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Abstract: Global Positioning System (GPS)-based positioning has become an 

indispensable part of our daily lives. A GPS receiver calculates its distance from a 

satellite by measuring the signal reception delay. Then, after determining its position 

relative to at least four satellites, the receiver obtains its precise location in three 

dimensions. There is a fundamental flaw in this positioning system, namely that satellite 

signals at ground level are very weak and susceptible to interference in the bandwidth; 

therefore, even a slight interference can disrupt the GPS receiver. In this paper, spoofing 

detection based on the Cross Ambiguity Function (CAF) is used. Furthermore, a 

dimension reduction algorithm is proposed to improve the speed and performance of the 

detection process. The reduced-dimensional images are trained by a Convolutional 

Neural Network (CNN). Additionally, a modified CNN model as Transformed-CNN 

(TCNN) is presented to enhance accuracy in this paper. The simulation results show a 

98.67% improvement in network training speed compared to images with original 

dimensions, a 1.16% improvement in detection accuracy compared to the baseline model 

with reduced dimensions, and a 9.83% improvement compared to the original 

dimensions in detecting spoofing, demonstrating the effectiveness of the proposed 

algorithm and model. 
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1 Introduction 

OR modern applications like intelligent 

transportation systems and location-based services to 

function and be implemented successfully, a continuous 

and accurate source of navigation, positioning, and 

timing information is crucial. Global Navigation 

Satellite Systems (GNSS) provide the primary source of 

this information, forming the backbone of Positioning, 

Navigation, and Timing (PNT) data [1-3], whenever 

available [4-6]. 
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The Global Positioning System (GPS) has 

revolutionized navigation, replacing older location-based 

systems with its remarkable precision. Utilizing 

satellites, GPS seamlessly covers the entire Earth, 

enabling the accurate measurement of time, altitude, 

longitude, and latitude for any desired location. A GPS 

receiver requires simultaneous information from at least 

three satellites to calculate two-dimensional coordinates 

and determine latitude and longitude [7]. Additionally, it 

needs data from a minimum of four satellites to ascertain 

three-dimensional coordinates. All GPS signals originate 

from a fundamental frequency, f0, approximately equal 

to 10.3 MHz [7]. These signals are transmitted on two 

radio frequencies within the Ultra-High Frequency 

(UHF) band, encompassing frequencies between        

500 MHz and 3 GHz. These frequencies are designated 

as L1 and L2, derived from f0 [8]. 

Due to the vast distance between satellites and Earth's 

surface, the low signal power level, the slow update rate, 
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and the radio navigation system, receivers are 

susceptible to interference from various radio frequency 

transmitters, either intentionally or unintentionally. The 

GPS signal structure is open to public ownership. 

Consequently, the signals can be entirely reconstructed 

and replicated, making them vulnerable to spoofing 

attacks, posing a threat to the system's security [9]. 

The vulnerability of GPS receivers to intentional 

interference makes them highly susceptible and at risk. 

This susceptibility provides opportunities for malicious 

actors aiming to compromise GPS-based systems or 

infrastructure, potentially leading to serious 

consequences. The lack of built-in security features in 

GPS systems exposes numerous applications to potential 

risks, as documented in various papers [10, 11]. 

Deliberate attacks on GPS receivers can be categorized 

into two types: physical attacks on the receiver (non-

signal attacks) and attacks on the GPS signal-in-space 

level (signal attacks). Physical attacks involve tampering 

or manipulating the receiver, while signal attacks target 

the GPS signals transmitted by the satellites, causing 

disruption or degradation in the receiver's ability to 

accurately determine position, velocity, and timing [12]. 

The focus of this paper is on intentional attacks aimed at 

GPS signals, which can manifest in three distinct forms:  

1. Blocking: This technique involves preventing 

satellite signals from reaching the receiver, which can be 

achieved simply by creating a gap between the antenna 

and the receiver. 

2. Jamming: Jamming, interference generated by a 

jammer, degrades the receiver's accuracy or completely 

disrupts its ability to track the desired location. This type 

of attack is sometimes referred to as "denial of service." 

3. Spoofing: In this attack, the adversary replaces 

authentic satellite signals with counterfeit ones. 

Spoofing is a more sophisticated attack compared to 

blocking and jamming due to its covert nature 

[8,9,13,14]. 

