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Fault Locating in High Voltage Transmission Lines Based on 
Harmonic Components of One-End Voltage Using Random 
Forests 
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Abstract: In this paper, an approach is proposed for accurate locating of single phase faults 
in transmission lines using voltage signals measured at one-end. In this method, harmonic 
components of the voltage signals are extracted through Discrete Fourier Transform (DFT) 
and are normalized by a transformation. The proposed fault locator, which is designed 
based on Random Forests (RF) algorithm, is trained based on these normalized harmonic 
components. RF algorithm has the capability of learning patterns with a large number of 
features. The proposed approach only requires voltage signals measured at one-end; hence, 
there are not problems of transmitting and synchronization of two-end data. In addition, 
current measurement is not required and the proposed approach is sheltered against current 
transformer errors and its saturation. No need for very high sampling frequency is another 
advantage of the proposed approach. Numerous tests carried out on a sample system 
indicate that accuracy of the proposed fault locator is secure against changing fault location, 
fault inception angle, fault resistance, and magnitude and direction of pre-fault load current. 
An average of 0.11% is obtained for the fault locating test errors. 
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1 Introduction1 
Precise locating of permanent faults in transmission 
lines is crucial from the aspects of quick repairs and 
troubleshooting. In addition to permanent faults, 
temporary faults may occur in transmission lines, which 
are removed after re-closing of circuit breakers. 
Knowing exact location of temporary faults helps 
identifying weak points of transmission lines and to 
adopt appropriate measures for decreasing fault 
occurrence probability at those locations. 

The existing approaches for fault locating in 
transmission lines can be classified into two main 
categories of traditional analytical methods and methods 
based on machine learning. There has been a 
considerable attention toward fault locating methods 
based on the machine learning in recent years due to the 
fault location problem complexity and, capability and 
flexibility of the learners. In the approaches based on 
machine learning, it is possible to train machine based 
on real existing patterns or patterns generated using 
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reality-based simulation techniques. In this case, 
learning algorithm is responsible with task of finding 
hidden rules and complicated relationships between 
pattern features. In the fault locating approaches based 
on machine learning, selection and extraction of 
appropriate features and implementation of an efficient 
learning algorithm are two main issues. 

Features used in fault locating may include 
information measured in one terminal or both terminals 
of transmission line. Despite the fact that using data 
from two ends of transmission line generally improves 
fault locating accuracy, need for communication 
channels for transmitting information of both ends and 
necessity for their synchronization resulted in a decline 
in their attraction. In fault locating approaches, it is 
possible to use fundamental frequency or high 
frequency components of voltage or/and current signals. 
The mentioned high frequency components will be 
generated due to fault occurrence in transmission lines. 

There have been many machine learning tools used 
for fault locating in transmission lines such as 
Multilayer Perceptron Neural Network (MLPNN) [1-3], 
Radial Basis Function Neural Network (RBFNN) [4, 5], 
Support Vector Machine (SVM) [6-8], Extreme 
Learning Machine (ELM) [7], Elman Recurrent 
Network [9], Fuzzy Inference System (FIS) [10], Fuzzy 



Farshad & Sadeh: Fault Locating in High Voltage Transmission Lines Based on …                                                    159 

Neural Network (FNN) [11, 12], and Adaptive 
Structural Neural Network (ASNN) [13]. These tools 
generally have desired learning and test performance for 
a relatively small number of input features. However, 
most of the mentioned learning tools are not efficiently 
applicable when the number of input features is large 
due to expansion of configuration and extreme increase 
in the number of learning parameters [1]. When only 
fundamental frequency components of voltage and 
current signals are implemented, the number of input 
features is limited. Nevertheless, when high frequency 
components are used, there are many features, which 
could be utilized. In this case, in fault locating 
approaches, which are designed based on the 
abovementioned methods, it was attempted to reduce 
the existing features space dimension or select a limited 
number of features. For example, following the 
applying Wavelet Transform (WT) on faulty current and 
voltage signals, energy and entropy of detail coefficients 
were calculated and then implemented as input features 
for dimension reduction purpose [1, 8, 9]. Moreover, 
Principal Component Analysis (PCA) was implemented 
on first and second level detail coefficients of WT of 
three-phase current and voltage signals and through this, 
input feature space dimension was reduced [13]. These 
methods which are implemented for dimension 
reduction of input feature space may result in 
elimination of useful features or prevention of applying 
crucial information in precise fault locating. For 
instance, application of PCA, which is an unsupervised 
method, is only appropriate for linear-separable data and 
can eliminate nonlinear relations between features [14]. 

