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Abstract: Using robot manipulators for high accuracy applications require precise value of the
kinematics parameters. Since measurement of kinematics parameters are usualy associated
with errors and accurate measurement of them is an expensive task, automatic calibration of
robot link parameters makes the task of kinematics parameters determination much easier. In
this paper a simple and easy to use agorithm is introduced for correction and calibration of
robot kinematics parameters. Actually at several end-effecter positions, the joint variables are
measured simultaneously. This information is then used in five different algorithms; least
square (LS), particle swarm optimization (PSO) , Genetic algorithms (GA), quadratic particle
swarm optimization (QPSO) and simulated annealing particle swarm optimization (Sa_PSO)
for automatic calibration and correction of the kinematics parameters. This process was aso
tested experimentally via a three degree of freedom manipulator which is actually used as a
coordinate measuring machine (CMM). The experimental Results prove that the intelligent
algorithms are useful for both parameter identification and calibration of link parameters.

Keywords: Cdlibration, Identification, Genetic Algorithms, Particle Swarm Optimization,

Least Square, Robot Manipulator.

1 Introduction

Since the introduction of the first robot manipulators in
1960s, there has aways been a demand for kinematic
parameters identification and subsequent error
correction operations in order to improve the ability of
robot manipulators in reaching a specified position
consistently and accurately [1]. It has been shown that
as much as 95% of robot positioning inaccuracy arises
from the inaccuracy in its kinematics model description
[2]. Even if it is possible to dismantle a robot
manipulator and determine the parameters in detached
linkages kinematic frames using accurate measuring
machines, the resulting model will still contain some
inaccuracies arising from joint and link compliances
changing with the manipulator configurations, thermal
effects, wear, joint transducer errors, steady state errors
in joint positions, inaccurate knowledge of the
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kinematics parameters, and payload carried by the
manipulator [1].

It follows that automatic calibration of robot links
parameters that can improve the manipulator accuracy
will reduce the kinematics errors [3]. There is a wealth
of literature on the kinematics identification and
calibration of robotic systems: [2], [4], [5], [6], [7], [8].

A wide account of robot calibration consisting of (i)
modeling, (ii) measurement, (iii) identification, and (iv)
correction steps are availablein [9] and [4].

To calibrate robotic manipulators, Everett et al. [10]
presented a new kinematic model for achieving better
kinematic representation. Chen and Chao [11], improve
the manipulators positioning error by including the non-
geometric error in kinematics model. For identification
of manipulator link parameters, Stone et al. [12] have
introduced the S model. Jang et a. [13] have presented
a cdibration methodology based on dividing the
manipulator workspace into several local regions, and
subsequently building a calibration equation using a
three dimensiona position measurement system
consisting of acamera and infrared LED. Newman et al.
[14] have reported on the calibration of a Motoman P-8
robot using circle point analysis technique, which
requires external hardware to determine the manipulator
end point positions in Cartesian space. Driels et al. [6]
reported on the kinematic calibration of a PUMA 560
manipulator using a coordinate measuring machine that
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provided position and orientation data for randomly
selected  manipulator  configuration.  Also  for
manipulator calibration, Junhong et al. [15] have used
the measurement technique by coordinate measuring
machine. Renders et al. [5] presented a robot kinematic
parameter identification technique based on a maximum
likelihood algorithm in a recursive form. Drouet et al.
[16] have presented a method to compensate for the
geometric and elastic errors of a six-degree of freedom
medical robot. An interferometer [17] and laser tracking
[14] was, aso, used for manipulator endeffector
position measurement. For identification of robots
kinematics parameters, Horning [18] has introduced and
compared four different methods. A closed-loop method
has been proposed that obviates the need for pose
measurement by forming a manipulator into a mobile
closed-loop kinematic chain. Actually kinematics
parameters are determined from the joint angle readings
alone [9]. Ruibo et al. [19] presents a generic error
model, which is based on the product of exponentials
(POEs) formula, for serial-robot calibration.