This work focuses on spoofing, a technique where 

counterfeit GPS-like signals are transmitted to 

manipulate the position output of the target receiver 

without disrupting GPS operations, effectively giving 

the attacker control over the receiver. It's important to 

distinguish this from jamming attacks, which aim to 

block GPS positioning services, while spoofing 

interference seeks to deceive the receiver into providing 

incorrect position information. These objectives are 

fundamentally different. The goal of this paper is to use 

the so-called Cross Ambiguity Function (CAF), 

computed by GPS receivers, to detect spoofing attacks. 

GPS receivers [15-19] utilize a statistical hypothesis test 

to determine the presence or absence of a signal from a 

specific satellite in the received signal, while also 

providing a basic estimate of the delay and Doppler 

frequency when the signal is detected. To perform this 

test, it is common practice to maximize the CAF 

between the received signal and a local code replica 

[20]. 

The remainder of the paper is organized as follows. 

Sections 2 and 3 presents a brief theoretical overview of 

GPS spoofing detection methods. In Section 4, a CNN-

based GPS spoofing detection model is introduced. The 

proposed dimensionality reduction algorithm is 

presented in Section 5. The simulation results and 

performance of the proposed algorithm and model in 

detecting spoofing signals are presented in Section 6. 

Finally, the conclusions are drawn in Section 7. 

2 Spoofing Detection Methods 

Amongst various attack types, spoofing is considered 

the most perilous form of deliberate GPS interference. It 

deceives the GPS receiver by causing it to track 

counterfeit signals. Spoofing poses a greater threat than 

jamming, as the receiver is unable to detect the spoofing 

attack. In essence, spoofing is a stealthy attack where the 

spoofer misleads the receiver's location and time 

measurements by generating fake signals that mimic the 

original signals. Studies investigating the response of 

various GPS receiver types to spoofing signal threats 

have demonstrated the detrimental impact of such 

attacks on receiver measurements [14,21]. 

Fig. 1 illustrates the general occurrence of a spoofing 

attack. Each spoofing system, depending on its type, has 

a specific coverage area within which it can potentially 

divert GPS receivers. A GPS receiver under spoofing 

attack receives both genuine and spoofed signal sets 

simultaneously. The counterfeit signal is designed to 

overpower the authentic GPS signal, taking control of 

the unsuspecting receiver. Spoofing attacks and their 

countermeasures can be implemented at various receiver 

levels, including the data bit, acquisition, tracking, 

pseudo-range extraction, and navigation equation stages 

[9,22]. 

 
Fig. 1 General schematic of a spoofing attack. 

In order to facilitate analysis, deception attacks are 

categorized into simple, moderate, and complex. In a 

simple deception, a fake signal simulator is used. In a 

moderate deception, a GPS receiver is embedded in the 

deceiver to receive signals from the environment. Then, 
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a manipulated signal is transmitted by modifying the 

characteristics of the received signal and reproducing a 

signal based on the new characteristics. In a complex 

deception, multiple sophisticated deception systems are 

used in coordination with each other simultaneously 

[23,24]. 

For enhanced effectiveness of anti-spoofing 

techniques, a comprehensive understanding of spoofing 

methods and spoofer types is essential. Various 

approaches exist for spoofing detection and mitigation. 

These methods are designed to address the diverse 

scenarios involved in generating spoofed GPS signals. 

For instance, in a coordinated spoofing attack, the peak 

correlation of the spoofed signal is matched to the peak 

of the genuine signal. Subsequently, the power of the 

genuine signal is gradually increased. Finally, the gain of 

the spoofed signal tracks the delay lock loop gain to 

encompass the peak correlation and bring it under its 

control [25-27]. Consequently, anti-spoofing methods 

are tailored and implemented based on the specific type 

of spoofing attack. 

In a spoofing attack, some or all of the received signal 

characteristics are compromised. The extent of GPS 

signal degradation presents an opportunity for spoofing 

detection. Therefore, by examining various 

characteristics of the GPS signal received by the target 

receiver, the presence of a spoofed signal can be 

inferred.  

Fig. 2 illustrates the general process of creating a 

spoofing attack by a spoofing device in the presence of 

valid satellite signals and the countermeasure system. 

The spoofing detection stage focuses on distinguishing 

features between valid and spoofed signals. 

