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Estimation and Calibration of Robot Link Parameters with 
Intelligent Techniques 
 
 
M. Barati*, A. R. Khoogar** and M. Nasirian*** 
 
 
 

Abstract: Using robot manipulators for high accuracy applications require precise value of the 
kinematics parameters. Since measurement of kinematics parameters are usually associated 
with errors and accurate measurement of them is an expensive task, automatic calibration of 
robot link parameters makes the task of kinematics parameters determination much easier. In 
this paper a simple and easy to use algorithm is introduced for correction and calibration of 
robot kinematics parameters. Actually at several end-effecter positions, the joint variables are 
measured simultaneously. This information is then used in five different algorithms; least 
square (LS), particle swarm optimization (PSO) , Genetic algorithms (GA), quadratic particle 
swarm optimization (QPSO) and simulated annealing particle swarm optimization (Sa_PSO) 
for automatic calibration and correction of the kinematics parameters. This process was also 
tested experimentally via a three degree of freedom manipulator which is actually used as a 
coordinate measuring machine (CMM). The experimental Results prove that the intelligent 
algorithms are useful for both parameter identification and calibration of link parameters. 
 
Keywords: Calibration, Identification, Genetic Algorithms, Particle Swarm Optimization, 
Least Square, Robot Manipulator. 
 

 
 
1 Introduction1 
Since the introduction of the first robot manipulators in 
1960s, there has always been a demand for kinematic 
parameters identification and subsequent error 
correction operations in order to improve the ability of 
robot manipulators in reaching a specified position 
consistently and accurately [1]. It has been shown that 
as much as 95% of robot positioning inaccuracy arises 
from the inaccuracy in its kinematics model description 
[2]. Even if it is possible to dismantle a robot 
manipulator and determine the parameters in detached 
linkages kinematic frames using accurate measuring 
machines, the resulting model will still contain some 
inaccuracies arising from joint and link compliances 
changing with the manipulator configurations, thermal 
effects, wear, joint transducer errors, steady state errors 
in joint positions, inaccurate knowledge of the 
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kinematics parameters, and payload carried by the 
manipulator [1]. 

It follows that automatic calibration of robot links 
parameters that can improve the manipulator accuracy 
will reduce the kinematics errors [3]. There is a wealth 
of literature on the kinematics identification and 
calibration of robotic systems: [2], [4], [5], [6], [7], [8]. 

A wide account of robot calibration consisting of (i) 
modeling, (ii) measurement, (iii) identification, and (iv) 
correction steps are available in [9] and [4]. 

To calibrate robotic manipulators, Everett et al. [10] 
presented a new kinematic model for achieving better 
kinematic representation. Chen and Chao [11], improve 
the manipulators positioning error by including the non-
geometric error in kinematics model. For identification 
of manipulator link parameters, Stone et al. [12] have 
introduced the S model. Jang et al. [13] have presented 
a calibration methodology based on dividing the 
manipulator workspace into several local regions, and 
subsequently building a calibration equation using a 
three dimensional position measurement system 
consisting of a camera and infrared LED. Newman et al. 
[14] have reported on the calibration of a Motoman P-8 
robot using circle point analysis technique, which 
requires external hardware to determine the manipulator 
end point positions in Cartesian space. Driels et al. [6] 
reported on the kinematic calibration of a PUMA 560 
manipulator using a coordinate measuring machine that 
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provided position and orientation data for randomly 
selected manipulator configuration. Also for 
manipulator calibration, Junhong et al. [15] have used 
the measurement technique by coordinate measuring 
machine. Renders et al. [5] presented a robot kinematic 
parameter identification technique based on a maximum 
likelihood algorithm in a recursive form. Drouet et al. 
[16] have presented a method to compensate for the 
geometric and elastic errors of a six-degree of freedom 
medical robot. An interferometer [17] and laser tracking 
[14] was, also, used for manipulator endeffector 
position measurement. For identification of robots 
kinematics parameters, Horning [18] has introduced and 
compared four different methods. A closed-loop method 
has been proposed that obviates the need for pose 
measurement by forming a manipulator into a mobile 
closed-loop kinematic chain. Actually kinematics 
parameters are determined from the joint angle readings 
alone [9]. Ruibo et al. [19] presents a generic error 
model, which is based on the product of exponentials 
(POEs) formula, for serial-robot calibration. 

A calibration method is presented for kinematic 
parameters of space manipulator by Hui Li Zhihong 
Jiang [20]. This method utilizes the position and 
orientation information of a fixed target on the space 
station and adopts rank-one quasi-Newton method to 
calculate the errors of the kinematic parameters, the 
position and orientation of the fixed target can be 
measured by the camera mounted on the manipulator’s 
endeffector. This method can calibrate the manipulator 
parameters online and has demand in working 
environment [20]. 