A calibration method is presented for kinematic
parameters of space manipulator by Hui Li Zhihong
Jiang [20]. This method utilizes the position and
orientation information of a fixed target on the space
station and adopts rank-one quasi-Newton method to
calculate the errors of the kinematic parameters, the
position and orientation of the fixed target can be
measured by the camera mounted on the manipulator’s
endeffector. This method can calibrate the manipulator
parameters online and has demand in working
environment [20].

Cdlibration of a 6-PRRS parallel manipulator is
studied by Yonggang Yang. et al. [21] a compensation
method based on kinematic model is proposed. This
method uses the D-H modeling method sets up for a 6-
PRRS parale manipulator kinematic model, it then
identifies and compensates the error in model using
vector chain [21].

As the above literature shows, it is virtualy
impossible to consider al the sources that contribute to
the endeffector positioning errors in a single kinematic
identification model of a robot manipulator. However,
most of the positioning errors are related to the
geometric parameters of linkages [2]. In this study the
classica and intelligent identification techniques are
used for compensation of the manipulator positioning
errors which are produced by the inaccuracies of the
geometric parameters. In recent years, stochastic
optimization methods have gained increasing attention
in parameter optimization of various systems. The most
popular techniques are evolutionary computation and
the simulating annealing agorithms. Since these
methods do not require any gradient information, they
are well suited for non-smooth or discontinuous
optimization tasks occurring in nonlinear systems [22].

The experimental system employed here is a three
degree of freedom manipulator which is actually used as

a coordinate measuring machine (CMM). Aspects of
this manipulator are depicted in Fig. 1.

To model the kinematics of this manipulator, the
Denavit and Hartenberg (DH) standard is used. For
measurement of the joint angles, ten bit absolute
encoders are used. One of the encoders is shown in Fig.
2. In order to resolve the endeffector position, the tip of
the endeffector was rested against a graduated plate
which has been graduated with a CNC machine with an
accuracy of +10um . For identification and calibration

of the geometric parameters five different methods were
used. Firstly the classical least square estimation
technique was employed to determine the numerical
values of the kinematic parameters. Then four
intelligent techniques were used.

2 Kinematics Model

The schematic of the robot manipulator and the
coordinate frames needed to generate a kinematics
model are defined in Fig. 3. To model the kinematics of
this manipulator, the Denavit and Hartenberg standard
is used. In order to use this model, it is necessary to fix
a coordinate frame to each linkage [23].

A set of possible body fixed coordinate frames is
shown in Fig. 3. The DH parameters for the proposed
manipulator are shown in Table 1.

These parameters are provided by the manufacture
of the manipulator, in this work they are referred as the
nominal parameters.

Tr

Fig. 2 The ten bit absolute encoder.
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Fig. 3 Schematic representation of the robot manipulator with
links coordinate frame.

Table 1 D-H parameters for the proposed manipulator.

Joint/Link | o (degree) | a(m) | d.(m) 0,
1 0 -051 0.10 0,
2 -90 0 0.02 0,
3 0 031 -0.02 0,
e 0 0.5 0 0,

The homogeneous transformation matrix between
two consecutive coordinate frames j and j+1, based on
Devavit and Hartenberg convention, is 'Tj.;. With this
convention, the overall transformation matrix between
the base coordinate frame and the frame fixed to the
endeffector iswritten as

0Te = 0T1 sz 2T3 3Te @)

3 Data Collection

For data collection it is necessary to measure the
joint angles for each endeffector position. As mentioned
earlier, for measurement of the joint angles ten bit
absolute encoders are used. Encoder resolution is
+0.351degree. One of the encoders is shown in Figure
2. In order to have better accuracy, encoders with higher
resolutions may be used. Now for data collection, we
placed the endeffector in different position of the
graduated plate and took note of the encoder values.

Note that at least 4 vector measurements are needed
in order to estimate the 12 specified parameters [1].
Greater number of measurements would contribute to
better convergence of the algorithm and to reduce the
effect of measurement noise.

