results, it is noted that the 
results that are obtained by the proposed method 
includes 20 separate scenarios for which the congestion  

 
Table 5 The effect of FOR values on the stochastic solution 

FOR 
coefficient 

The 
probability of 
all-in-service 
scenario (%) 

Aggregated cost 
of congestion 

management ($/h)

Uncertainty 
cost ($/h) 

 

0 100.0 4,380.72 0 
0.25 62.3 4,826.48 445.76 
0.5 38.5 5,113.44 732.72 
0.75 23.6 5,329.55 948.83 
1.0 14.3 5,447.92 1,067.20 
1.25 8.6 5,520.04 1,139.32 

management is solved. Therefore, to validate them, the  
results as reported in Table 1 should have been 
validated separately. Nonlinear optimization congestion 
management for each scenario in Table 1 is solved 
using the CONOPT solver of the GAMS software 
package, which is a previously approved optimization 
tool. As another verification of the results, it can be seen 
from Table 1 that the congestion management has the 
least cost for the non-contingent scenario. In a real 
power market, it is expected to increase the congestion 
management cost by any outage that causes more 
limitation on the solution space. This is also seen in 
Table 1 where the congestion management cost of 
contingent scenarios is higher than that of the non-
contingent scenario. In addition, in a real power system, 
it is also expected to increase the uncertainty cost by 
increasing the failure rate of power system equipment. 
According to Table 5, the uncertainty cost increases 
with the FOR values. This finding can imply another 
verification of the obtained results in the paper. Finally, 
it is noted that a new stochastic congestion management 
framework is proposed in this paper, which presents a 
more realistic model for the uncertain behavior of the 
power system equipment. This stochastic framework 
cannot be directly compared with previous deterministic 
congestion management models, which underestimate 
congestion management cost assuming a fully reliable 
power system. 

5   Conclusion 
Traditionally, congestion management is performed 

in power markets using deterministic approaches that 
consider a fixed configuration for the network as well as 
the load level forecasted. Nevertheless, nor power 
system components are fully available neither the 
forecasted load is completely accurate. In this paper, a 
stochastic programming framework is proposed to 
model the power system uncertainties including the 
outage of generation units and transmission branches as 
well as load forecast error in the congestion 
management. The uncertainty of power system 
components including generators and branches are 
taken into account using their Forced Outage Rate, 
while the uncertainty of load forecast is modeled using 
the normal distribution function. Using the roulette 
wheel mechanism and Monte-Carlo analysis, possible 
scenarios of power system operating states are 
generated and a probability is assigned to each scenario. 
Scenario reduction is performed to discard unnecessary 
as well as low probable scenarios in order to increase 
the computational efficiency of the proposed stochastic 
programming framework. The proposed congestion 
management is done for the probable set of scenarios. 
To obtain a unique solution, the obtained solutions from 
the acceptable scenarios are aggregated using the 
probability of each scenario as a weighting factor. The 
deterministic solution of congestion management 
provides only one of possible scenarios and then can not 



Esmaili et al: Stochastic Congestion Management Considering Power System Uncertainties 45

reflect the effect of other possible scenarios. However, 
the availability of power system components and 
inaccuracies of load forecast are included in the 
proposed stochastic congestion management method. 
As a result, the deterministic solution may be somewhat 
tolerable in systems with high reliability, whereas it can 
not be realistic in less reliable systems. On the other 
hand, the proposed stochastic framework can give us a 
more realistic congestion management solution 
considering the power system uncertainty sources. Also, 
the stochastic method can evaluate the extra congestion 
management cost due to the uncertain behavior of the 
power system. 

 

Appendix 
Market data of generators and demands used in the 

simulation are shown in Tables A1 and A2. Also, data 
of branches including lines and transformers of the test 
system is shown in Table A3. 

