
Iranian Journal of Electrical & Electronic Engineering, Vol. 8, No. 3, Sep. 2012                                                         195 

Mathematical Analysis of Optimal Tracking Interval 
Management for Power Efficient Target Tracking Wireless 
Sensor Networks 
 
 
H. Jamali-Rad*, B. Abolhassani* and M. Abdizadeh** 
 
 
 

Abstract: We study the problem of power efficient tracking interval management for 
distributed target tracking wireless sensor networks (WSNs). We first analyze the 
performance of a distributed target tracking network with one moving object, using a 
quantitative mathematical analysis. We show that previously proposed algorithms are 
efficient only for constant average velocity objects; however, they do not ensure an optimal 
performance for moving objects with acceleration. Towards an optimal performance, first, 
we derive a closed-form mathematical expression for the estimation of the minimal 
achievable power consumption by an optimal adaptive tracking interval management 
algorithm. This can be used as a benchmark for energy efficiency of these adaptive 
algorithms. Second, we describe our recently proposed energy efficient blind adaptive time 
interval management algorithm called Adaptive Hill Climbing (AHC) in more detail and 
explain how it tries to get closer to the derived optimal performance. Finally, we provide a 
comprehensive performance evaluation for the recent similar adaptive time interval 
management algorithms using computer simulations. The simulation results show that 
using the AHC algorithm, the network has a very good performance with the added 
advantage of getting 9 % closer to the calculated minimal achievable power consumption 
compared with that of the best previously proposed energy efficient adaptive time interval 
management algorithm. 
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1 Introduction1 
Target tracking is one of the most important 
applications of distributed wireless sensor networks 
(WSNs). A target tracking wireless sensor network is a 
sensor network that monitors and tracks moving objects 
in the area under its radio coverage [1]. Since sensors 
are powered by small batteries, with no chance of 
replacing or recharging them, they have limited lifetime, 
which makes the tracking network to fail. This fact 
clarifies the need for an appropriate mechanism to 
decrease the power consumption in the network. 

The performance of a tracking network is deeply 
dependent upon “Tracking Resolution” or “Tracking 
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Interval”, which is the time interval between two 
consecutive sensing operations. It is obvious that if the 
tracking interval decreases, the miss probability of the 
object decreases too; however, this improvement in the 
miss probability occurs at the expense of more power 
consumption due to using smaller tracking intervals. To 
meet both target values for the miss probability and 
network lifetime, a predictive mechanism can be used to 
adjust the tracking interval. Prediction-based methods 
try to wake up only those sensors that are in the 
neighboring area of the moving object, while all other 
sensors can stay in sleep mode that leads to very low 
power consumption by the network. Pioneering idea for 
the prediction-based monitoring in sensor networks, 
using past reading history and spatial and temporal 
relationships of readings from sensors, is proposed by 
Goel and Imielinski [2]. Comprehensive studies of 
power consumption on WINS nodes developed by 
Rockwell and UCLA show that long distance 
transmissions dominate the energy consumption of 
wireless sensor networks (WSNs) [3]; hence, in further 
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studies a series of local computations are done in sensor 
nodes to avoid long distance transmissions [4]. 
However, aforementioned studies do not address the 
issue of scalability for coordinating a wireless sensor 
network for the purpose of target tracking. 

A Distributed Prediction-based Tracking (DPT) 
mechanism for managing and coordinating a tracking 
sensor network is proposed in [5]. The objective 
function of the proposed mechanism is to minimize the 
total power consumption of the tracking network. Due 
to the uncertainty and unpredictability of real-world 
moving objects’ movement patterns, the tracking 
algorithm is required to adapt to real-time changes of 
velocities and directions of a moving target. Hence, 
adaptive mechanisms should also be added to the 
prediction capability of the target tracking networks. 
This idea was the origin of further studies in the 
literature [6-15]. In [6], an adaptive framework to 
reduce communication in the context of information 
collection for mobile target tracking is explored. In [7], 
a protocol for Predictive Accuracy-based Tracking 
Energy Saving (PATES) is well developed to conserve 
energy of WSNs. As well, a quantitative analytic model 
is proposed in [7] for calculating the optimal tracking 
interval for a moving object with approximately 
constant average velocity (with no acceleration) 
movement pattern. 

From one point of view, further research studies in 
adaptive target tracking are divided into two basic 
directions. In the first, enhancement of the complexity 
and capability of tracking is of major concern; besides, 
power efficiency is considered as well. To be more 
specific, the first direction includes the application of 
more complex functions for the tracking network such 
as multiple-object tracking [8-10]. Specifically, the 
application of extended Kalman filtering (EKF) [8] or 
Q(λ)-learning [9] is considered to improve the quality of 
tracking. In the second research direction, however, the 
power efficiency is of major concern, while a simple 
target tracking network (in most cases for practical 
moving objects) is considered [6-7, 11-15]. Our 
proposed algorithm lies in the second direction of 
research studies. 