In this paper, a relatively wide range of frequency 
components is utilized for fault locating in transmission 
lines. Single phase to ground fault is the most probable 
type, which its occurrence probability among all fault 
types is about 80% [15]. In this paper, a method is 
presented for accurate locating of single phase faults in 
double-ended transmission lines, which only requires 
voltage signals measured at one-end. In the proposed 
approach, amplitudes of harmonic components, which 
are extracted through applying DFT on voltage signals 
of faulted and sound phases, are used for constructing 
input patterns of fault locator. Due to numerous features 
in this issue, Random Forests (RF) algorithm is used in 
regression mode, which is highly efficient in dealing 
with problems with a large number of features [16]. RF 
algorithm was applied for classification of different 
types of faults in transmission lines, and demonstrated a 
desired performance [17]. But so far the performance of 
this algorithm has not been evaluated in the fault 
locating problem. 

The rest of paper is organized as follows. In Section 
2, a brief explanation with respect to RF algorithm is 
presented. In Section 3, main idea and generalities of 
the proposed method for single phase fault locating are 
presented. In Section 4, training and test patterns, which 
are comprised of different combinations of fault 

occurrence situations, are generated through simulation 
of a sample system. The simulations are carried out 
using PSCAD/EMTDC software [18]. Afterward, the 
proposed approach is examined using training and test 
patterns, and fault locating results are presented. Finally, 
conclusions are presented in Section 5. 
 
2 Random Forests Algorithm 

Random Forests (RF) is a learning method based on 
an ensemble of decision trees. Before explaining RF 
method, a brief description concerning learning method 
based on decision tree is discussed. 

Each decision tree divides input space into a set of 
separate areas and designates a target value to each area. 
In basic regression mode, the target value of each area 
can be determined according to mean of target values of 
samples in that area. A greedy, top-down, recursive 
partitioning strategy is implemented in constructing a 
decision tree. In each phase of construction, a 
comprehensive search is carried out among all features 
and pertinent splitting points for obtaining maximum 
decline in node impurity. Simple and general algorithm 
of regression tree growing can be described as follows 
[19]: 
 

1- Start with a node including all the existing 
samples (root node). 

2- Explore all binary splitting of all features for the 
best split, which minimizes the sum of node 
impurities in two child nodes. Then carry out 
splitting and create two new child nodes based on 
the found best split. 

3- If the maximum decrease in the node impurity is 
less than the predetermined threshold value δ, or 
the resulting child nodes contain less than q 
samples then stop the algorithm. Otherwise, 
apply step 2 to each child node. 

 
In basic mode, in each stage of growing, only one 

feature and one related split point is selected and 
utilized. However, it is possible to take a linear 
combination of two or several features in consideration 
for splitting as well. In this case, there will be two or 
more features on each node [19]. In regression 
problems, impurity of node nt, U(nt), is defined as 
follow [20]: 

∑
∈

−=
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where, M(nt) indicates the number of samples located at 
node nt, sy  indicates target variable pertinent to sth 
sample located at node nt, and y  indicates mean of 
target values of all samples at node nt. Rate of impurity 
decline across a splitting on feature xi in a node nt is 
defined as follow [20]: 

)()()(),( RRLLi ntUPntUPntUntxU −−=Δ  (2) 
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where, PL and PR indicate a portion of samples, which 
proceed toward next left node ntL and next right node 
ntR. 