Calibration of a 6-PRRS parallel manipulator is 
studied by Yonggang Yang. et al. [21] a compensation 
method based on kinematic model is proposed. This 
method uses the D-H modeling method sets up for a 6-
PRRS parallel manipulator kinematic model, it then 
identifies and compensates the error in model using 
vector chain [21]. 

As the above literature shows, it is virtually 
impossible to consider all the sources that contribute to 
the endeffector positioning errors in a single kinematic 
identification model of a robot manipulator. However, 
most of the positioning errors are related to the 
geometric parameters of linkages [2]. In this study the 
classical and intelligent identification techniques are 
used for compensation of the manipulator positioning 
errors which are produced by the inaccuracies of the 
geometric parameters. In recent years, stochastic 
optimization methods have gained increasing attention 
in parameter optimization of various systems. The most 
popular techniques are evolutionary computation and 
the simulating annealing algorithms. Since these 
methods do not require any gradient information, they 
are well suited for non-smooth or discontinuous 
optimization tasks occurring in nonlinear systems [22]. 

The experimental system employed here is a three 
degree of freedom manipulator which is actually used as 

a coordinate measuring machine (CMM). Aspects of 
this manipulator are depicted in Fig. 1. 

To model the kinematics of this manipulator, the 
Denavit and Hartenberg (DH) standard is used. For 
measurement of the joint angles, ten bit absolute 
encoders are used. One of the encoders is shown in Fig. 
2. In order to resolve the endeffector position, the tip of 
the endeffector was rested against a graduated plate 
which has been graduated with a CNC machine with an 
accuracy of 10 m± μ . For identification and calibration 
of the geometric parameters five different methods were 
used. Firstly the classical least square estimation 
technique was employed to determine the numerical 
values of the kinematic parameters. Then four 
intelligent techniques were used. 

 
2   Kinematics Model 

The schematic of the robot manipulator and the 
coordinate frames needed to generate a kinematics 
model are defined in Fig. 3. To model the kinematics of 
this manipulator, the Denavit and Hartenberg standard 
is used. In order to use this model, it is necessary to fix 
a coordinate frame to each linkage [23]. 

A set of possible body fixed coordinate frames is 
shown in Fig. 3. The DH parameters for the proposed 
manipulator are shown in Table 1. 

These parameters are provided by the manufacture 
of the manipulator, in this work they are referred as the 
nominal parameters. 
 
 

 
Fig. 1 The three degree of freedom manipulator. 
 
 

 
Fig. 2 The ten bit absolute encoder. 
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Fig. 3 Schematic representation of the robot manipulator with 
links coordinate frame. 
 
Table 1 D-H parameters for the proposed manipulator. 

Joint/Link 
i (deg ree)α  ia (m)  id (m)  iθ  

1 0 -0.51 0.10 
1θ  

2 -90 0 0.02 
2θ  

3 0 0.31 -0.02 
3θ  

e 0 0.15 0 
eθ  

 
The homogeneous transformation matrix between 

two consecutive coordinate frames j and j+1, based on 
Devavit and Hartenberg convention, is jTj+1. With this 
convention, the overall transformation matrix between 
the base coordinate frame and the frame fixed to the 
endeffector is written as 
o o 1 2 3

e 1 2 3 eT T T T T=                                                      (1) 
 
3   Data Collection 

For data collection it is necessary to measure the 
joint angles for each endeffector position. As mentioned 
earlier, for measurement of the joint angles ten bit 
absolute encoders are used. Encoder resolution is 

351.0± degree. One of the encoders is shown in Figure 
2. In order to have better accuracy, encoders with higher 
resolutions may be used. Now for data collection, we 
placed the endeffector in different position of the 
graduated plate and took note of the encoder values. 

Note that at least 4 vector measurements are needed 
in order to estimate the 12 specified parameters [1]. 
Greater number of measurements would contribute to 
better convergence of the algorithm and to reduce the 
effect of measurement noise. 
 
4   Kinematics Parameter Identification 

To find the actual value of manipulator kinematic 
parameters that reduce the endeffector positioning error, 
we must first develop the relation between the 
endeffector position and the kinematic parameters, i.e. 
the forward kinematics equations 

nP f ( ,a,d, ) f ( )= α θ = ϕ                                                (2) 

where [ ]T
nP x y z=  is the nominal manipulator end 

point position vector calculated with the nominal values 
of the parameters, 0 1 2 3[ ]α = α α α α , 

[ ]0 1 2 3a a a a a= , [ ]1 2 3 ed d d d d=  and the 

joint variables [ ]1 2 3θ = θ θ θ . Next, the different 
identification algorithms used for this identification are 
described. 
 

