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Abstract: In this article, three types of green's functions are presented for a narrow strip
line (not a thin wire) inside or on a homogeneous dielectric, supposing quasi-TEM
dominant mode. These functions have no singularity in contrast to so far presented ones, so
that they can be used easily to determine the capacitance matrix of multi-layer and single-
layer homogeneous coupled microstrip lines. To obtain the green’s functions, the Laplace’s
equation is solved analytically in Fourier integral or Fourier series expressions, taking into
account the boundary conditions including the narrow strip. The validity and accuracy of
three presented green’s functions are verified by some examples.
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1 Introduction

The multiconductor coupled microstrip transmission
lines are used in RF, microwave and high-speed digital
circuits extensively. To analyze these transmission lines,
one has to find the capacitance matrix of the structure
[1]. The capacitance matrix of this structure is
determined using conformal mapping transformations
[2, 3], variational methods [4, 5], spectral domain
techniques [6, 7], finite difference method [8], solving
Laplace’s equation [9] and the combination of green’s
function and method of moments [1, 10-13].

The green's functions presented in the literatures are
for an infinitesimally thin wire and have singularity on
the wire. In this article, some new green's functions are
presented for a narrow strip line (not a thin wire) inside
or on a homogeneous dielectric. These green's functions
have no singularity and can be used to determine the
capacitance matrix of multi-layer and single-layer
homogeneous coupled microstrip lines. To obtain these
green’s functions, the Laplace’s equation is solved
analytically in Fourier integral or Fourier series
expressions, considering the boundary conditions
including the narrow strip.

In section 2, open multi-layer microstrip structure is
introduced and then a closed form green’s function is
obtained for open single-layer structure, in section 3. In
section 4, shielded multi-layer or single-layer microstrip
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structures are introduced and then two green’s functions
are obtained for both of them. Finally, the validity of
three presented green’s functions is verified by some
examples, in section 5.

2 Open Multi-Layer Microstrip Structure

Fig. 1 shows the cross-section of a typical open and
inhomogeneous N-layer microstrip line. The relative
electric permittivity and top surface of layers are g™

and y,, respectively, where n = 1, 2, ..., N. There is a
narrow strip of width Aw whose center is (x’,y,). It is
assumed that the principal propagation mode is quasi-
TEM. Now, solving the two dimensional Laplace’s
equation gives the voltage distribution in the n-th region
as follows.

1 G~ .
Vo () = Vo (ko ) exp(jk,x)dk,

T(An (k,) exp(—k,y) + B, (k,) exp(k,y) Jexp( jk,x)dk,
(1)

in which V_(k,,y) is the Fourier transform of the
voltage V, (X, y), given by:

1
27

Vol ) = [V (x v)exp(- k0, 2)

= An (kx) exp(_kx y) + Bn (kx ) exp(kx y)

Also, the surface charge on the top side of region n
is obtained like this.
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where py is the per-unit-length charge of the strip. After
finding the unknown coefficients A, and B, through Eq.
(4), the wvoltage distributions are obtained using
numerical calculating of the integrals in Eq. (1). Finally,
the  green’ function  will be in  fact
G(x y;x,y,) =V y) p-

If the electric permittivity of all layers in Fig. 1 are
being the same, i.e. a homogeneous dielectric, the Fig. 1
will be reduced to Fig. 2. In fact, there will be only three
regions to find potential coefficients. In view of
boundary conditions, the Fourier transform of the
voltages will be resulted as follows.

oY) = A, sinh(k,y) + B, cosh(k,y); y, <y<h
(6)

where three desired unknown coefficients are given by

sinc( kXAWJ exp(—jk,x")
P 2z

&5k, &, coth(k, h) +coth(k, (b —h))

A=

r

x {1 coth(k, (b —h))cosh(k, y, ) —tanh(k,y, ) coth(k, h))
&

—sinh(k, y,)(1— coth(k,y,) coth(k,h))]
(7

It is known that the voltage must be continuous on
the interfaces between two adjacent regions. Besides,
the surface charge on the interfaces between two
adjacent regions is zero excepting on the strip which is
assumed to be uniform. Considering these boundary
conditions, the following 2N+2 equation system for
2N+2 unknown coefficients are obtained.