Assigning the threshold value δ for impurity 
decrease and determining the minimum number of 
samples q in each node affect the growing of tree. If 
these values are taken so small, for example, if δ=0 and 
q=1 are assumed, then tree grows to its full potential 
and the number of end leaves will be equal to the 
number of all samples. In other words, each of the 
samples will be placed at an end leaf. In this case, the 
generalization of the tree in question will be low and 
overtraining will be more probable. If the setting 
parameters adopt relatively large values, then it is 
possible that tree has not grown well enough and 
prediction accuracy of tree is low for test samples. 
Generally, single decision tree is highly capable of 
overtraining and its prediction accuracy is commonly 
low as well. Instability of results obtained from single 
decision tree can be mentioned as another disadvantage. 
A small change in training patterns can result in large 
changes in decision tree configuration [21]. 

As it was mentioned previously, RF is a learning 
method based on an ensemble of decision trees. RF 
prediction model is stable while it is based on averaging 
results of all trees. It is worth noting that RF method is 
not involved with overtraining and has less 
generalization error [20]. In addition, it has more 
stability regarding the existence of noise in input data. 
RF method can be explained through the following brief 
description [20, 22, 23]: 

1- A number d is specified smaller than the total 
number of features D. 

2- For constructing each tree, a different set of 
existing patterns is drawn randomly with 
replacement. The size of the selected sample set 
is equal to the size of the original dataset. This 
approach of selection typically puts 
approximately one third of the existing patterns 
out, which are called Out-of-Bag (OOB) samples. 
Each tree is grown to the maximum pre-specified 
depth. This depth is specified based on the 
minimum number of samples at each end leaf. 
Bigger the number of the minimum samples at 
each end leaf selected gets, less and shorter the 
trees’ growth and algorithm execution time, 
respectively. 

3- At each node, a total number of d features out of 
D features are selected randomly. 

4- For each node, the best split on the selected d 
features is used for creating new child nodes. 

The OOB samples, which are not used in 
construction of specific grown tree, can be used for 
generalization test of the tree and also for scoring the 
features [23]. Averaging the number of times each 
feature is used at trees’ splitting indicates the 
significance of that feature as a secondary result of 
trees’ construction [22]. The prediction ability of RF 

will have more dependence on significant features and 
less dependence on insignificant features [23]. 
 
3 Main Concept 

3.1   Harmonic Components of Voltage Signals 
Fig. 1-a shows the schematic diagram of a double-

ended single-circuit untransposed transmission line of 
400 kV and 100 km long. Fig. 1-b also indicates the 
arrangement of transmission line in question, which 
utilized bundled conductors. Source impedance of 
measuring (M) and remote (R) ends in system frequency 
of 50 Hz are equal to ZM=0.469+j6.283 Ω and 
ZR=0.391+j5.215 Ω, respectively. The transmission line 
is simulated in the form of a frequency-dependent 
model. In simulations, sampling frequency is assumed 
to be 80 kHz. It is worth mentioning that the Nyquist 
criterion dictates using a low-pass anti-aliasing filter for 
the data acquisition system to avoid the frequency alias. 
 
 

 
(a) 
 

 
(b) 

Fig. 1 Sample system under study: (a) Schematic diagram. (b) 
Arrangement of transmission line. 
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Fig. 2 Three phase voltage signals measured at the measuring 
end under a single phase fault. 
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(b) 

Fig. 3 Harmonic spectrum of phase ‘A’ voltage under A-G 
fault at 30 km: (a) Before transformation. (b) After 
transformation. 
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(b) 

Fig. 4 Harmonic spectrum of phase ‘A’ voltage under A-G 
fault at 60 km: (a) Before transformation. (b) After 
transformation. 
 

Fig. 2 demonstrates three-phase voltage signals for a 
single phase fault in about 0.163 s at 30 km from the 

measuring end. As it can be seen in this figure, there are 
transients in voltage signals after the fault inception. In 
this paper, harmonic components of voltage signals are 
extracted through applying DFT on one cycle of data 
after fault inception for fault locating purpose. 