4.1   Nonlinear Least Square Method 
Based on the nonlinear kinematic model f ( )ϕ  of the 

manipulator expressed in (2), the kinematic parameters 
are estimated by minimizing the sum of the square of 
the 13×  positioning error vector PΔ  associated with m  
number of measurements in the objective function, 

m
T

k 1

E [ P] [ P]
=

= Δ Δ∑                                                         (3) 

where PΔ  is expressed by 
[ ]T r n kP x y z [P P ]Δ = δ δ δ = −                                 (4) 

in which rP  is the measured (actual) position vector, and 
x, y, zδ δ δ  are the computed position errors in the x, y, 

and z directions, respectively. This nonlinear least 
square optimization problem can be solved using either 
the interior-reflective Newton method or the 
Levenburg-Marquardt algorithm. These are two 
efficient optimization algorithms for large-scale 
nonlinear problems. It has been reported [24] that the 
former can solve complex nonlinear problems more 
efficiently than the latter. The interior-reflective Newton 
method employs the preconditioned conjugate gradients 
procedure to obtain the approximate solution of a large 
system of equations. 

A good initial guess always helps the estimation 
algorithm to converge more quickly. Therefore, the 
nominal values of the parameters are taken as the initial 
guess for the parameters. The estimation techniques are 
realized iteratively until the position error is small 
enough to meet a termination condition. The position 
error in any particular Cartesian direction is described 
by the root mean square (RMS) of the position error, 
which is a 13× vector. 

m
2

r n i
i 1

1RMS Position (P P )
m =

− = −∑                            (5) 

For the 12 empirically obtained data, the RMS 
vector was evaluated in x, y, and z directions using both 
the nominal values of the parameters and estimated 
value of the parameters via the nonlinear least square 
technique, and the results are summarized in Table 2. 
The RMS (x, y, z) indicates the evaluated errors in the 
x, y, and z directions and RMS∑  is the vector length 
of the positioning error. 

Percentage of error improvement is evaluated as 

Error Improvement (%) = n e

n

RMS RMS
100

RMS
−

×         (6) 

where nRMS  is the RMS positioning error using the 
nominal parameters. And, the eRMS  is the RMS 
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positioning error computed using the estimated 
parameters and element symbols. 

The corresponding positioning errors in the 
Cartesian coordinate are shown in the Figs. 4 and 5. 

 
Table 2 The RMS position errors with nominal and identified 
parameters.  

 RMS (x, y, z)  RMS∑
 

with nominal Par. 310]7.76.1014.2[ −×T  0 .0 2 0 4

with estimated Par. 310]6.1884.07.1[ −×T  0.0041
Improvement (%) T]22.7966.9156.20[  79.90  

 
4.2  The PSO Algorithm 

This algorithm begins with generation of the initial 
swarm of particles in which each particle moves about 
the cost surface with an arbitrary velocity. The particles 
update their velocities and positions based on the local 
and global best solutions [25]. If i i1 i2 inx (x , x , , x )=

r
K

and i i1 i2 inv (v , v , , v )=
r

K  are the position and velocity 
of the ith particle in an n dimension space, then the 
motion of this particle in the next step is computed as 
the vector sum of the present position and the velocity 
vectors as 

k 1 k k 1
i i ix x v+ += +
r r r                                                            (7) 

and, the velocity of the particle in the iteration k+1, 
k 1
iv +r , is obtained from the following equation 
k 1 k k k
i i 1 i i 2 g iv wv c rand (p x ) c rand (p x )

           

+ = + × − + × −
r rr r r r

    (8) 

where k is the iteration number, i i1 i2 inp (p ,p , , p )=
r

K  is 
the best  particle position in the ith iteration (pbest) and 

g g1 g2 gnp (p , p , , p )=
r

K  is the global best particle position 
in all iterations so far (gbest), and, 1c  and 2c  are the 
scaling factors that determine the relative pull of pbest 
and gbest. 

As proposed in [26], the default values of 1c and 2c  
were selected as 2. In the standard PSO, the inertia 
weighting factor is quite important and it is usually 
chosen as a decreasing function. At the beginning it is 
set to initializew 1=  and finally it is reduced to finalw 0.5= . 
A linear relation is usually used as a function of 
iteration 

max
initialize final final

max

k k
w (w w )( ) w

k
−

= − +                          (9) 

In the above equation k is the running step number 
and maxk  is the maximum number of steps [22]. 

Next steps summarized the algorithm: 
1) Generate the initial values for the particles  
2) Update the positions, the velocities and the 

inertia weighting factor w, in each step 
according to the cost function 

 
Fig. 4 Position error of endeffector using the nominal 
parameters. 
 

 
Fig. 5 Position error of endeffector using the identified 
parameters via nonlinear LS. 
 

3) Repeat the loop until the desired solution is 
reached 

We can consider a cost function for this algorithm 
similar to the cost function in the least square technique 

m
T

k 1
E [ P] [ P]

=

= Δ Δ∑                                                        (10) 

In this algorithm, the nominal values of the 
parameters were also used as the initial value. 