4 Kinematics Parameter |dentification

To find the actual value of manipulator kinematic
parameters that reduce the endeffector positioning error,
we must first develop the relation between the
endeffector position and the kinematic parameters, i.e.
the forward kinematics equations
R, =f(o,a,d,0) =f(¢) @)

where P, =[x y z]T is the nominal manipulator end

point position vector calculated with the nominal values
of the parameters, o=[a, o, o, o,],

a=[a, a a, a], d=[d, d, d, d,] ad the
joint variables 6=[6, 6, 0,]. Next, the different

identification algorithms used for this identification are
described.

4.1 Nonlinear Least Square Method
Based on the nonlinear kinematic model f (o) of the
manipulator expressed in (2), the kinematic parameters
are estimated by minimizing the sum of the square of
the 3x1 positioning error vector AP associated with m
number of measurements in the objective function,

E= Y [AP[4P] 3)
where AP isexpressed by
AP=[8x 8y &z] =[P -P], )

inwhich P isthe measured (actual) position vector, and
dx,8y,8z are the computed position errors in the X, v,

and z directions, respectively. This nonlinear least
sguare optimization problem can be solved using either
the interior-reflective  Newton method or the
Levenburg-Marquardt algorithm. These are two
efficient optimization agorithms for large-scale
nonlinear problems. It has been reported [24] that the
former can solve complex nonlinear problems more
efficiently than the latter. The interior-reflective Newton
method employs the preconditioned conjugate gradients
procedure to obtain the approximate solution of a large
system of equations.

A good initial guess always helps the estimation
algorithm to converge more quickly. Therefore, the
nomina values of the parameters are taken as the initia
guess for the parameters. The estimation techniques are
realized iteratively until the position error is small
enough to meet a termination condition. The position
error in any particular Cartesian direction is described
by the root mean square (RMS) of the position error,
whichisa 3x1vector.

RMS— Position = /iZ(P, -P)? (5)
miz

For the 12 empirically obtained data, the RMS
vector was evauated in x, y, and z directions using both
the nominal values of the parameters and estimated
value of the parameters via the nonlinear least square
technique, and the results are summarized in Table 2.
The RMS (x,Y,2) indicates the evaluated errors in the

X, y, and z directions and ) RMSS is the vector length
of the positioning error.

Percentage of error improvement is evaluated as

RMS, —-RMS

Error Improvement (%) = =x100 (6)

n

where RMS, is the RMS positioning error using the
nominal parameters. And, the RMS, is the RMS

Barati et al: Estimation and Calibration of Robot Link Parameters with Intelligent Techniques 227



positioning error computed using the estimated
parameters and element symbols.

The corresponding positioning errors in  the
Cartesian coordinate are shown in the Figs. 4 and 5.

Table 2 The RMS position errors with nominal and identified
parameters.

RMS (x,Y,2) > RMS
withnominal Par. | [214 106 7.7]"x10° | 0.0204
with estimated Par. | [1.7 0884 1.6]" x107° 0.0041
Improvement (%) [2056 91.66 79.22]" 79.90

4.2 The PSO Algorithm

This agorithm begins with generation of the initia
swarm of particles in which each particle moves about
the cost surface with an arbitrary velocity. The particles
update their velocities and positions based on the local
and global best solutions [25]. If X; = (X;;, X251 X,)
and Vv, =(v;,V,,,...,V,,) are the position and velocity
of the i" particle in an n dimension space, then the
motion of this particle in the next step is computed as
the vector sum of the present position and the velocity
vectors as

k+1 — )~(:< + \7:<+1 (7)

;(i
and, the velocity of the particle in the iteration k+1,
V", is obtained from the following equation

ok+1

Vi = Wy + cyrand x (B, —X;) + ¢ rand x (B, — X{)

®
where k is the iteration number, B, = (P, Piyr---»P) 1S

the best particle position in the i"" iteration (pbest) and
Py = (Pg1sPgzr-++1 Py,) IS the global best particle position
in al iterations so far (gbest), and, ¢, and c, are the
scaling factors that determine the relative pull of pbest
and gbest.