Figs. 3-a and 4-a show harmonic spectra (from 2nd to 
300th order) of phase ‘A’ voltage under single phase to 
ground fault (A-G) for the following cases, at 30 km 
and 60 km from the measuring end, respectively: 

Case 1: Fault resistance 0.01 Ω, fault inception angle 
90o, and leading voltage angle of measuring 
end source to remote end source 20o. 

Case 2: Fault resistance 5 Ω, fault inception angle 
45o, and leading voltage angle of measuring 
end source to remote end source 30o. 

Case 3: Fault resistance 10 Ω, fault inception angle 
18o, and leading voltage angle of measuring 
end source to remote end source -30o. 

In the abovementioned cases, phase ‘A’ voltage at 
the fault point is considered as the reference for fault 
inception angle. As it can be observed in Figs. 3-a and 
4-a, in spite of changes in parameters such as fault 
resistance, fault inception angle and pre-fault load 
current, the outlines of harmonic spectra under faults at 
each specific distance are approximately the same. 
However, according to these figures, it can be found out 
that amplitude of each harmonic component has 
significant differences at the different cases. Therefore, 
for generating better features and normalization, the 
following transformation is implemented [24]: 

Ki
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where, K is the maximum order of selected harmonics, 
and )( ifV  and )( ifV ′  are amplitudes of harmonic 
components at frequency fi before and after 
transformation, respectively. The harmonic orders of the 
phase voltage signal from 2nd up to Kth are considered in 
the transformation. Figs. 3-b and 4-b show the 
transformed harmonic spectra of the faulted phase 
voltage signal. As it can be observed, by applying the 
transform on the amplitudes of harmonic components, 
useful features are obtained, which have the least 
sensitivity toward changes in the effective parameters 
such as fault resistance, fault inception angle, and 
magnitude and direction of pre-fault load current and 
also have high correlation with the fault location. 
 

3.2   Single Phase to Ground Fault Locator 
Single phase to ground fault locator is designed 

based on RF algorithm. In training phase, decision trees 
of RF fault locator are constructed based on training 
patterns. Each input pattern to RF is comprised of 
normalized values of harmonic component amplitudes 
of faulted phase and sound phases voltage signals. 
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Amplitudes of harmonic components are obtained 
through application of DFT on one cycle of voltage 
signals measured at the measuring end after fault 
inception. After training and construction of RF trees, 
fault location can be acquired as output for any new 
patterns. The procedure of the proposed approach is 
presented in Fig. 5. Separate fault locators should be 
trained for each type of single phase faults (A-G, B-G, 
and C-G). It is worth noticing that the fault detection 
and classification are not in the scope of this paper and 
the time of fault signature appearance at the measuring 
end and the type of fault are considered as known 
information. 
 

3.3   Selection of Maximum Frequency Level 
For selection of appropriate maximum frequency 

level, harmonic spectrum of voltage under fault at a 
point close to measuring end should be analyzed. This 
issue will be examined with respect to system of Fig. 1 
for better elaboration of the reason. Fig. 6 shows the 
transformed harmonic spectra of phase ‘A’ voltage 
under A-G fault at distances of 10 km, 50 km, and 90 
km from the measuring end. As it can be observed from 
Fig. 6, the dominant amplitude of harmonic components 
related to the fault located at 10 km occurred at a higher 
frequency than ones of two other fault locations. 
Therefore, considering Fig. 6, it seems that in the 
system under study, the harmonic components up to 
frequency level of 10 kHz (K=200) are sufficient for 
generating useful features for single phase fault locator. 
 
4 Numerical Studies 

The system of Fig. 1 is modeled and simulated using 
PSCAD/EMTDC software [18]. Here, A-G fault is 
adopted out of single phase faults. MATLAB software 
is used for application of DFT and constructing RF. 
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Fig. 6 Normalized harmonic spectrum of phase ‘A’ voltage 
under A-G fault at distances of 10 km, 50 km, and 90 km. 
 