For the 12 empirically obtained data, the RMS 
vector was evaluated in x, y, and z directions using both 
the nominal values of the parameters and estimated 
value of the parameters via PSO algorithm. The results 
are summarized in Table 3. 

The corresponding positioning errors in the 
Cartesian coordinate are shown in Figs. 6 and 7. 

By comparing the results, we see that the PSO 
algorithm performs better. Also in this algorithm, the 
value of the fitness function for the best individual in 
each generation is shown in Fig. 8. 
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Table 3 The RMS position errors with nominal and identified 
parameters by PSO algorithm. 

 RMS(x, y, z)  RMS∑
 

With nominal par. T 3[2.14 10.6 7.7] 10−×  0.0204  
With estimated par. T 3[1.1 0.673 1.1] 10−×  0028.0  
Improvement (%) T[48.6 93.65 85.71]  27.86  

 

 
Fig. 6 Position error of endeffector using the nominal 
parameters. 
 

 
Fig. 7 position error of endeffector using the identified 
parameters via PSO algorithm. 
 

 
Fig. 8 The value of fitness function per iteration. 

4.3  Genetic Algorithm 
Genetic algorithms operate based on the theory of 

evolution in the nature, i.e., the algorithms search for a 
best solution from the population of potential solutions. 
In every generation, the better individuals are selected. 
Successive populations are generated through 
reproduction, crossover and mutation. In this process, 
better individuals reproduce in the next generation with 
a greater probability [27]. 

When the algorithm begins, the initial population is 
generated randomly and the fitness of each individual is 
evaluated from the cost function. If the termination 
condition is not reached, choose the parents of the next 
generation based on their fitness functions. The next 
generation is produced through crossover between 
parents of the previous generation. A mutation operator 
is also included. This process is continued iteratively 
until the desired termination condition is reached [29].  

Consider a cost function for this algorithm similar to 
the cost function used in the least square technique. In 
this algorithm, the nominal values of the parameters 
were also used as the initial value. 

For the 12 empirically obtained data, the RMS 
vector was evaluated in x, y, and z directions using both 
the nominal values of the parameters and estimated 
value of the parameters via Genetic algorithm, and the 
results are summarized in Table 4. 

The corresponding positioning errors in the 
Cartesian coordinate are shown in Figs. 9 and 10. 

The value of the fitness function for the best 
individual in each generation is shown in Fig. 11. 

 
 

Table 4 The RMS position errors with nominal and identified 
parameters via Genetic algorithm. 

 RMS(x, y, z)  RMS∑  
With nominal Par. T 3[2.14 10.6 7.7] 10−×  0.0204  
With estimated Par. T 3[1.2 0.725 1.3] 10−×  0.0033  
Improvement (%) T[43.92 93.16 83.11]  83.82  

 
 

4.4  The QPSO algorithm 
The QPSO algorithm is a simple and modified 

integrated version of basic PSO (BPSO) and EA. The 
quadratic crossover operator suggested in [31] is a 
nonlinear multi parent crossover operator which makes 
use of three particles (parents) of the swarm to produce 
a particle (offspring) which lies at the point of minima 
of the quadratic curve passing through the three selected 
particles. The nonlinear nature of the quadratic 
crossover operator used in this work helps in finding a 
better solution in the search space. 

2 2 2 2 2 2i i i i i i
i

i i i i i i

1 (b c ) f (a) (c a ) f (b) (a b ) f (c)x
2 (b c ) f (a) (c a ) f (b) (a b ) f (c)

− × + − × + − ×
= ×

− × + − × + − ×
%  

                                                                                           (11) 
The computational steps of the QPSO algorithm are 

given below: 
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Fig. 9 Position error of endeffector using the nominal 
parameters. 
 

 
Fig. 10 Position error of endeffector using the identified 
parameters via Genetic algorithm. 
 

 
Fig. 11 The value of fitness function per generation. 
 
1-Initialize the swarm 
2-For each particle 
       Update velocity 
       Update position 
       Update personal best 

       Update global best 
3-Find a new particle using equation (11) 
4-Replace the worst Particle by the new Particle While 
(Stopping condition is not reached), [31]. 

We can consider a cost function for this algorithm 
similar to the cost function in the least square technique. 
In this algorithm, the nominal values of the parameters 
were also used as the initial value. 

For the 12 empirically obtained data, the RMS 
vector was evaluated in x, y, and z directions using both 
the nominal values of the parameters and estimated 
value of the parameters via QPSO algorithm, and the 
results are summarized in Table 5. 

The corresponding positioning errors in the 
Cartesian coordinate are shown in Figs. 12 and 13. 

 
Table 5 The RMS position errors with nominal and identified 
parameters via QPSO algorithm. 