A
B,
0 0 N
| NG
_exp(kxyn) 0 0 Bn = 0
MV exp(k,y,) - 0 0 A - Fo (ko X)
Bn+1
0 o exp(-kb) —expkb)| i | [ 0 |
AN+1
_BN+1_
y
b

Fig. 1 The cross-section of a typical open inhomogeneous
multi-layer microstrip lines.

0 BE
Fig. 2 The cross-section of a typical open homogeneous multi-
layer microstrip lines.

X
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sinh(k, Y, )sinc( kXAW)exp(—jkxx’)
A2 — _pl 27[
&k, & coth(k h)+coth(k, (b—h)) (8)

x 1+icoth(kxh) coth(k, (b— h))}

r

B, =7 sinh(kxyn)sinc(kxAWjexp(— jkx) (9
&, K, 2r
3 Open Single-Layer Microstrip Structure

If all the strips are situated on an open single-layer
homogeneous dielectric of height h, as shown in Fig. 3,
there will be only two different regions. In this case, the
Fourier transform of the voltage distribution on
dielectric layer will be obtained by considering y, =y =
h in Egs. (6)-(9) as follows.

After some mathematical manipulations, a
reasonable approximation can be obtained for the Eq.
(10) as is seen in the following relation.

V(K hy=20
€o

|k |+

* (&, +D |k |* +(¢, +hl(b-h)) |k h|+a(e, +hl(b-h))
xsinc[k*mvjexp(—jkxx')
2z

(11)
In the fractional relation (11), « is a constant around
1.0 approximated as follows

a =1.4tanh(e, /3) +(1.75—1.4tanh(e, /3))n /(b —h) (12)

Fig. 4 shows the excellent agreement between two
Egs. (10) and (11) for h/(b-h)=1/5 versus kh.

Substituting the approximate Eq. (11) in Eqg. (1) and
doing some mathematical manipulations, leads us to
voltage distribution on the surface of dielectric as

~ o sinh(k, h)
V (kx ’ h) _V (kx' y) Slnh(kxy)
(10)
SinC(kxAWjeXp(—jkxX’) follows.
_ph 2z
&, (k,h)(e, coth(k,h) + coth(k, (b—hy)))
_£w~ ~ pih 3 NiBi—a

V(x,h) = ﬁ!V(kx,h) cos(k, x)dk, = o 1A, —ﬂl)Aw;{( 1)

h

X{Ci(ﬂi |x—x’;]Aw/2|jSin(ﬂi x—x'—Aw/Z]_Ci(ﬂ

+sgn(x—x'— AW/Z)(;T - Si(/?i lx_w_AW/lecos(ﬂ

h

—sgn(x—x"+ AW/Z)(;T - Si(/?i |X_XquW/Zchos(/?

h

+ %(sgn(x — X"+ Aw/2) —sgn(x — x' — AWIZ))}}

where g, and S, are the minus roots of denominator of
fraction existing in Eq. (11), given by

y

b
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Fig. 3 The cross-section of a typical open homogeneous
single-layer microstrip lines.
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Fig. 4 Comparing two relations 10 (---) and 11 (...).
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B, = [(¢, +hi(b—h))

1
2(e, +1)
F \/(Er +hi(b—h))? —da(e, +1)(e, +hi(b- h))]

Also, the function sgn(.) is the signum function and
the functions Ci(.) and Si(.) are the sine and cosine
integrals, respectively, as follows:

(14)

Si(x) = j sin) g, (15)
tcos(u) -1

Ci(x) =y + |n(x)+j7d (16)

where yis Euler's constant equal to 0.5772... . One can

sees that the green’s function (13) has no singularity at
the center of narrow strip.

If the width Aw approaches zero, the voltage
function will be reduced to the following relation, by
equating the sinc function in Eq. (11) to 1.

~ p| 2 _1\i+l _
V(x,h)=”€0(€r+1)(ﬂ2_ﬁ1)§{( )" (B, - )

{o{a o)
(5-s(n 5 50|

4 Shielded Microstrip Structures

In numerous applications, the microstrip lines are
fully shielded by two lateral walls at x = 0 and x = a, as
shown in Figs. 5-7. The green’s function of shielded
structures can be readily obtained by considering
images of the strip with respect to the left and right
walls as seen in Table 1.