Since the optimal tracking interval in [7] is not 
accurate if the average velocity of movement varies 
over time (movements with acceleration), in [11] an 
energy efficient adaptive tracking algorithm called 
Predict-and-Mesh (PaM) is proposed to consider 
movements with acceleration. The proposed algorithm 
consists of a prediction model and a failure recovery 
process. In [12], a novel algorithm is proposed that can 
significantly improve the performance in the PaM. But, 
the proposed algorithm in [12] is not blind and requires 
prior knowledge about the network infrastructure to be 
trained with a lookup table, which is not available in 
most practical situations. To remove this constraint, in 
[13] a new blind adaptive prediction-based tracking 
algorithm (called AEC) is proposed, which significantly 

outperforms the performance of the PaM in a similar 
tracking scenario. In [14], the drawbacks of the 
conventional PaM are studied and two novel 
modifications in its basic modules are proposed to 
improve its functionality and achieve a better power 
efficiency. The proposed modified algorithm is called 
Modified PaM (MPaM). The simulation results 
illustrated a considerable improvement in comparison 
with the conventional PaM and the AEC. 

In [15], the AHC algorithm is proposed and briefly 
explained. It is shown that AHC also improves the 
power consumption over the MPaM. However, the 
performance of this algorithm is compared with a rough 
(linear) estimation of optimal achievable performance. 
Now, the question is how much more improvement can 
be achieved? Or is there a lower bound or minimal 
power consumption (we call it Pmin_overall) for the 
movements with acceleration? In this paper, first, we 
consider the above question to develop a framework in 
order to derive a mathematical equation for the minimal 
achievable power consumption (Pmin_overall) due to the 
use of an optimal adaptive algorithm for the real-time 
management of tracking interval values when compared 
with non-adaptive algorithms, both for a movement 
pattern with acceleration. The mathematical derivations, 
here, are based on a quadratic interpolation of tracking 
time interval versus the velocity of the object, which 
significantly improves the accuracy of closed form 
formulas in comparison with linear interpolation in [15]. 
Second, to highlight the achievable performance of a 
dynamic tracking interval management algorithm, we 
describe the performance of Adaptive Hill Climbing 
(AHC) algorithm [15] and show how this algorithm 
results in significantly decreasing the network power 
consumption and getting closer to its minimal value 
(Pmin_overall). Meanwhile, we illustrate that using AHC a 
smaller miss-probability and lower power consumption 
is achieved as well (when compared to best existing 
similar adaptive algorithm MPaM [14]). 

The rest of the paper is organized as follows. In 
Section 2, the network model and its components are 
described. In Section 3, a closed-form formula for the 
minimal achievable power consumption (Pmin_overall) of 
the movements with acceleration is derived. In Section 
4, operational mechanism of AHC algorithm is 
described and analyzed to show how it gets closer to the 
derived minimal power consumption. In Section 5, 
using computer simulations, the performance of AHC is 
evaluated with respect to the newly derived optimal 
performance and also compared with those of four 
existing similar prediction-based tracking algorithms 
(i.e. the PATES, the PaM, the AEC and the MPaM). 
Finally, this paper is concluded in Section 6. 
 
2 Network Model 

In this section, we describe the network model and 
discuss about our proposed Adaptive Prediction-based 
Tracking (APT) scheme. 
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2.1  Prediction-Based Tracking Sensor Netoworks 
In order to track a moving object, the network 

should provide enough coverage and the ability to 
localize the object. We assume that the sensors used in 
the network are able to estimate the distance D and the 
direction θ of the moving object (DOA sensors [11, 14, 
15]). Thus, the density of sensor nodes should be large 
enough so that at any given time and location in the 
two-dimensional area under its coverage, at least one 
sensor is able to sense the moving object with its normal 
sensing range. Since the number of sensor nodes is 
large, the distribution of the number of sensor nodes in 
any given area A is Poisson with rate λA in which λ 
nodes/m2 is the sensor nodes density [5]. Therefore, to 
have at least one sensor with its normal sensing range in 
any given point with probability 0.99, by substituting a 
value for r as the sensing range, the required sensor 
node density λ can be calculated by solving Eq. (1), 
given below: 
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Sensor nodes have different power consumptions in 
transmit, receive, idle, sleep (also called power down) 
and sense modes [3, 4]. In the sleep mode the power 
consumption of the sensor nodes reduces to a minimum 
level, while the transmit mode requires the maximum 
value of power consumption. So, more number of long 
transmissions increases the power consumption and 
reduces the network lifetime. To increase the network 
lifetime, predictive algorithms use the past readings at 
sensor nodes and process them to predict the location of 
the moving object for the next tracking interval. Then 
using this prediction, the cluster head awakes only those 
sensors which are supposed to have the object in their 
sensing range. Different prediction models are discussed 
in [4]. 
 