 
Table A1 Generator data of the test system 

Gen MC
GjP  min

GjP  max
GjP  up

GjB  down
GjB  min

GjQ max
GjQ FOR

 (MW) (MW) (MW) ($/MWh) ($/MWh) (MVar) (MVar)  
1 10.0 0.0 20.0 18.00 17.00  0 10 0.1
2 10.0 0.0 20.0 18.00 17.20 0 10 0.1
3 76.0 15.2 76.0 16.00 15.00  -25 30 0.02
4 76.0 15.2 76.0 16.00 15.50 -25 30 0.02
5 10.0 0.0 20.0 17.00  16.00  0 10 0.1
6 10.0 0.0 20.0 17.50 16.50 0 10 0.1
7 76.0 15.2 76.0 15.00  14.00  -25 30 0.02
8 76.0 15.2 76.0 15.50 14.50 -25 30 0.02
9 80.0 25.0 100.0 20.00  21.00  0 60 0.04

10 80.0 25.0 100.0 20.50  21.50  0 60 0.04
11 80.0 25.0 100.0 20.00 21.30  0 60 0.04
12 94.0 68.95 197.0 22.00  21.80  0 80 0.05
13 94.0 68.95 197.0 22.50  21.50  0 80 0.05
14 94.0 68.95 197.0 23.00 22.00 0 80 0.05
15 12.0 0.0 12.0 24.00  23.00  0 6 0.02
16 12.0 0.0 12.0 24.50  23.50  0 6 0.02
17 12.0 0.0 12.0 25.00  24.00  0 6 0.02
18 12.0 0.0 12.0 25.50  24.50  0 6 0.02
19 12.0 0.0 12.0 26.00 26.50 0 6 0.02
20 155.0 54.25 155.0 19.00  20.00  -50 80 0.04
21 155.0 54.25 155.0 17.00 16.00 -50 80 0.04
22 400.0 400.0 400.0 1000.00 1000.00 -50 200 0.12
23 400.0 400.0 400.0 1000.00 1000.00 -50 200 0.12
24 50.0 50.0 50.0 16.00  15.00  -10 16 0.01
25 50.0 50.0 50.0 16.50  15.50  -10 16 0.01
26 50.0 50.0 50.0 16.00  15.20  -10 16 0.01
27 50.0 50.0 50.0 16.00  15.00  -10 16 0.01
28 50.0 50.0 50.0 17.00  16.50  -10 16 0.01
29 50.0 50.0 50.0 15.00 15.40 -10 16 0.01
30 155.0 54.25 155.0 24.00  25.20  -50 80 0.04
31 155.0 54.25 155.0 23.00 24.50 -50 80 0.04
32 350.0 140.0 350.0 20.00 19.00 -25 150 0.08

 
 
 
 
 

Table A2 Demand market data of the test system 

Demand
MC

DkP  
(MW) 

min
DkP  

(MW) 

max
DkP  

(MW) 

up
DkB  

($/MWh) 

down
DkB  

($/MWh) 

1 108.0 43.2 151.2 20.00 22.00 
2 97.0 38.8 135.8 20.00 22.00 
3 180.0 72.0 252.0 20.00 22.00 
4 74.0 29.6 103.6 21.00 23.00 
5 71.0 28.4 99.4 21.00 23.00 
6 136.0 54.4 190.4 21.00 23.00 
7 125.0 50.0 175.0 21.00 24.00 
8 171.0 68.4 239.4 22.00 24.00 
9 175.0 70.0 245.0 20.00 23.00 
10 195.0 78.0 273.0 21.00 23.00 
11 265.0 106.0 371.0 20.00 22.00 
12 194.0 77.6 271.6 20.00 22.00 
13 317.0 126.8 443.8 19.00 21.00 
14 100.0 40.0 140.0 19.00 21.00 
15 333.0 133.2 466.2 19.00 21.00 
16 181.0 72.4 253.4 19.00 22.00 
17 128.0 51.2 179.2 19.00 21.00 

 
Table A3 Branch data of the test system 
From bus To bus R (pu) X (pu) B (pu) FOR 