As proposed in [26], the default values of ciandc,
were selected as 2. In the standard PSO, the inertia
weighting factor is quite important and it is usually
chosen as a decreasing function. At the beginning it is
Set t0 Wiiaie =1 @nd finally it isreduced tow;,, = 0.5.
A linear relation is usualy used as a function of
iteration

Ko — K
W = (Wigiiaize — Wring )(k—) + Wiina ©

In the above equation k is the running step number
and k., isthe maximum number of steps[22].

Next steps summarized the algorithm:

1) Generatetheinitial valuesfor the particles

2) Update the positions, the velocities and the

inertia weighting factor w, in each step
according to the cost function

&
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Fig. 4 Position error of endeffector using the nominal
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Fig. 5 Position error of endeffector using the identified
parameters vianonlinear LS.

3) Repeat the loop until the desired solution is
reached

We can consider a cost function for this algorithm

similar to the cost function in the least square technique

E= Y [AP]"[AP] (10)

In this algorithm, the nominal vaues of the
parameters were also used astheinitial value.

For the 12 empirically obtained data, the RMS
vector was evauated in x, y, and z directions using both
the nomina values of the parameters and estimated
value of the parameters via PSO algorithm. The results
are summarized in Table 3.

The corresponding positioning errors in the
Cartesian coordinate are shown in Figs. 6 and 7.

By comparing the results, we see that the PSO
algorithm performs better. Also in this algorithm, the
value of the fitness function for the best individual in
each generation is shown in Fig. 8.
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Table 3 The RMS position errors with nominal and identified
parameters by PSO algorithm.

RMS(x,Y,2) > RMS
With nominal par. [214 106 7.7]"x10° | 0.0204
Withestimated par. | [1.1 0673 1.1"x10° | 0.0028
Improvement (%) [486 9365 85.71] 86.27
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4.3 Genetic Algorithm

Genetic algorithms operate based on the theory of
evolution in the nature, i.e., the algorithms search for a
best solution from the population of potential solutions.
In every generation, the better individuals are selected.
Successive  populations are generated through
reproduction, crossover and mutation. In this process,
better individuals reproduce in the next generation with
agreater probability [27].

When the algorithm begins, the initial population is
generated randomly and the fitness of each individual is
evaluated from the cost function. If the termination
condition is not reached, choose the parents of the next
generation based on their fitness functions. The next
generation is produced through crossover between
parents of the previous generation. A mutation operator
is also included. This process is continued iteratively
until the desired termination condition is reached [29].

Consider a cost function for this algorithm similar to
the cost function used in the least square technique. In
this agorithm, the nomina values of the parameters
were also used asthe initial value.

For the 12 empirically obtained data, the RMS
vector was evauated in x, y, and z directions using both
the nominal values of the parameters and estimated
value of the parameters via Genetic algorithm, and the
results are summarized in Table 4.

The corresponding positioning errors in the
Cartesian coordinate are shown in Figs. 9 and 10.

The value of the fitness function for the best
individual in each generation is shownin Fig. 11.

Table 4 The RMS position errors with nominal and identified
parameters via Genetic algorithm.

RMS(x, Y, 2) D> RMS
With nominal Par. [214 106 7.7"x10° | 0.0204
With estimated Par. | [1.2 0725 1.3"x10° | 0.0033
Improvement (%) [4392 9316 8311 | 83.82

4.4 The QPSO algorithm

The QPSO agorithm is a simple and modified
integrated version of basic PSO (BPSO) and EA. The
quadratic crossover operator suggested in [31] is a
nonlinear multi parent crossover operator which makes
use of three particles (parents) of the swarm to produce
a particle (offspring) which lies at the point of minima
of the quadratic curve passing through the three selected
particles. The nonlinear nature of the quadratic
crossover operator used in this work helps in finding a
better solution in the search space.

g1 (0" - )xf@+(c —ad")xf(b)+(@ —b")xf(c)
2 (b -c)xf(@)+(C —a )xf(b)+(@ —b )xf(c)
(11)
The computational steps of the QPSO algorithm are
given below:
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1-Initialize the swarm

2-For each particle
Update velocity
Update position
Update personal best

Update global best
3-Find a new particle using equation (11)
4-Replace the worst Particle by the new Particle While
(Stopping condition is not reached), [31].