 
Fig. 2 General overview of a spoofing attack and anti-spoofing 

system. 

   Various methods have been developed for spoofing 

detection over the years. Some fall into the category of 

traditional methods, while others belong to intelligent 

spoofing detection methods. In 2012, authors in 

reference [28] conducted a comprehensive study on 

spoofing threats and introduced anti-spoofing methods 

into two main categories: spoofing detection and 

spoofing mitigation. According to related literature, 

actions taken toward spoofing detection and mitigation 

can be divided into four groups: anomaly detection in 

signal power [29,30], anomaly detection in time of 

arrival [31,32], spatial processing [33], and anomaly 

detection in correlation [34,35]. 

   In recent years, researchers in the field of spoofing 

detection have introduced the application of artificial 

intelligence algorithms in various receiver components 

for spoofing detection and mitigation. These include 

references [22,36] that employed a multi-layer Neural 

Network (NN) for spoofing detection, and reference [37] 

that proposed machine vision techniques in this domain. 

References [38,39] treated CAF as an image and 

employed a Convolutional Neural Network (CNN) to 

detect spoofing interference. Building on this approach, 

reference [40] investigates the detection of spoofing 

attacks with delays less than two chips by examining the 

cross-ambiguity function in the receiver's acquisition 

unit. This method utilizes a CNN to analyze the merged 

peaks of the spoofed and genuine signals, enabling 

spoofing attack detection. Reference [41] estimates the 

clock bias using a multi-layer NN and compares the 

estimated value with the measured value to detect 

spoofing attacks. 

In this paper, we propose a dimensionality reduction 

algorithm to utilize simpler networks and consequently 

improve detection speed, employing CAF images as 

matrix-based data for spoofing detection. We compare 

the results with the conventional method. 

3 Cross Ambiguity Function 

   In the signal processing chain, the first step performed 

by a GPS receiver is signal acquisition. The outcome of 

this process determines whether a specific satellite signal 

exists in the received signal or not. It also provides an 

approximate estimate of the associated code delay and 

Doppler frequency if present. All GPS receivers execute 

such an acquisition process by evaluating what is known 

as CAF and maximizing it [20]. Therefore, one of the 

methods for spoofing detection is CAF-based detection 

[38,40].  

   CAF is a two-dimensional function that relates to the 

correlation between the received signal and the local 

replica for each possible delay/Doppler pair, which is 

then maximized for signal detection. In this process, two 

hypotheses are available: (1) the null hypothesis H0, 

which states that there is no signal present or it is not 

properly aligned with the local replica, and (2) the 

alternative hypothesis H1, which assumes that a signal is 

present and properly aligned with the local replica. 

When a GPS spoofing signal is present, more than one 

peak point is observed in the CAF images, whereas if 
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only the genuine signal is present, a single peak point is 

observed in the CAF images (as shown in Figs. 1 and 2). 

 
Fig. 3 CAF in the absence of spoofing signal. 

 

 
Fig. 4 CAF in the presence of spoofing signal. 

4 NN-Based Spoofing Detection and Proposed Model 

   Detection of spoofing based on NNs has gained 

significant attention due to their capability to predict 

outputs of complex systems. Nowadays, with the 

advancement of intelligent methods, extensive research 

has been conducted in the field of spoofing detection in 

GPS systems using NNs. The input to the NN is defined 

based on feature vectors obtained from satellite systems, 

such as received signal strength and correlation function 

distortion, so that the designed NN, after necessary 

processing, can classify received satellite signals into 

categories such as jammed signals, spoofed signals, 

multi-path signals, or interference-free signals. 

Researchers in reference [38] also discuss the use of 

deep learning architectures for spoofing detection. With 

the aim of utilizing the features of the CAF in the 

presence and absence of spoofed signals, a set of data-

driven models that provide probabilistic classification 

are trained. Two classes, namely valid and spoofed 

signals, are defined based on the extracted CAF features, 

and signals corresponding to each scenario are classified 

into their respective classes. The model used in this 

paper is a complex CNN structure with 13 convolution 

layers. 

In this paper, we adopt the general architecture 

depicted in Fig. 5, similar to references [38] and [39]. A 

more detailed structure is shown in Fig. 6. Furthermore, 

to improve accuracy, we propose a modified CNN 

model (TCNN) with a structure as depicted in Fig. 7. 

