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Design of a Permanent-Magnet Synchronous Generator for a 
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its Capability Curves 
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Abstract: Permanent-Magnet Synchronous Generators (PMSGs) exhibit high efficiency 
and power density, and have already been employed in gearless wind turbines. In the 
gearless wind turbines, due to the removal of the gearbox, the cogging torque is an 
important issue. Therefore, in this paper, at first, design of a Permanent-Magnet 
Synchronous Generator for a 2MW gearless horizontal-axis wind turbine, according to 
torque-speed and capability curves, is presented. For estimation of cogging torque in 
PMSGs, an analytical method is used. Performance and accuracy of this method is 
compared with the results of Finite Element Method (FEM). Considering the effect of 
dominant design parameters, cogging torque is efficiently reduced. 
 
Keywords: Cogging Torque, Magnetic Equivalent Voltage, Permanent-Magnet 
Synchronous Generator, Power Coefficient. 

 
 
 
1 Introduction1 
Energy crisis and environmental pollution caused by 
fossil fuel, have led many countries to make effective 
use of wind energy for electric power generation. The 
horizontal-axis wind turbines-due to great heights from 
the ground level-are good variants to generate electricity 
at high power levels [1]. 

Generators used in wind turbines are divided into two 
types of constant-speed and variable-speed. Until the late 
1990s, most wind turbines were built for constant-speed 
applications. The power level in these generators is 
below 1.5 MW and a multi-stage gearbox-to maintain a 
constant speed-is often used. Nowadays most wind 
turbine manufacturers are building variable-speed wind 
turbines for power levels from approximately 1.5 to 5 
MW [2]. Recently, PMSGs, due to high-efficiency and 
power density, have been greatly considered to produce 
electric power at different levels [3]. 

In wind turbines, in order to increase rotational speed 
of the shaft, gearboxes are used. But due to mechanical, 
repairing and noise problems, they are now removed and 
so called direct-drive generators are announced [4]. In 
this case, in order to compensate the lack of high 

                                                 
Iranian Journal of Electrical & Electronic Engineering, 2015. 
Paper first received 22 Dec. 2013 and in revised form 26 Oct. 2014. 
* The Authors are with the Department of Electrical Engineering, 
Faculty of Engineering, University of Isfahan, Isfahan, Iran. 
E-mail: kiyoumarsi@eng.ui.ac.ir. 

rotational speed of  the  rotor, by  removing  the  
gearbox, the number of poles in generator should be 
increased. 

One of the disadvantages of the direct-driven 
generators is the cogging torque that is the main part of 
the torque pulsations. The cogging torque is the 
interaction between the Permanent-Magnets (PMs) and 
the stator slots [5]. Due to the direct connection of the 
wind turbine and generator shaft, torque pulsation has an 
important concern and has direct impact on the efficient 
use of the wind power. Therefore less torque ripple, 
developed by the system, reduces the mechanical stress 
and lowers the maintenance cost. The cogging torque 
calculation is discussed in many technical papers. In [6], 
neglecting the motor’s curvature, an analytical method is 
used for this purpose. In [7-8] an analytical method is 
used to optimize small motors; however, it has not a 
suitable prediction in large machines. Five different 
methods for calculating the cogging torque is comprised 
in [9]. 

In this paper, according to the speed-torque and 
capability curves, the area of operations to generate 
constant power for the generator is selected. The 
generator design is done in this interval, then, using an 
analytical method, the generator cogging torque is 
predicted and the results are compared with FEM. With 
considering the effect of design parameters, cogging 
torque is reduced considerably. 
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The magnets are providing the air-gap flux density to 
generate power and are mounted on the exterior surface 
of the rotor. Among the two rare-earth permanent-
magnets (NdFeB, SmCo), the NdFeB is preferred; for it 
is cheaper and is already more available [12]. The 
primary parameters that affect a PM machine’s 
dimensions are the air-gap length and the magnet height. 
In [13], based on analytical and practical process, 
different methods for estimating the proper air-gap 
length are presented. These two parameters play a major 
role in determining the air-gap magnetic field, the air-
gap flux density and the induced voltage in the machine. 
 

3.1  Airgap Flux Density 
Airgap flux density is determined according to 

saturation level of the stator. If the air-gap flux density is 
high enough to saturate the stator’s core material, it will 
reduce the machine’s performance. Therefore a balance 
must be established between magnetic circuit saturation 
and power absorption capability. For the considered 
generators, the flux density in the airgap considered as 
0.8 T. The fundamental component of the airgap flux 
density distribution is determined according to [14]: 

1 

4 sin
2

⎛ ⎞
⎜ ⎟
⎝ ⎠=

pm

peak maxB B

πα

π  
(5) 

where αpm is the pole-arc to pole-pitch ratio and Bmax is 
the maximum air-gap flux density. 
 

3.2  Main Dimensions of the Generator 
The first step to obtain the dimensions of the 

permanent-magnet surface-mounted generator is to 
choose appropriate tangential stress (σFtan). The 
tangential stress is a factor that produces torque in these 
machines. The tangential stress depends on linear current 
density and flux density. The torque equation is 
expressed as [14]: 

2
/

tan 2
= r

F
DT lσ π

 
(6) 

The diameter-to-length ratio in the generator is 
described as: 

/ =rD
l

χ
 

(7) 

where Dr is the rotor diameter and /l  is the rotor 
equivalent length. 
 