2.2  Power Consumption and Tracking Model 
We denote the power consumption in different 

operational modes, namely, transmit, receive, idle, 
power down and sense by WT, WR, WI, WD and WS, 
respectively. Then, the overall energy consumption of i-
th sensor during T seconds (Total tracking duration) can 
be written as 

. . . . .
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where tT, tR, tI, tD and tS , respectively, represent the time 
periods required for the mentioned working modes 
during T seconds. It is notable that T = tT + tR + tI + tD 
+ tS. Thus, assuming that the tracked object has been 
present in the sensing area of the network for the 
interval T, the total network energy consumption can be 
given by 
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Also, object’s movement pattern and the prediction 
model to predict the next location of the moving object 
can be simply described as follows. The instantaneous 
velocity of the object is considered to vary between zero 
and Vmax with an instantaneous acceleration 
|α|∈[0,αmax]. The object changes its direction (θv) 
randomly over [-π, π]. As it is clear from the movement 
pattern, it is not a fully random movement pattern. 
However, by selecting different values for Vmax and αmax 
it can be mapped to different movement patterns 
appropriate for a wide variety of practical moving 
objects e.g. a human or a vehicle. Such practical 
movement patterns are of special interest in the 
literature and are also considered in [6, 7, 11-15]. 

As mentioned earlier, in this study, we focus on the 
importance of an energy efficient tracking interval 
management algorithm (power efficiency instead of a 
complex tracking scheme). Therefore, to reduce the 
complexity of our calculations, we use a simple 
averaging prediction model [4, 5, 7, 11-15] wherein the 
next location of the moving object is predicted as 
follows. Assume that the location of the object at 
present and next tracking intervals (ti and ti+1, 
respectively) are denoted by xi and xi+1, respectively. 
Then, by estimating the instantaneous velocity using 
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and knowing the direction (θv,i) of the moving object 
(from sensor readings) during Δt, the next location of 
the moving object can be calculated using 
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In practice, the sensor measurements are imprecise. 
Hence, wi+1 denotes the process noise (e.g. position 
measurement error due to unknown acceleration). Then 
assuming an instantaneous acceleration α, the velocity 
vector can be estimated as follows 

,.0 tvv Δ+= α                                                             (6) 

where vo stands for the initial value of the velocity [11-
15]. 
 

2.3  Adaptive Prediction-Based Tracking (APT) 
The key idea in the prediction-based tracking 

schemes is that the lifetime of a sensing system (e.g. 
sensor networks) can be extended by the help of a set of 
prediction-based activation mechanisms. Making use of 
such mechanisms, most sensors will be kept in sleep 
mode for conserving energy until they are triggered by 
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moving object to become active. Another solution for 
minimizing the power consumption besides the 
mentioned policy is to dynamically modify the tracking 
interval (S) based on some given parameters. Now, with 
attention to what was described about prediction-based 
tracking sensor networks (subsection 2.1) and by taking 
the idea from [5], [7] and [11-15], we propose a new 
Adaptive Prediction-based Tracking (APT) scheme for 
WSNs. The novelty of the proposed APT scheme 
returns to a new adaptive tracking interval management 
algorithm, which works in one of APT modules. The 
new APT scheme comes into the play after detecting the 
object by sensor nodes and has the following two basic 
modules: “Prediction Module” and “Recovery Module”. 

1)  Prediction Module: Once the target is detected, 
the active sensor (current node) will predict the next 
location of the object using Eq. (5). Then it will activate 
another proper sensor node as the next current node 
(collaborative prediction). To reduce the power 
consumption, current node estimates the time required 
for the object to move out of its sensing range (escape 
period). Using this knowledge, it is able to modify the 
tracking interval to avoid unnecessary activations while 
not losing the object. Hence, an important consideration 
in the design of power efficient distributed target 
tracking sensor networks is an efficient algorithm 
capable of dynamic modification of tracking interval. 
We consider this issue in Section 4. 

2)  Recovery Module: The predictions are always 
inexact due to the process noise in Eq. (5) and probable 
blind coverage areas, which can make the tracking 
system to lose the object. Hence, a recovery module is 
required to compensate for this loss. If the predicted 
location is very different from the actual location of the 
object sensed by the current node, the object may be out 
of coverage of the next current node. In this case, the 
object is lost. Therefore, some other surrounding sensor 
nodes should be awakened to recapture the lost object 
(Recovery process). This process can be done in two or 
more stages, but, we consider only two stages. In the 
first stage (1st_Recovery), some of the nearest 
neighboring sensor nodes are awakened to find the 
actual location of the object. If the object is found, the 
task of the Recovery Module completes and no extra 
sensor node is required to localize the object. If the 
object is not found, a more assertive approach is applied 
and in this stage (2nd_Recovery) a lot of other 
neighboring sensor nodes should be awakened and with 
a high probability, the object will be found. 
 