4.1   Generating Training and Test Patterns 
In this stage, according to the sample system under 

study, training and test patterns are generated through 
changes of fault location, fault resistance, fault 
inception angle, and magnitude and direction of pre-
fault load current. Generation conditions of patterns are 
based on a combination of various conditions of A-G 
fault occurrence. These conditions for training patterns 
are as follows: 

-Fault location varies from 10% to 90% of the line 
length with step of 0.5%. 

-Fault inception angle, regarding to phase ‘A’ 
voltage at the fault point as the reference, takes the 
values of 4.5, 9, 18, 36, 72, 108, 144, 162, 171, and 
175.5 degrees. 

-Fault resistance takes the values of 0.01, 10, 30, 50, 
and 100 Ohms. 

-Power flow angle is taken to be 20 degrees. 
The conditions which are considered for generating 

test patterns are as follows: 
-Faults occur at 20 different locations randomly. 
-Fault inception angle takes the values of 6.75, 13.5, 
22.5, 54, 90, 126, 157.5, and 173.25 degrees. 

  
Fig. 5 Procedure of the proposed approach for single phase fault locating. 
  

Fig. 5 Procedure of the proposed approach for single phase fault locating. 
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-Fault resistance takes the values of 2, 15, 20, 40, 60, 
and 80 Ohms. 

-Power flow angle takes the values of -30, -10, 10, 
and 30 degrees. 

According to the analysis carried out on Fig. 6, 
harmonic components up to 200th order are considered 
for pattern generation. Therefore, regarding normalized 
amplitudes of three phase voltage harmonics (from 2nd 
to 200th) each pattern included 597 features. According 
to the above-mentioned conditions, a total number of 
8050 training patterns ( 80501510161 =××× ), and a 
total number of 3840 test patterns 
( 384046820 =××× ) are generated. 
 

4.2  Adjustment of Parameters and Training 
Two parameters of RF are as follows: 
-Fraction of variables which are selected randomly 
for each split of decision trees (FracVar). 

-Minimum number of patterns at each end leaf of 
decision tree (MinLeaf). 

For selecting desired parameters of RF, a search is 
conducted in discrete space of FracVar={10%, 20%, 
40%, 60%} and MinLeaf={1, 3, 6} using training 
patterns and by growing RF up to 200 trees. 

Fig. 7 illustrates the mean square error of OOB 
samples under different parameters of RF and growing 
of up to 200 trees. According to results of Fig. 7, 
FracVar=20% and MinLeaf=1 are selected as desired 
parameters for RF fault locator. Then, the A-G fault 
locator is formed with growing of up to 200 trees using 
existing training patterns and based on the selected 
desired parameters. It is worth mentioning that the fault 
locator was also formed with more than 200 trees, but in 
spite of an increase in the learning time, the obtained 
results had no significant change. Hence, it seems this 
selected number of trees is adequate for constructing RF 
fault locator in the study system. Fig. 8 demonstrates 
mean square error of OOB samples for the fault locator. 
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Fig. 7 Mean square error of OOB samples versus number of 
grown trees under different parameters. 
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Fig. 8 Mean square error of OOB samples versus number of 
grown trees with selected desired parameters. 
 
Table 1 Results of A-G fault locating for different distances of 
fault. 