The components of the transformer section are as 

follows: 

• Multi-Head Attention Layer: The multi-head 

attention layer is a crucial component in the transformer 

model. This layer calculates attention scores between 

input data and itself. In this paper, the number of heads 

is set to 16, and the key dimensions are set to 64. 

• Dropout: Dropout is a regularization technique that 

helps prevent overfitting. In this case, a dropout rate of 

0.1 is applied to the output of the multi-head attention 

layer. This layer randomly sets some values to zero 

during training. 

• Layer Normalization: Layer normalization is applied 

to the output of the dropout layer. This layer normalizes 

values independently for each feature dimension. 

• Feed-Forward: After multi-head attention, the output 

is passed through a feed-forward layer. In this case, this 

layer consists of two fully connected layers, each with 

64 units, and Re-Lu activation functions, which are a 

common choice for non-linear activation functions in 

deep learning models. 

CAF images have high volume and dimensionality, 

making spoofing detection using CAF with AI methods 

time-consuming to train. While accurate detection is 

crucial, minimizing the network's spoofing detection 

time is equally important. Therefore, Section 6 proposes 

a dimensionality reduction algorithm for CAF images 

that preserves key features while reducing processing 

time and maintaining high detection accuracy. 

5 Data Processing 

   The CAF images used in this paper have dimensions of 

141 * 5714. Processing these dimensions is not only 

time-consuming, but also requires powerful graphics and 

processing equipment. To address these challenges, we 

propose a dimensionality reduction algorithm using 

image mapping. The steps for preparing the dataset with 

reduced dimensions for the NN input are as follows (as 

shown in Figs. 8 and 9): 

   Step 1: Iterate through the input 2D matrix, store the 

input matrix dimensions in (a, b), and find the P most 

prominent peaks in the matrix. 

   Step 2: Store the columns and rows of the P most 

prominent peaks found. 
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Fig. 5 CNN architecture. 

 
Fig. 6 Base network architecture. 

 

 
Fig. 7 Overall Structure of the proposed TCNN architecture. 

Step 3: Obtain the desired dimensions of the reduced 

matrix and store them in (L, Q). 

Step 4: Using an appropriate method, map these P 

most prominent peaks to the reduced matrix in a way 

that the positions of the found peaks indicate the range 

of the peaks in the original matrix. 

Step 5: Feed the reduced matrix as input to the NN. 

Figs. 10 and 11 illustrate the results of dimensionality 

reduction applied to a CAF image and a gray scale 

image for both real and spoofed signals, respectively. 

As observed in Fig. 10, the images have been 

successfully reduced from dimensions of 141*5714 to 

9*9. The key features of the images are preserved after 

dimensionality reduction, which contributes to faster 

spoofing detection. 
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Fig. 8 A visualization of peak mapping. 

 
Fig. 10 The CAF image without using the dimensionality 

reduction algorithm (top) and the CAF image after 

dimensionality reduction (bottom) for the real signal (left) and 

spoofing with less than 0.5 chips (right). 

 
Fig. 11 Grayscale CAF images before (top) and after (bottom) 

dimensionality reduction for the original and spoofing signals. 

 
Fig. 9 Diagram of the proposed dimensionality reduction 

method. 

6 Simulation Results 

   The proposed method was evaluated using a Software-

Defined Radio (SDR) in MATLAB to generate CAF 

images as the dataset and Python software to implement 

the model and dimensionality reduction algorithm. 

Simulations were conducted on a laptop with the 

following specifications: 

• Processor: Core i7-12650H 2.3 – 4.2 GHz 

• Graphics card: RTX 3070 

• RAM: 16GB 
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Code phase 

/Amplitude 

/Amplitude 
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Frequency 

Code phase/ 
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   The proposed method was compared to a baseline 

model based on the architecture in [39], a proposed 

TCNN model with training parameters as shown in 

Table 1 and network architecture as shown in Table 2, 

and a method from [38] that utilizes a complex NN 

architecture similar to VGG16. The results were 

evaluated based on the following metrics: 