We can consider a cost function for this algorithm
similar to the cost function in the least square technique.
In this algorithm, the nominal values of the parameters
were also used asthe initial value.

For the 12 empirically obtained data, the RMS
vector was evauated in x, y, and z directions using both
the nomina values of the parameters and estimated
value of the parameters via QPSO agorithm, and the
results are summarized in Table 5.

The corresponding positioning errors in the
Cartesian coordinate are shown in Figs. 12 and 13.

Table 5 The RMS position errors with nominal and identified
parameters via QPSO algorithm.

RMS(x,Y,2) D> RMS

With nominal Per. [214 106 7.7]"x10° | 0.0204

With estimated Par. [L1 069 1.1 x10° 0.0029

Improvement (%) [47.06 9343 85.76]" | 85.67

4.5 The Sa-PSO Algorithm

The idea of simulated annealing algorithm is
presented by Metropolis in 1953, and was used in
compounding optimization by Kirkpatrick in 1983. It
accepts the current optimal solution at a probability
after searching, which called Metropolis law. And Sa-
PSO agorithm become a global optimal algorithm by
using this new acceptance rule, the theory has been
proved [32]. The basic idea of simulated-annealing
particle swarm optimize agorithm (Sa-PSO) is shown
below.

At the beginning, the individual best point and the
global best point were accepted by the Metropolis rule,
the hypo-best point was accepted at probability, the aim
function is allowed to become worse at a certain extent,
the acceptance rule was decided by the coefficient T,
where T is the anneal temperature. With the T
descending, the searching region would be around the
best point, the accepted probability of the hypo-best
point become small also, when the T descend to the
lower limit, the accepted probability of the hypo-best
point is zero, the algorithm only accept the best solution
as the basic PSO agorithm. The relation between the
annealing temperature and the inertial weight was built,
the inertial weight changes with the temperature, and
then the searching precision was changed following the
inertial weight, so the searching speed was increased
[31].

f(x,) isthe i" particle solution, p is the historical
best solution, T is the annealing temperature. The steps

of Sa-PSO are shown below:
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Step 1: Initialize the coefficients, This includes the
annealing temperature T and w,c;,C,. To initiaize the

particle swarm, it includes the particle random position
and the first speed;
Step 2: Evaluate each particle’s adaptive value f(x,);

Step 3: For each particle, the adaptive value f(x,) is
compared with one of the historical best position p if
the adaptive value is better than one of p. Then, x is
consider as the best position p, otherwise, using the
accept-probability law function (12) to decide if this
point is accepted.

P=exp(—Af /T) (12)
Setp 4: For each particle, the best point p itself was
compared with the whole best point p , if p is better
than p,, then reset p , otherwise, the global point is

acceted according to the probability function (12).
Step 5: The position and speed of each particle were
changed following functions (7) and (8) (The functions

(7) and (8) define the basic PSO algorithm)[33], several
steps later, in order to adjust the temperature T and the
inertial weight w, the functions presented in (13) and
(14) can be used.

T(k) =T, " (13)
T, —T(k)

BT, ) (24)
Step 6: if the desired condition is not satisfied, then go
back to step 2, otherwise stop.

Consider a cost function for this algorithm similar to
the cost function used in the least square technique. In
this algorithm, the nominal values of the parameters are
also used astheinitial value.

For the 12 empirically obtained data, the RMS
vector was evaluated in x, y, and z directions using both
the nominal values of the parameters and estimated
value of the parameters via Sa-PSO agorithm, the
results are summarized in Table 6.