Fraction of 
prediction 

errors 
>0.5km

Average 
error 
(km) 

Max. 
error 
(km) 

Min. 
error 
(km) 

Fault 
location 

(km) 

4.6875% 0.2362 3.0275 0.0125 10.70 
6.7708% 0.1916 2.9800 0 13.25 
6.7708% 0.2203 5.0025 0.0025 16.30 
6.2500% 0.1578 0.7350 0.0050 21.75 

0% 0.0914 0.4150 0 26.20 
0% 0.1398 0.4500 0.0175 31.80 

2.0833% 0.0642 0.8800 0.0000 39.30 
0% 0.0432 0.1300 0.0025 45.25 
0% 0.1543 0.4800 0.0025 49.80 
0% 0.0388 0.1400 0.0000 53.40 
0% 0.1101 0.3700 0.0000 55.75 
0% 0.0723 0.2350 0.0025 57.30 
0% 0.0723 0.4300 0.0100 60.80 
0% 0.1269 0.3075 0 63.25 
0% 0.0616 0.2025 0.0000 68.75 
0% 0.1025 0.3775 0.0025 71.80 

1.5625% 0.0861 0.5125 0.0000 77.20 
1.0417% 0.0359 0.6450 0.0025 80.75 
2.0833% 0.1222 2.2450 0 87.30 

0% 0.0795 0.3825 0.0025 89.25 
1.5625% 0.1103 5.0025 0 All 

 
4.3   Results and Discussion 

The generated test patterns are presented to the 
trained RF. Calculation of fault location error is carried 
out based on difference modulus between predicted and 
actual values. Since length of the line under study is 100 
km, the error values can be adopted in terms of 
percentage. The results of fault locating for different 
fault distances, while the fault inception angle, fault 
resistance, and the load current vary based on the related 
values in the test conditions, are shown in Table 1. In 
this table, there are 192 test patterns for each fault 
location. By examining the results of Table 1, it can be 
inferred that the proposed approach has sufficient 
accuracy regarding to the fact that generation conditions 
of the test patterns are different from those of the 
training patterns. The prediction errors have an increase 
for the faults occurred at the distances near to 10 km; 
although in these cases the average absolute errors are 
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in an acceptable range. For investigating the under- and 
overestimated results of the fault locator, the raw 
differences between the predicted and actual fault 
distances are indicated in Fig. 9. As it can be seen in this 
figure, there are a few overestimations for the fault 
locations near to distance of 10 km from the measuring 
end, which result in an increase of the average absolute 
error as observed in Table 1. 

Similar to Table 1, the results for each of the 
parameters of fault inception angle, fault resistance, and 
also load current are shown in Tables 2, 3, and 4, 
respectively. In these tables, for each specific value of 
fault inception angle, fault resistance, and load current, 
there are 480, 640, and 960 test patterns, respectively. 
 
 
Table 2 Results of A-G fault locating for different fault 
inception angles. 

Fraction 
of 

prediction 
errors 

>0.5km 

Average 
error 
(km) 

Max. 
error 
(km) 

Min. 
error 
(km) 

Fault 
Inception 

Angle 
(Degree) 

2.2917% 0.1234 2.2850 0 6.75 

0% 0.0707 0.2450 0 13.5 

0% 0.0779 0.2675 0 22.5 

0% 0.0802 0.2700 0 54 

0% 0.0802 0.3125 0 90 

0% 0.0798 0.2975 0.0025 126 

0% 0.0777 0.3225 0 157.5 

10.2083% 0.2928 5.0025 0 173.25 
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Fig. 9 Raw differences between the predicted and actual fault 
distances for different fault locations. 
 

Table 3 Results of A-G fault locating for different fault 
resistances. 

Fraction 
of 

prediction 
errors 

>0.5km 

Average 
error 
(km) 

Max. 
error 
(km) 

Min. 
error 
(km) 

Fault 
Resistance 

(Ω) 

1.0938% 0.0970 2.2450 0 2 
0.3125% 0.0721 0.6450 0 15 

0% 0.0685 0.3275 0 20 
0.6250% 0.0810 0.7350 0 40 
3.9063% 0.1535 2.6175 0.0025 60 
3.4375% 0.1900 5.0025 0 80 

 
Table 4 Results of A-G fault locating for different load 
currents. 