3 Mathematical Analysis of Optimal Tracking 
Interval Management 

As we described, we consider practical movement 
patterns for the object wherein the object (e.g. a human 
or a vehicle intruding a covered area) may not move like 
fully random movement patterns. 

However, in practice, an intruding object also does 
not necessarily keep its average velocity constant as 
studied in some of previous research works in the 
literature. Analytical and simulation results in [7], 
reveals that for a movement pattern with approximately 
constant average velocity, the optimal tracking interval 
to be used for management of the tracking network for 
minimal power consumption is approximately a fixed 
value. However, for the movements with acceleration, a 
fixed optimal value does not exist anymore (the optimal 
value will be time variant) and the tracking interval 
should be dynamically modified according to variations 
in the objects’ movement pattern. Hence, a fixed value 
does not result in the minimal total power consumption 
for the tracking network. This motivated us to develop a 
mathematical framework to analyze the achievable 
minimal power consumption for target tracking 
networks based on adaptive modification of tracking 
interval for the objects moving with acceleration. It is 
worth noting that, since practical situations are of 
special interest in our study, a blind adaptive tracking 
interval modification is to be proposed, which (different 
from the previous research study in [12]) requires no 
prior knowledge about the network structure. 

As described earlier, the power consumption 
performance of the explained network model deeply 
depends upon an optimized policy for modification of 
tracking interval values. As described in [7], for an 
approximately constant average velocity a minimal 
value for the power consumption exists. Therefore, the 
power consumption function can be approximated by a 
convex-shaped function. For the sake of simplicity, we 
approximate such convex-shaped functions by a second 
order polynomial (quadratic polynomial) with a 
minimum at Sopt for a given v. Hence, for a movement 
pattern with a fixed average velocity the power 
consumption of the network can be approximated by 

,)(,)(),( 2 constvEifBSSAvSfP opt =+−==            (7) 

where E(.) represents statistical expectation. 
In general, A, B and Sopt (A(v), B(v) and Sopt(v)) are 

positive values and also functions of velocity of the 
moving object, which varies over time for movement 
patterns with acceleration. Hence, to minimize (7), S 
should be equal to Sopt, which is a function of v. In this 
case there is minimal power consumption, i.e., 

.)(min vBP =                                                                (8) 

By defining Ptotal as follows  
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and by substituting the R.H.S of Eq. (7) for P in Eq. (9), 
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Hereafter, we call the second term of Eq. (10) 
Pmin_overall, which is achieved when the condition S = Sopt 
is continuously met during the tracking process. 
However, the proposed algorithms in [11-14] are unable 
to keep the first term equal to zero, instantaneously. To 
solve this problem, a proper adaptive algorithm should 
be proposed to dynamically modify the instantaneous 
value of tracking interval. The more precise and faster 
the proposed algorithm in updating the tracking interval 
value to its instantaneous optimal value, the more Ptotal 
gets closer to Pmin_overall and therefore to the optimal 
performance. Since the first term of Eq. (10) is always 
positive, then 
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From both Eq. (8) and Eq. (11), it can be concluded 
that Pmin_overall is constant for the case of movement 
patterns with constant average velocity and leads to a 
fixed optimal tracking interval during the tracking 
process. This is also consistent with our previous 
explanations. However, in practice, there are cases 
wherein objects move with acceleration. For the 
movements with acceleration, Ptotal during a given time 
duration can be considered as a combination of 
successive quadratic functions with different minima. 
Each of the mentioned successive quadratic functions is 
considered to be the corresponding power consumption 
of a very small time interval. Intuitively, we can 
consider the average of these quadratic functions as the 
power consumption performance of the algorithms like 
the PATES in [7], which assume a constant average 
velocity during the given time span for a movement 
pattern with acceleration. We illustrate this concept 
using the following explanations. 

We consider a total tracking duration of 6 seconds 
and divide this time duration into six shorter time 
intervals of 1 second. We can consider the average 
velocity of moving object being constant in each of 
these six intervals of 1 second. Therefore, if we 
illustrate the power consumption of the network during 
each of these shorter intervals, there will be a convex 
function with a given minimum corresponding to Sopt in 
that tracking duration. Fig. 1 shows the simulation 
results for the six successive short time intervals with 
six convex functions. The bold dashed line represents 
the aforementioned average power consumption during 
the overall time duration of 6 seconds. As described 
earlier, this average is the minimal achievable power 
consumption of the tracking algorithms (like PATES), 
which ignore the instantaneous variations of the object’s 
average velocity during the tracking process, when 
tracking a moving object with acceleration. 