 RMS(x, y, z)  RMS∑  
With nominal Par. T 3[2.14 10.6 7.7] 10−×  0.0204  
With estimated Par. T 3[1.1 0.69 1.1] 10−×  0.0029
Improvement (%) T[47.06 93.43 85.76]  85.67

 
 

4.5  The Sa-PSO Algorithm 
The idea of simulated annealing algorithm is 

presented by Metropolis in 1953, and was used in 
compounding optimization by Kirkpatrick in 1983. It 
accepts the current optimal solution at a probability 
after searching, which called Metropolis law. And Sa-
PSO algorithm become a global optimal algorithm by 
using this new acceptance rule, the theory has been 
proved [32]. The basic idea of simulated-annealing 
particle swarm optimize algorithm (Sa-PSO) is shown 
below. 

At the beginning, the individual best point and the 
global best point were accepted by the Metropolis rule, 
the hypo-best point was accepted at probability, the aim 
function is allowed to become worse at a certain extent, 
the acceptance rule was decided by the coefficient T, 
where T is the anneal temperature. With the T 
descending, the searching region would be around the 
best point, the accepted probability of the hypo-best 
point become small also, when the T descend to the 
lower limit, the accepted probability of the hypo-best 
point is zero, the algorithm only accept the best solution 
as the basic PSO algorithm. The relation between the 
annealing temperature and the inertial weight was built, 
the inertial weight changes with the temperature, and 
then the searching precision was changed following the 
inertial weight, so the searching speed was increased 
[31]. 

if (x )  is the ith particle solution, ip  is the historical 
best solution, T is the annealing temperature. The steps 
of Sa-PSO are shown below: 
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Fig. 12 Position error of endeffector using the nominal 
parameters. 
 

 
Fig. 13 Position error of endeffector using the identified 
parameters via QPSO algorithm. 
 
Step 1: Initialize the coefficients, This includes the 
annealing temperature T  and 1 2w,c ,c . To initialize the 
particle swarm, it includes the particle random position 
and the first speed; 
Step 2: Evaluate each particle’s adaptive value if (x ) ; 
Step 3: For each particle, the adaptive value if (x )  is 
compared with one of the historical best position ip  if 
the adaptive value is better than one of ip . Then, ix  is 
consider as the best position ip , otherwise, using the 
accept-probability law function (12) to decide if this 
point is accepted. 
P exp( f /T)= −Δ                                                                  (12) 
Setp 4: For each particle, the best point ip  itself was 
compared with the whole best point gp , if ip  is better 
than gp , then reset gp , otherwise, the global point is 
acceted according to the probability function (12). 
Step 5: The position and speed of each particle were 
changed following functions (7) and (8) (The functions 

(7) and (8) define the basic PSO algorithm)[33], several 
steps later, in order to adjust the temperature T and the 
inertial weight w, the functions presented in (13) and 
(14) can be used. 

1/ Nk
0T(k) T= α                                                                      (13) 

0
0

0

T T(k)
w w (1 )

T
−

= −
β×

                                                       (14) 

Step 6: if the desired condition is not satisfied, then go 
back to step 2, otherwise stop. 

Consider a cost function for this algorithm similar to 
the cost function used in the least square technique. In 
this algorithm, the nominal values of the parameters are 
also used as the initial value. 

For the 12 empirically obtained data, the RMS 
vector was evaluated in x, y, and z directions using both 
the nominal values of the parameters and estimated 
value of the parameters via Sa-PSO algorithm, the 
results are summarized in Table 6. 

The corresponding positioning errors in the 
Cartesian coordinate are shown in Figs. 14 and 15. 
 

 
Fig. 14 Position error of endeffector using the nominal 
parameters. 
 

 
Fig. 15 Endeffector position error using the identified 
parameters via the Sa-PSO algorithm. 
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Table 6 The RMS value of position errors with nominal and 
identified parameters via Sa-PSO algorithm. 

 RMS(x, y, z)  RMS∑  
With nominal Par. 310]7.76.1014.2[ −×T  0.0204     
With estimated Par. T 3[1.1 0.74 0.85] 10−×  0.0027 
Improvement (%) T[49.22 92.97 88.92]  86.85 

 
Table 7 The Nominal and Identified parameters using the LS 
method. 

Identified parameters Nominal L S 

0a (cm)  -51 - 51.62 

1a (cm)  0 1.5 

2a (cm)  31 31.14 

3a (cm)  14 14.99 

0 (deg ree)α  
0 0.2521 

1(deg ree)α  -90 -88.9286 

2 (deg ree)α  0 -3.9534 

3 (deg ree)α  0 -9.683 

1d (cm)  10 10.1 

2d (cm)  2 1.91 

3d (cm)  -2 -1.89 

ed (cm)  0 1.12 

Iteration -- 5 
Final value of the 
fitness function 

-- 5104.3 −×  

Elapsed time of the 
algorithm 

-- 1.039 Sec 

 
 
Table 8 The Identified parameters using the Genetic 
Algorithm and Particle Swarm Optimization. 