1 2 0.003 0.014 0.461 0.0018 
1 3 0.055 0.211 0.057 0.0011 
1 5 0.022 0.085 0.023 0.0011 
2 4 0.033 0.127 0.034 0.0011 
2 6 0.05 0.192 0.052 0.0011 
3 9 0.031 0.119 0.032 0.0011 
3 24 0.002 0.084 0 0.0877 
4 9 0.027 0.104 0.028 0.0011 
5 10 0.023 0.088 0.024 0.0011 
6 10 0.014 0.061 2.459 0.0040 
7 8 0.016 0.061 0.017 0.0011 
8 9 0.043 0.165 0.045 0.0011 
8 10 0.043 0.165 0.045 0.0011 
9 11 0.002 0.084 0 0.0877 
9 12 0.002 0.084 0 0.0877 
10 11 0.002 0.084 0 0.0877 
10 12 0.002 0.084 0 0.0877 
11 13 0.006 0.048 0.1 0.0013 
11 14 0.005 0.042 0.088 0.0013 
12 13 0.006 0.048 0.1 0.0013 
12 23 0.012 0.097 0.203 0.0013 
13 23 0.011 0.087 0.182 0.0013 
14 16 0.005 0.059 0.082 0.0013 
15 16 0.002 0.017 0.036 0.0013 
15 21 0.006 0.049 0.103 0.0013 
15 21 0.006 0.049 0.103 0.0013 
15 24 0.007 0.052 0.109 0.0013 
16 17 0.003 0.026 0.055 0.0013 
16 19 0.003 0.023 0.049 0.0013 
17 18 0.002 0.014 0.03 0.0013 
17 22 0.014 0.105 0.221 0.0013 
18 21 0.003 0.026 0.055 0.0013 
18 21 0.003 0.026 0.055 0.0013 
19 20 0.005 0.04 0.083 0.0013 
19 20 0.005 0.04 0.083 0.0013 
20 23 0.003 0.022 0.046 0.0013 
20 23 0.003 0.022 0.046 0.0013 
21 22 0.009 0.068 0.142 0.0013 



Iranian Journal of Electrical & Electronic Engineering, Vol. 6, No. 1, Mar. 2010 46 

References 
[1] Shahidehpour M. and Almoush M., Restructured 

Electrical Power Systems: Operation, Trading, 
and Volatility, New York: Marcel Dekker, 2001. 

[2] Philpott A. B., Pettersen E., “Optimizing demand-
side bids in day-ahead electricity markets”, IEEE 
Transaction on Power Systems, Vol. 26, No. 2, 
pp. 488-498, May 2006. 

[3] Torrre D., et al., ”Deregulation, privatization and 
competition: transmission planning under 
uncertainty,” IEEE Transaction on Power 
Systems, Vol. 14, No.2, pp. 460-465, May 1999. 

[4] US-Canada Power System Outage Task Force. 
Final Report on August 14, 2003 Blackout in the 
United States and Canada: Causes and 
Recommendations. Natural Resources Canada, 
Ottawa, ON. 

[5] Kirschen D. S., ”Power system security,” Power 
Eng. J, Vol. 16, pp. 241–248, Oct. 2002. 

[6] Bouffard F., Galiana F. D. and Conejo A. J., 
”Market-Clearing with Stochastic Security-Part I: 
Formulation,” IEEE Transaction on Power 
Systems, Vol. 20, No. 4, pp. 1818-1826, Nov. 
2005. 

[7] Bouffard F. and Galiana F. D., “An electricity 
market with a probabilistic spinning reserve 
criterion,” IEEE Transaction on Power Systems, 
Vol. 19, No. 1, pp. 300–307, Feb. 2004. 

[8] Castillo E., Conejo A. J., Mínguez R. and Castillo 
C, ”An alternative approach for addressing the 
failure probability-safety factor method with 
sensitivity analysis,” Reliab. Eng. Syst. Safe, Vol. 
82, pp. 207-216, Nov. 2003. 

[9] Billinton R. and Mo R., “Deterministic/ 
probabilistic contingency evaluation in composite 
generation and transmission systems,” Proc. 
IEEE Power Engineering Society General 
Meeting, Denver, CO, Vol. 2, pp. 2232–2237, 
2004. 

[10] Kumar A, Srivastava S. C. and Singh S. N., 
“Congestion management in competitive power 
market: A bibliographical survey,” Electric 
Power Systems Research, Vol. 76, No. 1-3, pp. 
153-164, Sep. 2005. 

[11] Milano F., Cañizares C. A. and Invernizzi M., 
“Multiobjective optimization for pricing system 
security in electricity markets,” IEEE Transaction 
on Power Systems, Vol. 18, No. 2, pp. 596–604, 
May 2003. 

[12] Conejo A. J., Milano F. and García-Bertrand R., 
“Congestion management ensuring voltage 
stability,” IEEE Transaction on Power Systems, 
Vol. 21, No. 1, pp. 357-364, Feb. 2006. 