 

 
Fig. 1 Power consumption functions against S for diff. values 
of v. 
 

From Fig. 1, in some of the short time intervals we 
can achieve smaller total power consumption for the 
mentioned movement patterns, which is impossible to 
achieve by algorithms like PATES (the minimum of the 
bold dashed line). In the following, we mathematically 
prove the above explanations and also derive an 
equation for minimal achievable power consumption. 
To this aim, we assume that the successive minimum 
values for the power consumption functions (Sopt 
values), in the concerned span, can be fitted to a 
quadratic function of v (with three constants β, γ and ζ)  

.12.0,.. 2 <<++≈ optopt SvvS ζγβ                    (12) 

To show the feasibility of this assumption, we check 
our assumption with the simulation results in Fig. 1. The 
Sopt values versus velocity according to data of Fig. 1 is 
shown in Fig. 2. 

As it is clear from the figure, the quadratic 
interpolation for the Sopt (as a function of v) is 
acceptable and its mean squared error (MSE) is about 
0.0014 and can be calculated as 
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It is notable that a linear interpolation of Sopt values 
versus velocity could also be used in our mathematical 
analysis [15]. However, the quadratic interpolation leads 
to more accurate results (due to providing much lower 
MSE) in the following derivations. The result of the 
following mathematical derivations for linear 
interpolation of Sopt versus velocity can be found in [15]. 
In Appendix A, we show that the rough estimations in 
[15] can also be validated by doing simplifications in 
the proposed and more accurate derivations in this 
paper. As described earlier about Eq. (10), the optimal 
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Fig. 2 Quadratic interpolation of Sopt values. 
 
tracking interval management continuously updates the 
tracking interval to its instantaneous optimum 
value,which results in the minimal power consumption. 
Since Pmin_overall indicates this optimum performance, it 
is constant and independent of tracking interval values. 

Hence, only the first term of Eq. (10) is dependent of 
S and indicates the power consumption difference which 
can be achieved by those algorithms which ignore 
modifying the tracking interval according to variations 
of the average velocity (i.e. non-adaptive algorithms 
like PATES [7]) and the optimal tracking interval 
management algorithm. Therefore, using Eq. (10) and 
Eq. (12) we can write 
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In Fig. 1, it can be shown that for the values of S 
over [0.2, 1], variations of A(v) for the successive time 
intervals is negligible. Hence, for the sake of simplicity 
we write 
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To simplify the analysis, α can also be considered to 
be a constant value. Hence, 

[ ] ,))()((
0

2
0

2
0

min_

dttvtvS
T
A

PP
T

overalltotal

∫ +×+×+×+×−

=−

ζαγαβ
 (15) 

where, A denotes a constant related to the quadratic 
interpolation of convex-shaped power consumption 
functions (as in Eq. (7)), β, γ and ζ are the coefficients 
of quadratic interpolation of Sopt values (in Eq. (12)), α 
is the average value of acceleration and T represents the 
total time duration of tracking process. After calculating 
the above integral, we have, 
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Knowing that Pmin_overall is independent of S, the 
minimal achievable power consumption value of 
algorithms, which ignore the effect of variable average 
velocity in calculating the optimum value of tracking 
interval (non-adaptive algorithms) can be found by 
setting the derivative of Eq. (16) with respect to S equal 
to zero. 
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Also, we know that 
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By substituting x from Eq. (20) into Eq. (16) and 
after simplifications, the minimal power consumption 
can be calculated as follows 
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where, A , y, z and T are described earlier. The 
min(Ptotal) is the minimum power consumption that a 
non-adaptive algorithm can achieve, which is 
AT2/60[5y2 + 10yzT + 16/3z2T2] Watts larger that the 
minimal achievable power consumption (Pmin_overall). 
The faster and the more precise the modification of the 
tracking interval is, the closer the tracking algorithm 
gets to Pmin_overall. 
 
4 Performance Analysis of Adaptive Hill Climbing 
(AHC) 

In this section, we analyze the performance of our 
recently proposed adaptive time interval management 
algorithm in [15] with respect to the derived optimal 
performance in Section 3. 