Identified par. PSO GA 

0a (cm)  -52.12 -52.10 

1a (cm)  0.38 7.03 

2a (cm)  30.91 30.53 

3a (cm)  15.37 14.34 

0 (deg ree)α  
0.8422 0.8422 

1(deg ree)α  -89.9885 -87.3578 

2 (deg ree)α  -4.1138 -4.1769 

3 (deg ree)α  0.1604 2.6643 

1d (cm)  10.20 10.25 

2d (cm)  2.37 3.11 

3d (cm)  1.3 -2.10 

ed (cm)  0.25 -0.21 

Iteration 400 800 
Final value of the 
fitness function 

61068.0 −×  61011.5 −×  

Elapsed time of the 
algorithm 

3.65 Sec 3.21 Sec 

Nominal parameters and Identified parameters using 
the Least Square technique are summarized in Table 7. 

The Identified parameters using the Genetic 
Algorithm and Particle Swarm Optimization are 
summarized in Table 8. 

Identified parameters using the QPSO Algorithm 
and Sa-PSO Algorithm are summarized in Table 9. 
 
Table 9 Identified parameters using the QPSO Algorithm and 
Sa-PSO Algorithm. 

Identified par. QPSO Sa-PSO 

0a (cm)  -52.16 -52.20 

1a (cm)  1.43 8.8 

2a (cm)  30 30.53 

3a (cm)  15.19 15.21 

0 (deg ree)α 0.8537 0.7678 

1(deg ree)α  -91.2605 -89.6963 

2 (deg ree)α  -4.068 -4.0795 

3 (deg ree)α  -0.636 2.6643 

1d (cm)  10.18 10.14 

2d (cm)  1.94 2.37 

3d (cm)  -1.09 -1.62 

ed (cm)  0.4 0.61 

Iteration 400 108 
Final value of the 
fitness function 

61068.1 −×  61011.8 −×  

Elapsed time of the 
algorithm 

3.87 Sec 5.43 Sec 

 
5  Conclusions 

In this study, the classical technique of the least 
square and four intelligent algorithms i.e. genetic 
algorithms, particle swarm optimization algorithm, 
QPSO and Sa-PSO was used for identification and 
calibration of a manipulator kinematics parameters. 
Numerical and experimental results demonstrate that 
these techniques are effective in reduction of 
positioning error. 

Advantages of using intelligent methods in 
comparison with classical calculus based methods are, 
• They do not require complex derivative evaluations 
• Their applications are simple 
• They don’t get caught in local minima as easily as the 

classic method 
The obvious advantage of the proposed algorithm is 

that it does not require very advance equipments for 
data collection. Inexpensive experimental devices can 
be used to obtain valuable kinematic parameters. The 
proposed algorithms were able to compensate as much 
as 87% of the positioning error. 

Using other objective functions in the intelligent 
methods may improve the identification results. 

Using better encoders with higher resolutions can 
improve the algorithms performance. Other sources of 
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error, thermal errors, joint transducer errors, steady state 
errors in the joint positions and …, can be incorporated 
in the calibration model in future works. 
 
References 
[1] Alici G. and Shirinzadeh B., “A Systematic 

technique to estimate positioning errors for robot 
accuracy improvement using laser interferometry 
based sensing”, Elsevier Journal of Mechanism 
and Machine Theory, Vol. 40, No. 8, pp. 879-
906, 2005. 

[2] Zhong X. L. and Lewis J. M., “A New Method 
for Autonomous Robot Calibration”, IEEE Int. 
Conf. on Robotic and Automation, pp. 1790-1795, 
1995. 

[3] Abderrahim M., Khamis A., Garrido S. and 
Moreno L., Accuracy and Calibration Issues of 
Industrial Manipulators, Industrial Robotics: 
Programming, Simulation and Application, 
Edited by: Low Kin Huat. Germany, 2006. 

[4] Roth Z. S., Mooring B. W. and Ravani B., “An 
Overview of Robot Calibration”, IEEE Journal of 
Robotics and Automation, Vol. 3, No. 5, pp. 377-
384, 1987. 

[5] Renders J. M., Rossignol E., Becquet M. and 
Hanus R., “Kinematic Calibration and 
Geometrical Parameter Identification for Robots”, 
IEEE Transactions on Robotics and Automation, 
Vol. 7, No. 6, pp. 721-732, 1991. 

[6] Driels M. R., Swayze W. and Potter U. S., “Full-
pose calibration of a robot manipulator using a 
coordinate-measuring machine”, International 
Journal of Advanced Manufacturing Technology, 
Vol. 8, No. 1, pp. 34-41, 1993.  

[7] Alici G. and Shirinzadeh B., “Laser 
interferometry based robot position error 
modeling for kinematic calibration”, Proc. IEEE 
Int. Conf. Intelligent Robots and Systems, pp. 
3588-3593, 2003. 