Table 1 Training Parameters for TCNN. 
Parameters Value 
Batch size 16 

Learning rate 0.001 

Epochs 100 

Loss function Binary cross entropy 

Optimizer Nadam 

Table 2 Network architecture. 
TCNN network Base network 
Conv layer 2*2 

Re-Lu 
Conv layer 2*2 

Re-Lu 

Max polling 2*2 Max polling 2*2 

1. Multi-head attention 

Dropout 0.1 

2. Layer normalization 

 

3. Fully connected 

Re-Lu 

 

4. Fully connected 

Re-Lu 

Dropout 0.1 

5. Layer normalization 

1. Conv layer 3*3 

Re-Lu 

 

2. Max pooling 2*2 

3. Fully connected 

Re-Lu 

Dropout 0.5 Dropout 0.5 

Fully connected 

Sigmoid 

Fully connected 

Sigmoid 

The dataset for this study consisted of 3507 CAF 

images from acquired PRNs as shown in Fig. 12. The 

dataset was divided into two classes: 

• Original Signal: 1713 images representing the 

genuine PRN signals. 

• Spoofed Signal: 1794 images representing the 

spoofed PRN signals. 

   The spoofing scheme employed in this work involved 

a six second delay of the original signal with itself. This 

delay was introduced using the Eq. (1): 

   𝑆𝑆(𝑡) = 𝑆𝐴(𝑡) + 𝑆𝐴(𝑡 − 6)                                             (1) 

   In Eq. (1), t denotes time in seconds, SA (t) and SS (t) 

denote the authentic satellite signal and spoofing signal, 

respectively. 

 
(a) 

 
(b) 

Fig. 12 Acquisition results in the absence (a) and presence (b) 

of spoofed signals. 

   In the following, in Figs. 13 to 18, the results related to 

the simulation are provided. 
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Fig. 13 Accuracy of CNN training with the application of 

dimensionality reduction algorithm for input images with 

dimensions 141 * 5714. 

 
Fig. 14 Confusion matrix of the CNN model with the 

application of dimensionality reduction algorithm for input 

images with dimensions 141 * 5714. 

 

 
Fig. 15 Training accuracy of TCNN with the application of 

dimensionality reduction algorithm for input images with 

dimensions 141 * 5714. 

 
Fig. 16 Confusion matrix of the TCNN model with the 

application of dimensionality reduction algorithm for input 

images with dimensions 141 * 5714. 
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Fig. 17 Training accuracy of the CNN without applying the dimensionality reduction algorithm for input images with dimensions 

141*5714 . 

 
Fig. 18 Training accuracy of the TCNN without applying the dimensionality reduction algorithm for input images with dimensions 

141*5714 .

   As illustrated in Figs. 13 to 18 and Table 3, employing 

the proposed dimensionality reduction algorithm in 

conjunction with the baseline CNN model leads to a 

significant improvement in test accuracy of 98.87% and 

a substantial reduction in total training time of 98.67% 

compared to using the original image dimensions. 

   The proposed TCNN model demonstrates superior 

classification performance compared to the baseline 

CNN model, even when using the original image 

dimensions. This improvement is evident in an 83.16% 

increase in accuracy. 

   Utilizing both the proposed dimensionality reduction 

algorithm and the TCNN model achieves even further 

improvements, surpassing the baseline CNN model with 

both original and reduced dimensions and the TCNN 

model with original dimensions. This combined 

approach results in accuracy enhancements of 99.24%, 

1.16%, and 9.83%, respectively. 

   The proposed method outperforms existing 

approaches, achieving a 2% accuracy improvement over 

reference [39] and a 14.5% improvement over reference 

[38]. 

7 Conclusion 

   Processing CAF images with their original dimensions 

using a large dataset can significantly increase spoofing 

detection time. This can lead to inefficiencies in real-

time applications. To address this challenge, we 

introduced a novel dimensionality reduction algorithm 

called peak mapping for reducing the dimensionality of 

CAF images. This algorithm not only significantly 

reduces detection time, but also enhances detection 

accuracy. To further improve accuracy, we proposed a 

modified CNN model, namely TCNN. The experimental 

results demonstrate that TCNN achieves a notable 

improvement in spoofing detection accuracy. The 
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combination of the proposed dimensionality reduction 

algorithm and the TCNN model offers a promising 

approach for efficient and accurate spoofing detection in 

GPS signals. This approach significantly reduces 

processing time while maintaining high detection 

accuracy.

 

Table 3 Results Comparison. 
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