To modify the tracking interval, the AHC algorithm 
considers the distance error (Error) between the 
measured and predicted locations of the object. So, this 
algorithm has an indirect cognition of the network 
power consumption. A sequence of actions: sense-
comparison-modification-sense ensures that the network 
keeps tracking the moving object with the near minimal 
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power consumption value. The idea behind the AHC 
algorithm is to update the tracking interval, from the 
Old_Step to New_Step considering the distance Error 
values, where Error is the difference between the 
measured and predicted locations of the moving object. 
The AHC starts its search from initial direction 
(Direc._Flag) and tracking interval (Old_Step), and 
modifies them after each tracking interval. To describe 
this idea, we propose the following equation for 
updating the tracking interval 

New_Step – Old_Step = Dirc._Flag × Step_Modif.,          (22) 

where Step_Modif. is the adaptation factor for the AHC 
algorithm. The value of step modification (Step_Modif.) 
can be kept constant or can be updated during the 
tracking process. The latter provides the algorithm with 
a faster performance and therefore, we use the following 
equation to update it. 

Step_Modif. ← Step_Modif. / Smoothing_Factor,            (23) 

where Smoothing_Factor, as it is self-explanatory, is 
used to smoothly update the Step_Modification. To 
avoid from the divergence of the algorithm, the 
Step_Modification is kept greater than a minimum value 
(Minimum_Step_Modification), which is the minimum 
accuracy required for the modification of tracking 
interval values. Small values for 
Minimum_Step_Modification makes the algorithm slow 
in modifying the tracking interval, and consequently 
degrading its performance for real-time applications. 
However, large values for Minimum_Step_Modification 
leads to inaccurate modifications of tracking interval. 
Therefore, there is a tradeoff between accuracy and 
speed of the algorithm due to the value of 
Minimum_Step_Modification. Threshold_Error is the 
threshold of distance error between the measured and 
predicted locations of the object, which does not lead to 
miss the tracked object before awakening and assigning 
a new Current Node, as well as to a high measure of 
cost (power consumption).  In other words, the value of 
Threshold_Error is set such that it results in meeting 
both a target miss probability and corresponding 
minimum power consumption. So, Threshold_Error 
should be set to values less than the sensing range of 
sensors. When the Error is less than the 
Threshold_Error, it meets a miss probability better than 
the target miss probability but it increases the power 
consumption. So, the tracking interval is less than the 
value required and it should be increased. Therefore, 
with a positive value for Direc._Flag and Step_Modif., 
Eq. (22) leads to an increase in the tracking interval. On 
the contrary, if the Error is greater than 
Threshold_Error, it doesn’t meet the target miss 
probability although it decreases the power 
consumption. So, the tracking interval is greater than a 
proper value. In this case, the algorithm negatives the 
Direc._Flag and hence the total negative value of the 
R.H.S of Eq. (22) leads to a decrease in the tracking 

interval. It is notable that if we set the value of 
Step_Modification to zero, it means we are not adapting 
the value of tracking interval. However, a large value 
for Step_Modification increases the miss probability of 
the object due to improper adaptation of the tracking 
interval values. Since Threshold_Error value is set 
properly, this process leads to a very good functionality 
of the AHC algorithm. 

As it is clear from the given explanations, the AHC 
algorithm tries to modify the tracking interval in 
different portions of the movement pattern based on the 
variations of the average velocity. This can be explained 
in simple terms. For example, when the average velocity 
increases, it results in an incorrect estimation of the next 
location (using Eq. (5)) and hence increasing Error. 
This in turn leads to the modification of the tracking 
interval using Eq. (22) and Eq. (23). The AHC 
Algorithm is also described in pseudo code in the 
following: 
 
 
Algorithm: Adaptive Hill Climbing (AHC) 

Local Variables: Error, Modified_Error. 
Parameters Definition: 
Threshold_Error: Threshold value of distance error. 
Old_Step: Previous tracking interval. 
New_Step: Modified tracking interval. 
Direction_Flag: Initial search direction for algorithm. 
Step_Modifiction: Adaptation factor. 
Smoothing_Factor: A factor that smoothes the adaptation 
process of Step_Modfication. 
System Functions: [New_Step, Step_Modification] = AHC (.) 
Procedure: 
1:   Error ←Abs (Measured_Position – Predicted_Position) 
2:   if  Direction _Flag =1 
3:        if  Error > Threshold_Error 
4:             New_Step ← Old_Step – Step_Modification 
5:        elseif  Error < Threshold_Error 
6:             Direction _Flag  ← ~ Direction _Flag 
7:             if   Step_Modification >  
                                            Minimum_Step_Modification 
8:                  Step_Modification ← Step_Modification 
                                                             /Smoothing_Factor 
9:             end 
10:           New_Step ← Old_Step + Step_Modification 
11:      end 
12:  else 
13:       if  Error < Threshold_Error 
14:            New_Step ← Old_Step + Step_Modification 
15:       elseif Error > Threshold_Error 
16:            Direction _Flag ← ~ Direction _Flag 
17:            if  Step_Modification >  
                                            Minimum_Step_Modification 
18:                 Step_Modification ←  Step_Modification 
                                                             /Smoothing_Factor 
19:            end 
20:            New_Step ← Old_Step – Step_Modification 
21:       end     
22:  end    
23:  Old_Step ← New_Step 
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5 Simulation Results 
In this section, we evaluate the performance of the 

existing similar adaptive algorithms (including AHC) 
with respect to the derived optimal performance to find 
out how much they can get close to the optimal power 
conservation. The following simulations are performed 
using MATLAB. 