Fraction of 
prediction 

errors 
>0.5km 

Average 
error 
(km) 

Max. 
error 
(km) 

Min. 
error 
(km) 

Power 
Flow 
Angle 

(Degree) 
1.5625% 0.1107 5.0025 0 -30 
1.6667% 0.1102 5.0025 0 -10 
1.6667% 0.1102 5.0025 0 10 
1.3542% 0.1103 5.0025 0 30 

 
 

Considering Table 2, it can be concluded that 
accuracy of the proposed fault location algorithm at 
fault inception angles close to zero has a slight decline. 
However, it shows a remarkable accuracy at other 
angles. At worst case scenario, at angle 173.25o, the 
average absolute error value equals 292.8 m. If single 
phase fault occurs when the voltage of faulted phase at 
fault location is near to zero, then the voltage signals 
measured at the terminal will not be rich in terms of 
harmonic contents. Under such circumstances, the 
proposed approach may not have a desirable 
performance. This is a common trouble spot for fault 
locating methods which are based on fault generated 
high frequency transients [25]. In the system under 
study, if fault inception angle distance from zero 
crossing point of fault location voltage is less than 4.5o, 
then the proposed approach may not show an acceptable 
performance. If these areas are taken in 360o of a cycle, 
their lengths add up to 18o. As a result, fault occurrence 
probability in these areas is 5%. In the other words, the 
proposed approach has an acceptable performance at 
95% of the time. 

Through examination of Table 3, it can be observed 
that by increasing the value of fault resistance, 
prediction accuracy has a slight decrease. At the worst 
case scenario, in which the fault resistance is 80 Ω, the 
average absolute value of errors is 190 m. 

Based on the results of Table 4, it can be inferred 
that the proposed approach roughly has no reliance on 
magnitude and direction of pre-fault current. 
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4.4   Distinctive Aspects 
It is shown that using the normalized amplitudes of 

harmonic components of three phase voltage signals is 
highly efficient for single phase fault locating. 
However, in this case, number of used features is 
considerable (597 features for the system under study). 
Common tools and methods used for fault locating such 
as Artificial Neural Networks and Support Vector 
Machines are not practically capable of appropriate 
learning of patterns with a large number of features. On 
the other hand, dimension reduction using linear 
transforms or experimental selection of several features 
may result in elimination or disregard of some 
informative features. Consequently, in this paper, RF 
learning algorithm is utilized in regression mode, which 
has appropriate computational efficiency and shows a 
good performance dealing with patterns with numerous 
features. 

Using only voltage signals of one-end and no need 
for very high sampling frequency are the other 
advantages of the proposed method. In the proposed 
method, problems caused by saturation of current 
transformers are non-existent. In a recently published 
article [26], a method was presented for ground fault 
locating in transmission lines, which was based on high 
frequency transients of voltage signals measured at one-
end. This method needs a high sampling frequency and 
its locating accuracy will decrease with reducing the 
sampling frequency. As a confirmation of this claim, the 
presented results for locating the single phase to ground 
fault at the middle of a transmission line of 230 kV and 
100 km in length, in sampling frequencies of 6700 kHz 
and 670 kHz showed the average estimation errors of 
360 m and 6700 m, respectively [26]. 
 
5 Conclusion 

In this paper, an approach is proposed for single 
phase fault locating using harmonic components of one-
end voltage signals. In the suggested approach, Random 
Forests (RF) learning algorithm is used, which 
demonstrates an appropriate capability with respect to a 
large number of input features. The results obtained 
from numerical studies are indicative of the efficiency 
of the proposed approach addressing problems of single 
phase fault locating issue. The obtained average 
absolute error value for test patterns with simultaneous 
changes in fault resistance, fault inception angle, and 
magnitude and direction of load current is low as 
0.11%. Some positive points of the selected features can 
be mentioned as their low sensitivity to changes of pre-
fault load current, fault resistance, and fault inception 
angle, and also high dependence of their values on the 
fault location. In addition, lack of problems caused by 
transmitting and synchronizing of two-end data, lack of 
problems caused by saturation of current transformers 
during fault occurrence, and also no need for a very 
high sampling frequency can be pointed out as the other 
salient advantages of the proposed approach. 
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