[8] Hayati S. A., “Robot arm geometric link 
parameter estimation”, Proc. 22th IEEE Decision 
and Control Conf., pp. 1477-1483, 1983. 

[9] Maric P. and Potkonjak V., “Geometrical 
Parameter Estimation for Industrial Manipulators 
Using Two-step Estimation Schemes”, Journal of 
intelligent and Robotic System, Vol. 24, No. 1, 
pp. 89-97, 1999. 

[10] Everett L., Driels M. and Mooring B., “Kinematic 
Modeling for Robot Calibration”, IEEE Int. Conf. 
on Robotic and Automation, pp. 183-189, 1987.  

[11] Chen J. and Chao L. M., “Positioning Error 
Analysis for Robot Manipulator with all Rotary 
Joints”, Pro. IEEE Int. Conf. on Robotics and 
Automation, pp. 1011-1016, 1986. 

[12] Stone H. W., Sanderson A. C. and Neumann C. 
P., “Arm Signature Identification”, Proc. IEEE 
Int. Conf. on Robotics and Automation, pp. 41-47, 
1986. 

[13] Jang J. H., Kim S. H. and Kwak Y. K., 
“Calibration of geometric and non-geometric 
errors of an industrial robot”, Robotica, Vol. 19, 
pp. 311-321, 2001. 

[14] Newman W. S., Birkhimer C. E., Horning R. J. 
and Wilkey A. T., “Calibration of a Motoman P8 
robot based on laser tracking”, Proc. IEEE Int. 
Conf. on Robotics and Automation, pp. 3597-
3602, 2000. 

[15] Junhong J., Lining S. and Lingato Y., “A New 
Pose Measuring and Kinematics Calibration 
Method for Manipulators”, IEEE Int. Conf. on 
Robotic and Automation, pp. 4925-4930, 2007. 

[16] Drouet P., Dubowsky S., Zeghloul S. and 
Mavroidis C., “Compensation of geometric and 
elastic errors in large manipulators with an 
application to a high accuracy medical system”, 
Robotica, Vol. 20, No. 3, pp. 341-352, 2002. 

[17] Newman W. S. and Osborn D. W., “A New 
Method for Kinematic Parameter Calibration via 
Laser Line Tracking”, IEEE Int. Conf. on Robotic 
and Automation, Vol. 2, pp. 160-165, May 1993. 

[18] Hayati S. A., “Robot arm geometric link 
parameter estimation”, Proc. 22th IEEE Decision 
and Control Conf., pp. 1477-1483, 1983. 

[19] Ruibo H., Yingjun Z., Shunian Y., Shuzi Y., 
“kinematic-Parameter Identification for Serial-
Robot Calibration Based on POE Formula”, IEEE 
Transactions on Robotics, Vol. 26, No. 3, pp. 
411-423, 2010. 

[20] Hui L., Zhihong J. and Qiang Huang Y. H., 
“Vision-based space manipulator online self-
calibration ”, IEEE International conference on 
Robotics and Biomimetics (ROBIO), pp. 1768-
1772, 2009. 

[21] Yonggang Y., Yubin L., Yongsheng P. J. and Shi 
W. L., “An Calibration of a 6-PRRS parallel 
manipulator using D-H method combined with 
vector chain”, International Conference on 
Mechatronics and Automation ( ICMA), 2009. 

[22] Sadoghi H. and Effati S., “Eigenvalue Spread 
Criteria in the Particle Swarm Optimization 
algorithm for Solving of Constraint Parametric 
Problem”, Elsevier Journal of Mathematics and 
computation, Vol. 192, No. 1, pp. 40-50, 2007. 

[23] Graig J. J., Introduction to Robotics, Addition,-
Weseley, 2nd edition, 1989. 

[24] Coleman T. F. and Li L., “An interior, trust 
region approach for nonlinear minimization 
subject to bounds”, Journal of Optimization, Vol. 
6, No. 1, pp. 418-445, 1996. 

[25] Kennedy J. and Eberhart R., “Particle Swarm 
Optimization”, Proc. IEEE Int. Conf. Neural 
Network, pp. 1942-1948, 1995. 

[26] Kennedy J., Eberhart R. and Shi Y., Swarm 
Intelligence, Morgan Kaufman Publishers, USA, 
2001. 



234               

[27] Poorza
artifici
Neday
2006. 

[28] Ali M
Global
Opera
pp. 17

[29] Zahiri 
“Intell
Classif
Electro
pp. 1-9

[30] Lucas 
Z., “M
Linear
Particl
Journa
(IJEEE

[31] Pant R
Algori
Optim
Hybrid
pp. 21

[32] Chaoju
Optim
ofSimu
Journa
Securi

[33] Lucas 
F., “U
Design
Magne
Optim
Electri
Vol. 6

 
 
 
 

 

                     

aker S. A., 
ial neural ne

ye Sabze Sho

M. M. and To
l Optimizatio

ations Researc
03-1725, Sept
S., Rajabi M

ligent and Rob
fier”, Iranian
onic Engineer
9, 2005. 