We simulated a scenario for tracking a moving 
object with the explained movement pattern in 
subsection 2.2. The covered area by the network is a 
two-dimensional sensing area of the size 1000×1000 m2. 
Fig. 3 illustrates a sample trajectory of the moving 
object with the explained movement pattern as well as 
the layout of the sensing field. The dot points represent 
the sensors and the dashed line represents the moving 
track of the object. The power consumptions for each 
operating mode of the sensor nodes are based on the 
Berkely MICA Mote node [11]. Hence, the following 
energy consumption values are used in the simulations: 
E_Sense = 12, E_Transmit = 27, E_Idle = 1.8, 
E_Receive = 21, E_1st_Rec. = 144 and E_2nd_Rec. = 
442 all in mJ/sec, where E_1st_Rec. and E_2nd_Rec. 
denote the total energy consumption for the recovery 
process of lost object in its stages. It is worth noting that 
we consider only two stages for the recovery process in 
our simulations; however, for more assertive 
approaches, the number of the stages can be increased. 

The sensing range of the sensors is assumed to be r 
= 30 m. As well, following the explanations given in 
subsection 4, the value of Smoothing_Factor is set to be 
4, which results in an acceptable accuracy. 
Threshold_Error, as described in subsection 4, stands 
for the threshold of the distance error (Error) between 
measured and predicted locations of the object, which is 
set to a value about sensing range. However, it can be 
set to values less than sensing range, which leads to a 
better tracking accuracy. 

To demonstrate the capability of the adaptive time 
interval management algorithms in terms of their power 
efficiency and tracking accuracy, we consider two 
different movement patterns which both are modeled 
based on the explanations given for practical 
movements in subsection 2.2. The first movement 
pattern can be considered as the movement of an 
intruding soldier (a human) and has the following 
parameters: Vmax = 2 m/sec and αmax = 10 m/s2. The 
second movement pattern is comparable with an 
intruding vehicle in the covered area and has the 
following parameters: Vmax = 40 m/sec and αmax = 20 
m/s2. 

To compare the simulation results with the 
mathematical derivations, we consider one of the 
movement patterns (the intruding vehicle) and calculate 
the relevant parameters for a tracking process during T  
= 10 seconds. The average value of α for the intruding 
vehicle is αmax/2 = 10 m/s2. The value of A can be 
extracted from the data illustrated in Fig. 1, which also 
depicts the power consumption performance of the 

explained scenario in some successive short time 
intervals. 

The values of β, γ and ζ can be extracted from Fig. 2. 
These values, as described earlier in Section 3, should 
be extracted using a quadratic interpolation for the 
power consumption values (for A) and quadratic 
interpolation of Sopt values as a function of velocity (for 
β, γ and ζ). As is clear from Figs. 1 and 2, and 
considering (7) and (12), for the given data, we have A 
= 1091, β = 0.0001, γ = -0.0186 and ζ = 1.0598. The 
values of the parameters used in our simulations are 
summarized in Table 1. Now, having the above values, 
we are able to calculate the expected optimal 
improvement in power consumption in comparison with 
non-adaptive algorithms due to using the optimal 
tracking interval management algorithm. According to 
(21), the expected improvement is AT2/60[5y2 + 10yzT + 
16/3z2T2] = 1091 × (10)2/60 × (0.103)2 = 18.68 mW. 
That is, if the optimal tracking interval management 
algorithm is used for tracking of the described 
movement pattern of intruding vehicle with the 
explained network structure, in the best condition, 18.68 
mW enhancement can be achieved in comparison with 
the case in which a non-adaptive algorithm is used. 
 
 

 

Fig. 3 Moving track of the object with acceleration. 
 

 

Fig. 4 Power consumption performance vs. tracking interval. 
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Table 1 Values of the Parameters. 

Parameter Simulation Values 

Run Time (T) 10 Seconds 

A 1091 

Β 0.0001 

Γ -0.0186 

Ζ 1.0598 

Vmax 2 m/sec 40 m/sec 

αmax 10 m/s2 20 m/s2 

 
Table 2 Performance Evaluation. 