3.3  Stator and Rotor Yokes 
Stator and rotor yokes provide a path for the flux to 

be circulated in the machine. The height of the stator and 
rotor yokes depends on the saturation level of the core. 
The efficiency of the machine can be deteriorated by 
choosing the yoke very small, on the other hand, the 
yoke cannot be selected over a specific size due to the 
machine’s oversize. By selecting the maximum valid 

value for the flux density, the height of the stator and 
rotor yokes can be calculated as follows: 
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In which mφ  is magnetic flux, Βyr is rotor yoke flux 
density, Βys is stator yoke flux density, bν is width of the 
ventilation ducts, nν is number of the ventilation ducts 
and kfe is the space factor for lamination. 
 

3.4  Equivalent Magnetic Voltage 
Pass of magnetic flux into different parts of machine 

causes an equivalent magnetic voltage drop to be 
created, that is called magnetic voltage. The magnetic 
voltage in different parts of the machine depends on the 
magnetic resistance (reluctance) of that part. The main 
relation of the magnetic voltage in magnetic circuits is as 
follows: 

= ∫m
l

U Hdl
 

(10) 

where H is the magnetic field and l is the path’s length. 
The airgap has the highest magnetic voltage drop in 

the machine due to high magnetic resistance in the 
region. This can be defined as follows: 

max

0

.m e e
BU δ δ
μ

=
 

(11) 

where μ0 is the permeability of air and δe is the effective 
air-gap.

 The product of the magnetic field strength of the 
stator teeth and its height results in teeth’s magnetic 
voltage, which is defined as: 

.=md d dU H h  
(12) 

Because of the nonlinearity between magnetic flux 
density and magnetic field strength, it results in 
nonlinear magnetic voltage in stator and rotor yoke, as 
for a coefficient c is used to determine the influence of 
the maximum flux density in the yoke. The magnetic 
voltages are as follows: 

=mys s ys ysU c H τ  
(13) 

=myr r yr yrU c H τ  
(14) 

In which 
yH is the field strengths corresponding to 

the highest flux density and τy is the length of the pole-
pitch in the middle of the yoke. 
 

3.5  Magnets Dimensions 
The produced magnetic voltage in all parts of the 

machine is resulted from the flux of the magnets. In 
other words it is the magnet’s flux that produces the 
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magnetic voltage. An approximation to calculate this 
parameter is as: 

=mtot c PMU H h  
(15) 

With the expansion of the above relations, 
permanent-magnet height is calculated as follows: 
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3.6  Winding Factor 

Generator’s windings are distributed on the stator-
inner surface to produce a sinusoidal voltage. Thus, the 
flux, penetrating the winding, does not intersect all 
windings simultaneously, and there is a certain time 
difference in the flux passing through the windings. This 
phenomenon in the induced voltage is defined by a 
coefficient which is called distribution factor. The 
Electromotive Force (EMF) in the machine depends on 
the number of winding turns in addition to the winding 
factor that is dependent to each harmonic and air-gap 
flux. The EMF is defined as: 

( ) =pm n s n wnE k Nω φ  
(17) 

where ωs is the synchronous rotational speed; nφ  is the 
magnetic flux; kwn is the winding factor; and N is the 
number of turns per path. 

The winding factor consists of distribution factor, 
pitch factor and skewing factor. The relation of the 
winding factor is defined as follows [15]: 
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where m, is the number of phases; wτp is a constant 
coefficient equal to 0.83; Ssq, is the pitch of pole-pair; q, 
is the number of slots per pole per phase; and, τp, is the 
pole-pitch. 

The values of the winding factor harmonics for this 
generator are illustrated in Fig. 3. 
 

 

Fig. 3 Winding factor harmonics for q=1.6. 

3.7  Magnetizing Inductances 
Due to similar values of permeability for air and 

permanent-magnet, the d- and q-axis inductances in 
PMSG have approximately the same values. The 
magnetizing inductance for an m-phase PMSM with 
distributed winding is defined as: 
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The d- and q-axis inductances are obtained from the 
leakage and magnetizing inductances. The leakage 
inductances in the electrical machines include the air-gap 
leakage inductance, slot leakage inductance, tooth tip 
leakage inductance, and end-winding leakage inductance 
[14]. 
 

3.8  The Losses of the Generator 
The losses in PMSM can be divided into several 

categories which are: stator Joules losses, mechanical 
losses, stray losses and iron losses. The iron losses are 
approximately proportional to the square of the yoke flux 
density and mass of the yoke. In addition, iron loss 
depends on the electrical frequency of the generator. The 
maximum frequency is proportional to the rotational 
speed so that increasing the rotational speed, causes the 
iron loss to be increased. An approximation to calculate 
the iron losses is as: 

32
2

15 1.5 50
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B fP k P m
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where f is the frequency, kFey is the correction factor, my 
is the mass of yokes, By is the yoke magnetic flux density 
and P15 is the loss correction factor. 
 

3.9  The Torque-Load Angle Representation 
The graph of the torque against the load angle is very 

important in characterizing the electrical machine. 
Whenever the inductances and electromotive forces are 
known, the torque relation with respect to load angle can 
be predicted. The torque equation against the load angle 
in the PMSMs is expressed as [16]: 

2

.. sin
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pm
e

s md s

E Um pT
L L σ

δ
ω

(21) 

where Lsσ is the total leakage inductance and δ is the load 
angle. 

Due to expected Ld=Lq, the maximum torque is 
achieved with load angle equal to 90° . Fig. 4 shows the 
torque curve plotted for this designed generator for a 
288-slot- and 60-pole combination. 

In Fig. 4 the dashed line is achieved from Eq. (21) 
results, and the continuous curve is obtained from the 
FEM results. In Eq. (21) the d- and q-axis inductances 
are considered the same, but in the FEM, these values 
are closer to their actual values, thus there are a bit 
different with comparison to the values obtained from 
Eq. (21). Due to this, a slight difference can be seen in 
the curves. 
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