For shielded homogeneous multi-layer microstrips,
i.e. Fig. 6, also there can be found the voltage
distribution by Fourier series expansion and well-known
boundary conditions (four walls and voltage and surface
charge on y = y,). In view of boundary conditions and
performing some mathematical efforts like as Eqs. (4)
and (5), the voltage distribution will result in as follows.

V(x,y)=

0 V). X
h 7 A O

Z_‘iam sin (m;r ajsm(mn a)'
Z[b smh(mn y)+cm cosh(mﬁZHsin(mn;]; y,<y<h
(18)

a7

0<y<y,

where three desired unknown coefficients are given by:

e e % Jnme )
sincl m— |sinh| mz =2 |sin| mz —
a :2p, 2a a a
%o m;{gr coth(m;zhj + coth(myz(b_h)D
a a
[ ! coth(mﬂ(b h)jcoth[ y”j
£, a a
x(l—tanh(mrry”Jcoth[m;th
a a
y h
—|1-coth| mz =2 |coth| mz—
a a
(19)

o el oo
|

%o m;{g coth(mn2)+coth m;r(b h)D
x{1+1coth(mn2}coth(mﬁ(bah)ﬂ
gl’
(20)

cm—z’osmc[ Aw jsmh(m;zjs ( j
&6, M7 2a

(21)

The voltage distribution of shielded homogeneous

single-layer microstrips, i.e. Fig. 7, can be found from

Egs. (18) and (19) assuming y =y, = h as the following
relation.

Vxh) = 22y

€o

. Aw) . X'
sinc| m—— [sin| mz =
N ( 2aj [ aj - X
> - el L
i mn(sr coth(m;rj+ coth(m;z()D
a a

(22)

One can sees that the green’s functions (18) and (22)
have no singularity at the center of narrow strip. Of
course, the summations in Egs. (18) and (22) can be
truncated to M terms so as the last term is being very
smaller than the first term. This gives us the following
condition for Eq. (22).

Table 1The location and sign of images of the shielded strip with respect to the left and right walls.

—da—yx' | 4a+x' | —2a—-x' | —2a+x’

_X’

’

x'" | 2a—x' | 2atx’ | da—x' | datx’

—+ — + — +

+ - + - +
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Fig. 5 The cross-section of a typical shielded inhomogeneous
multi-layer microstrip lines.
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Fig. 6 The cross-section of a typical shielded homogeneous
multi-layer microstrip lines.
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Fig. 7 The cross-section of a typical shielded homogeneous
single-layer microstrip lines.
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5 Examples and Results

In this section we investigate the validity of three
presented green’s functions (13), (18) and (22) by some
examples. To get self and mutual capacitances, the lines
are subdivided to K equi-potential parts of one volt
potential and then the Method of Moment is used.

As a first example, consider an open single-layer
microstrip transmission line of width and thickness w
and h, respectively. Table 2 compares the characteristic
impedance Z, of the line obtained through Eq. (13)
considering b/h=51 and K=12 with that of obtained in
the references. The characteristic impedance can be
obtained the following relation.

Z,=—— (24)

“¢fCC

M >> (23)

where c is the velocity of the light and C and C; are the
capacitance of the microstrip line with and without
substrate, respectively.

For the second example, consider two identical
coupled lines of width w and gap s on an open single-
layer dielectric of =1 and b=2h. Table 3 compares the
even and odd mode capacitances of the lines obtained
through Eq. (13) considering K=20 with that of obtained
in the reference [9].

For the third example, consider two identical
coupled lines of width w lying at points (x;=6.5, y;=1)
and (x,=11.5, y,=0.5) in a shielded homogeneous
structure of =1, a = 18 and b=>5. Table 4 compares the
even and odd mode capacitances of this two-layer
structure obtained through Egq. (18) considering K=10
and M=300 with that of obtained in the reference [13].