The corresponding positioning errors in the
Cartesian coordinate are shown in Figs. 14 and 15.
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Fig. 14 Position error of endeffector using the nominal
parameters.
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Fig. 15 Endeffector position error using the identified
parameters via the Sa-PSO a gorithm.
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Table 6 The RMS value of position errors with nominal and
identified parameters via Sa-PSO algorithm.

RMS(x,Y,2) > RMS
With nominal Par. [214 106 7.7]" x107% | 0.0204
With estimated Par. [L1 0.74 0.85]" x10° | 0.0027
Improvement (%) [49.22 9297 8892]" | 86.85

Table 7 The Nominal and Identified parameters using the LS

method.

Nominal parameters and Identified parameters using
the Least Square technique are summarized in Table 7.

The Identified parameters using the Genetic
Algorithm and Particle Swarm Optimization are
summarized in Table 8.

Identified parameters using the QPSO Algorithm
and Sa-PSO Algorithm are summarized in Table 9.

Table 9 Identified parameters using the QPSO Algorithm and
Sa-PSO Algorithm.

Identified parameters | Nominal LS Identified par. QPSO Sa-PSO
a,(cm) -51 -51.62 a,(cm) -52.16 -52.20
a,(cm) 0 15 a, (cm) 143 8.8
a,(cm) 31 3114 a,(cm) 30 30.53
a,(cm) 14 14.99 a,(cm) 15.19 15.21
a,(degree) 0 0.2521 a, (degree) 0.8537 0.7678
a, (degree) -90 -88.9286 o, (degree) -91.2605 -89.6963
o, (degree) 0 -3.9534 o, (degree) -4.068 -4.0795
a.;(degree) 0 -9.683 o, (degree) -0.636 2.6643
d,(cm) 10 101 d,(cm) 10.18 10.14
d,(cm) 2 191 d,(cm) 1.94 2.37
d,(cm) -2 -1.89 d,(cm) -1.09 -1.62
d,(cm) 0 112 d, (cm) 0.4 0.61
Iteration - 5 Iteration 400 108

Final value of the | - 3.4x10°° Fina vaue of the -6 6
fitn&ssfun_ction fitness function 1.68x10 8.11x10
Elapsed time of the | - 1.039 Sec Elapsed time of the | 3.87 Sec 5.43 Sec
algorithm algorithm

Table 8 The Identified parameters using the Genetic

Algorithm and Particle Swarm Optimization.

Identified par. PSO GA
a,(cm) -52.12 -52.10
a,(cm) 0.38 7.03
a,(cm) 3091 30.53
a,(cm) 15.37 14.34

o, (degree) 0.8422 0.8422
o, (degree) -89.9885 -87.3578
o, (degree) -4.1138 -4.1769
o, (degree) 0.1604 2.6643
d,(cm) 10.20 10.25
d,(cm) 2.37 3
d,(cm) 13 -2.10
d.(cm) 0.25 -0.21
Iteration 400 800
E'tfr‘g“ ;’lilégo r?f the | 068x10° | 5.11x10°
Elapsed time of the | 3.65 Sec 3.21 Sec
algorithm

232

5 Conclusions

In this study, the classical technique of the least
square and four intelligent algorithms i.e. genetic
algorithms, particle swarm optimization algorithm,
QPSO and SaPSO was used for identification and
calibration of a manipulator kinematics parameters.
Numerical and experimental results demonstrate that

these techniques are effective in reduction of
positioning error.
Advantages of wusing intelligent methods in

comparison with classical calculus based methods are,
e They do not require complex derivative evaluations
e Their applications are smple
e They don't get caught in local minima as easily as the
classic method
The obvious advantage of the proposed algorithm is
that it does not require very advance equipments for
data collection. Inexpensive experimental devices can
be used to obtain valuable kinematic parameters. The
proposed algorithms were able to compensate as much
as 87% of the positioning error.
Using other objective functions in the intelligent
methods may improve the identification results.
Using better encoders with higher resolutions can
improve the algorithms performance. Other sources of
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error, thermal errors, joint transducer errors, steady state
errors in the joint positions and ..., can be incorporated
in the calibration model in future works.
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