Algorithm 
Accuracy Power Cons. (mW) 

Vmax = 2 
m/s 

Vmax = 40 
m/s 

Vmax = 2 
m/s 

Vmax = 
40 m/s 

PATES 
(S = 0.2) 99.9 %  99.9 % 144.50 144.50 

PATES 
(S = 0.5) 99.9 %  85 % 57.05 61.14 

PATES 
(S = 1) 99 % 40 % 27.83 158.90 

PaM 99 %  94 % 16.31 54.50 

AEC 99.9 %  99 % 15.10 48.70 

MPaM 99.9 % 99% 13.42 44.61 

AHC  99.9 % 99.9% 12.03 41.30 

Minimal Achievable Power Consumption 11.18 35.82 

 
The results of simulations for the intruding vehicle 

are illustrated in Fig. 4. 
As it is clear from the figure, simulation results for 

different fixed values of tracking interval (the PATES 
[7]) for the described movement pattern show that the 
power consumption reduces to a minimum value for S = 
0.6 second, which leads to the minimal power 
consumption of non-adaptive algorithms. It is also 
notable that the AHC is better than the best previously 
proposed similar algorithm (the MPaM). 

Further results of the simulations are summarized in 
Table 2. In the table, the total power consumption 
values (in mW) are calculated during T (total duration 
of tracking process). Also, we bring the power 
consumption values of tracking network for successive 
tracking intervals (non-adaptive). It is notable that we 
consider the calculated minimal power consumption as 
a benchmark and calculate the capability of all of the 
mentioned adaptive and non-adaptive algorithms in 
getting closer to this optimal performance. From first 
three rows of Table 2, we can notice that smaller 
tracking intervals (smaller values for S) result in a better 
tracking accuracy at the expense of larger power 
consumption in the non-adaptive algorithms such as 
PATES. But, adaptive time interval management 
algorithms (PaM, AEC, MPaM and AHC), by dynamic 
modification of tracking interval, reduce the power 

consumption while providing even a better tracking 
accuracy. Now, by considering the minimal power 
consumption for adaptive algorithms in the last row of 
the table, for example for the intruding vehicle (Vmax = 
40m/sec and αmax = 20 m/s2), i.e. 35.82mW, the AHC 
and the MPaM respectively get close to the minimal 
power consumption by {1- [41.3 – 35.82] /35.82} × 100 
= 84.70 % and {1- [44.61 – 35.82] /35.82} × 100 = 
75.46 %. This means that the AHC acts about [84.70 % 
- 75.46 %] = 9.24 % better than the best existing similar 
adaptive time interval management algorithm (the 
MPaM). 
 
6 Conclusions 

In this paper, we studied the problem of power 
optimization for distributed target tracking sensor 
networks using modification of tracking interval. To 
prove the inefficiency of previously proposed adaptive 
and non-adaptive algorithms for the case of a moving 
object with acceleration, we developed a quantitative 
mathematical analysis and derived the minimal 
achievable power consumption due to using the optimal 
adaptive time interval management algorithm. As well, 
to get closer to the derived minimal achievable power 
consumption, we describe a blind adaptive tracking 
interval management (the AHC) algorithm, to be used in 
our adaptive prediction-based tracking (APT) scheme, 
and we explained its functional procedure using a 
detailed conceptual reasoning. Simulation results show 
that the AHC algorithm gets 9 % closer to the derived 
minimal achievable power consumption than that of the 
best similar existing adaptive time interval management 
algorithm (MPaM). It means that the AHC is capable of 
significantly increasing the life time of the tracking 
network while keeping the tracking accuracy in an 
acceptable level (better than all of the previous 
algorithms). Finally, from a practical point of view, the 
AHC algorithm is blind and therefore achieves a certain 
level of self cognition for modifying the tracking 
interval, and requires no prior knowledge about the 
network infrastructure or movement characteristics of 
the object to become trained with a look up table. It 
means the AHC can easily be applied to practical 
environment tracking and monitoring systems. 
 
 
Appendix 

Herein, we illustrate that the derived minimal 
achievable power consumption formula (in Section 3) 
can be simplified to its rough estimation in [15], which 
was calculated using linear interpolation of Sopt values 
versus velocity. 

As described in [15], the minimal power 
consumption for the described adaptive time interval 
management algorithms was estimated as 

[ ] ,
12

)min( 2
min_ TAPP overalltotal ××+= γα              (A.1) 
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where, A, γ, α and T are the same as described in this 
paper. We can validate this result by showing that the 
result of the quadratic interpolation in Eq. (21) is 
convertible to Eq. (A.1). To do this, it is enough to set β 
= 0 in Eq. (12), which results to a linear interpolation. 
This in turn leads to z = 0 and y = γ × α in Eq. (18). 
Now, substituting z = 0 and y = γ × α in Eq. (21) returns 
the same Eq. (A.1). 
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