For the forth example, consider eight identical
coupled lines of width w = 1/16h and gap s = 1/16h on
the middle of a shielded single-layer structure of &=
12.9, a = 175/16h and b = 7.25h. Table 5 compares the
20 different coefficients of the capacitance matrix of the
lines obtained through Eq. (22) considering K=20 and
M=8780 with that of obtained in the reference [9].

One sees from tables 2-5 that there is an excellent
agreement between the results obtained from explicit
form green’s functions expressed by Egs. (13, 18) and
(22) with those reported in reliable references.
Therefore one can conclude the validity of these three
presented relations.

Table 2 An open single-layer microstrip transmission line
(Example 1).
wh [ 5 [C[pFm][C,[pF/m]] Zo[Q] | Z[Q]
Eq. (13) | Eq. (13) |Eq. (13)| (Refs)
0.4 6 71.18 18.40 91.68 |91.17[13]
04 | 95 | 110.30 18.40 73.99 |73.70[13]
1 6 108.01 25.90 63.03 |62.71[13]
1.025|8.875| 159.54 26.31 51.45 | 50.00 [8]
3 10 | 356.22 45.97 26.05 |25.47[12]
10 6 579.87 108.40 13.30 |13.34[13]
10 | 95 | 91291 108.40 10.60 |10.57 [13]

Table 3 An open single-layer microstrip coupled transmission
lines (Example 2).

Ceven C:even Codd Codd
w/h|s/h| [pF/m] | [pF/m] [pF/m] | [pF/m]
Eq. (13) [9] Eq. (13) [9]

01]01| 948 9.59 26.38 27.74
011 1275 12.95 15.08 15.56
1 [0.1| 26.58 26.33 51.68 54.58
1 ]1) 3101 31.09 35.86 35.73

Table 4 A shielded two-layer microstrip coupled transmission
lines (Example 3).

Eq.(18) | [13]

CulpFim] | 4933 | 4951
Cyp[pFim] | 77.08 | 7712
Cu[pFim] | -1.826 | -1.835
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Table 5 A shielded single-layer microstrip coupled transmission lines in [pF/m] (Example 4).

Cn Cypp Cis Cua Cis Cis Cy7 Cig Cxp Cx

Eq. (22) | 126.64 | -57.60 | -12.98|-5.711 | -3.108 | -1.895 | -1.286 | -1.218 | 153.52 | -51.71
[9] 127.77]-58.45|-13.02 |-5.720| -3.108 | -1.892 | -1.280 | -1.211 | 155.23 | -52.52
Cx Cos Cas Cx Cas Cay Cas Cas Cas Cas

Eq. (22) | -10.42 | -4.348 | -2.315|-1.445|154.83|-51.15|-10.14 | -4.212 | 155.06 | -51.05
[9] -10.45 |-4.349|-2.312|-1.440 | 156.55 | -51.95|-10.17 | -4.213 | 156.78 | -51.86

It is noteworthy that the values of green’s functions
of the open and shielded structures are close together
when the distance between the strip and lateral walls are
large relative to height of strip. In this case, one can use
the green’s functions of shielded structures for open
structures and vice versa. Fig. 8 shows the surface
charge on the dielectric of two single-layer structures.
The structures have three identical strips of width w =1
on a dielectric of &= 5 and h = 1. The strips lie at points
x =5.5, 7.5 and 9 and are connected to potentials 0, 1
and 0 volt, respectively. The height of the structures is b
= 11 and the width of the shielded structure is a = 14.5.
One can see that the charge distribution of two
structures are almost the same, whereas the first and
third strips have a distance of only 5h from two lateral
walls.

400
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350- . - Shielded | ]

300+ '

250
2001 : ‘
1501 : I
1000
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200
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Fig. 8 The surface charge on the dielectric of two single-layer

open and shielded structures.

6. Conclusions

Three types of green's functions are presented for a
narrow strip line (not a thin wire) inside or on a
homogeneous dielectric. One closed form green’s
function for open single-layer microstrip structure and
two series form green’s functions for both multi-layer
and single-layer homogeneous microstrip structures are
introduced. These functions have no singularity and
have a high accuracy. The validity and accuracy of three
presented green’s functions are verified by some
examples. Also, it was shown that the green’s functions
of open and shielded structures may be used in place of
each other at some simple conditions.
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