[13] Leite da Silva A. M., de Carvalho Costa J. G. and 
Monteiro Mattar C., ”A probabilistic approach for 
determining the optimal amount of transmission 
system usage,” IEEE Transactions on Power 
Systems, Vol. 21, No. 4, pp. 1557-1564, 2007. 

[14] Xiao Y., Song Y.H. and Sun Y.Z., “A hybrid 
stochastic approach to available transfer 
capability evaluation,” IEE Proceedings on 
Generation, Transmission and Distribution, Vol. 
148, No. 5, pp. 420-426, Sep. 2001. 

[15] Wu L., Shahidehpour M. and Li T., “Stochastic 
Security-Constrained Unit Commitment,” IEEE 
Transactions on power systems, Vol. 22, No. 2, 
pp. 800-811, May 2007. 

[16] Glasserman P., Monte Carlo Simulation Method 
in Financial Engineering, New York: Springer, 
2003. 

[17] Wu L., Shahidehpour M. and Li T., “Cost of 
reliability analysis based on stochastic unit 
commitment,” IEEE Transaction on Power 
Systems, Vol. 23, No. 3, pp. 1364-1374, August 
2008. 

[18] Kall P. and Wallace S. W., Stochastic 
Programming, New York: Wiley, 1994. 

[19] Billinton R. and Allan R. N., Reliability 
Evaluation of Power Systems, New York: Plenum 
Press, 2nd Edition, 1996. 

[20] Michalewicz Z., Genetic algorithm + data 
structure = evaluation program, New York: 
Springer-Verlag, 1996. 

[21] Damousis I. G., Bakirtzis A. G. and Dokopolous 
P. S., “A solution to the unit-commitment 
problem using integer coded genetic algorithm,” 
IEEE Transaction on power systems, Vol. 19, No. 
2, pp. 198-205, Feb. 2003. 

[22] Li T., Shahidehpour M. and Li Z., “Risk-
constrained bidding strategy with stochastic unit 
commitment,” IEEE Transaction on power 
systems, Vol. 22, No. 1, pp. 449-458, 2007. 

[23] Grigg C., Wong P., Albrecht P., Allan R., 
Bhavaraju M., Billinton R., Chen Q., Fong C., 
Haddad S., Kuruganty S., Li W., Mukerji R., 
Patton D., Rau N., Reppen D., Schneider A. 
Shahidehpour M. and Singh C., “Reliability Test 
System Task Force,” The IEEE reliability test 
system 1996, IEEE Transaction on power 
systems, Vol. 14, No. 3, pp. 1010–1020, Aug. 
1999. 

[24] GAMS (General Algebraic Modeling System) 
software package, www.gams.com. 

 
 
 

Masoud Esmaili was born in Sarab, Iran, 
in 1972. He received the B.S. and M.S. 
degrees in Electrical Engineering from 
Tabriz and Iran University of Science & 
Technology in 1995 and 1998, 
respectively. Since then, he has been 
working in the field of power system 
studies. He is currently a Ph.D. student at 
the Iran University of Science and 

Technology. His research area includes power system studies 
particularly security, restructuring, and power quality. 



Esmaili et al: Stochastic Congestion Management Considering Power System Uncertainties 47

Heidar Ali Shayanfar received the B.S.
and M.S.E. degrees in Electrical
Engineering in 1973 and 1979,
respectively. He received his Ph.D.
degree in Electrical Engineering from 
Michigan State University, USA, in
1981. Currently, he is a full professor in
Electrical Engineering Department of
Iran University of Science and

Technology, Tehran, Iran. His research interests are in the
application of artificial intelligence to power system control
design, dynamic load modeling, power system observability
studies, power quality, and voltage collapse. He is a member
of Iranian Association of Electrical and Electronic Engineers
and IEEE. 
 

Nima Amjady was born in Tehran, Iran, 
on February 24, 1971. He received the 
B.Sc., M.Sc., and Ph.D. degrees in 
electrical engineering from Sharif 
University of Technology, Tehran, Iran, 
in 1992, 1994, and 1997, respectively. 
Currently, he is a Professor in the 
Electrical Engineering Department of 

Semnan University, Semnan, Iran. His research interests 
include security assessment of power systems, reliability of 
power networks, load forecasting, artificial intelligence, and 
its application to the problems of the power systems. 

 