C., Tootoon
Multi-Objectiv
r BrushlessPer
le Swarm O
al of Electric
E), Vol. 6, No
R. and Than
ithm with Cr

mization Probl
d Intelligent S
5-222, 2007. 
un D. and 

mization Algo
ulated Annea
al of Comp
ity, Vol. 6, No

C., Nasiri-G
Using Modul
n Optimizati
et Synchrono

mization (PS
ical & Elec
, No. 4, pp. 21

                     I

Artificial i
etwork & alg
omal Publish

orn A. “Popul
on Algorithms
ch journal. V
t 2004. 
ashhadi H. an
bust Genetic A
n Journal o
ring (IJEEE),

nchian F. and
ve Design Op
rmanent Mag

Optimization 
cal & Electr

o. 3, pp. 183-1
ngaraj A. A.
rossover Ope
ems” Springe

Systems (ASC)

Zulian Q., “
orithm Based
aling”, IJCSN
puter Science
o.10, pp. 152-1
Gheidari Z. an
lar Pole for 
on of a Li

ous Motor by
O)”, Irania
tronic Engin
14-223, 2010.

Iranian Journ

intelligence a
gorithm gene

her, 1th editi

lation Set Ba
s”, Computer

Vol. 31, No. 

nd Seyedin S. 
Algorithm Ba
of Electrical 
, Vol. 1 , No

d Nasiri-Gheid
ptimization o

gnet Motor Us
(PSO)”, Iran

ronic Enginee
89, 2010. 
, “A new P
rator for Glo

er Innovations
), Vol. 44, No

“Particle Swa
d on the I
NS Internatio
e and Netw
157 ,Oct. 2006
nd Tootoonch

Multi-object
inear Perman
yParticle Swa

an Journal 
neering (IJEE
 

nal of Electric

and 
etic, 
ion. 

ased 
r & 
10, 

A., 
ased 

& 
o. 3, 

dari 
of a 
sing 
nian 
erin 

PSO 
obal 
s in 
. 1 , 

arm 
Idea 
onal 
work 
6. 
hian 
tive 
nent 
arm 

of 
EE), 

in 
 

and
Lab
Pro
Pub
“Co
boo
res
ran
and
Vib
 

afte
now
now
rob
 
 
 

al & Electron

Sairan Spatial

 

d he is also t
boratory. He ha
ogram’s Thesis 
blished over 4
ontrol System 
ok “Flight Dy
earch interests 

nging from robo
d optimization
brations. 

 

er that he wor
w. He has Publi
w. His researc
botics. 

nic Engineerin

Maryam
Sabzevar
received 
Ferdows
in 2006. 
engineer
is inte
techniqu
intereste

l Industrial Gr

Ahmad 
degrees 
Alabama
Robotics
that he w
Branch 
Space S
He is cu
in the S
of the A

the director of
as supervised m
and dissertatio

40 technical p
Design Using 
ynamics” to t
span a broad 

otics, Intelligen
n in autonom

Mehrzad
degree fro
and techn
graduated
engineerin
Toosi in
Search Si
until 1996
didactic 
defence m

rks in Sairan S
ished 17 techni

ch interests to 

ng, Vol. 7, No.

m Barati w
r, Iran in 
 her B.S d

si University 
She graduate

ring in M.S i
erested in 

ue and Sh
d in Robotic
roup until now

R. Khoogar r
from The U

a including a Ph
s and Control i
worked in the 
of the MacDon

System Compan
urrently a Assis
cience and Res
Azad Universi
f an Industria
more than 40 M
ons during this
apers, Authore
Matlab” and T
the Persian la
interdisciplina

nt System learn
mous systems 

d Nasirian re
om Iran Univer
nology (IUST)
d in Ph.D. deg
ng from Kh

n 2007. He w
ite in surface ef
6. After that he
and Research 

ministry from 1
Spatial Industri
cal papers and 
satellite, groun

 4, Dec. 2011

was born in 
1984. She 

degree from 
of Mashhad 

ed in Control 
n 2008. She 

intelligent 
e is also 
. She works 

w. 

received three 
University of 
h.D. degree in 
in 1989. After 
Space System 
nnell Douglas 
ny until 1991.  
stant Professor 
search Branch 
ity in Tehran 

al Automation 
MS and Ph.D. 
 time. He has 
ed a book in 
Translated the 
anguage. His 

ary curriculum 
ning, planning 
to Industrial 

ceived his M.S
rsity of science
) in 1995. He
gree in Control
haje Nasiredin
worked in the
ffect from 1993
e worked in the

institution of
999 until 2003

ial Group until
3 journals until
nd station and

 

S 
e 
e 
l 
n 
e 
 

e 
f 
 

l 
l 
d 


