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Abstract: State estimation is essential to access observable network models for online 

monitoring and analyzing of power systems. Due to the integration of distributed energy 

resources and new technologies, state estimation in distribution systems would be 

necessary. However, accurate input data are essential for an accurate estimation along with 
knowledge on the possible correlation between the real and pseudo measurements data. 

This study presents a new approach to model errors for the distribution system state 

estimation purpose. In this paper, pseudo measurements are generated using a couple of real 

measurements data by means of the artificial neural network method. In the proposed 

method, the radial basis function network with the Gaussian kernel is also implemented to 

decompose pseudo measurements into several components. The robustness of the proposed 

error modeling method is assessed on IEEE 123-bus distribution test system where the 

problem is optimized by the imperialist competitive algorithm. The results evidence that the 

proposed method causes to increase in detachment accuracy of error components which 

results in presenting higher quality output in the distribution state estimation. 
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1 Introduction1 

ISTRIBUTION System State Estimation (DSSE) is 

a data processing algorithm aiming at reducing 

metering data errors to provide an accurate supervisory 

and process in distribution systems. When a failure 

occurs in measurement devices, the observability of the 

system reduces [1, 2]. In this case, DSSE can be 

implemented to increase the observability and, as a 

result, the supervisory of the system [3]. Methodologies 

of DSSE started by Roytelman and Shahidehpour in the 

1990s when they presented a technique of DSSE by 

consideration of the minimum number of measurements 

available in the distribution system [1-4]. The 

conventional DSSE methods were tackled by many 

researchers to improve coverage speed and accuracy. 
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The branch current based DSSE in [4, 5] has been 

proposed to reduce pseudo measurement for accuracy 

and coverage speed enhancement. In [6], a bad data 

filter for measurement data has been introduced based 

on the weighted least square method. In [7], state 

estimation in distribution networks aiming at improving 

forecasted load data by using real-time measurements 

has been presented. State estimation using pseudo-

measurements and artificial neural networks (ANN) is 

presented in [8]. In this approach, an ANN is used for 

power injections and voltage magnitudes to estimate 

directly both of them. However, meaningful and 

reasonable state estimation using limited measurements 

is challenging. To increase the observability of the 

system, pseudo-measurements are introduced. 

Additionally, pseudo measurements need to be 

accurately modeled to improve the quality of the 

estimations. State estimation of a distribution network is 

never perfect as it contains inaccuracies such as network 

parameters, topology, measurements, data correlation 

and operating conditions. Using a large number of 
pseudo measurements with uncertainties aiming at 

making a distribution network observable may result in 
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a deviation of the estimated state from the real one. 

Measurement devices allocation is an important 

application of DSSE in recent literature. In [9], optimal 

placement of synchronized phasor measurement in 

unbalance condition of distribution systems for 

observability and state estimation, using genetic 

algorithm has been proposed. In [10], a multi-objective 

optimization method aiming at seeking number and 

location of the measurement devices for accurate 

distribution state estimation has been proposed. In [11], 

a measurement device allocation method using 

distribution state estimation has been presented in which 

the uncertainty introduced by the measurement devices 

and the tolerance in the knowledge of line impedances 

have been considered. In [12], aggregation of smart 

metering data is introduced as a restriction in DSSE. To 

improve DSSE accuracy under this restriction, the 

correlations among pseudo loads’ errors have been 

considered. The robust placement of a limited number 

of phasor measurement units and voltage magnitude 

meters for state estimation has been presented in [13] 

where the Fisher information matrix has been preferred 

as a criterion for the estimation accuracy. The authors 

in [14] have studied the influence of possible 

correlations between data of measurement devices and 

pseudo measurement in the weighted least square 

estimation method. One of the most important usages of 

state estimation is to diagnosis and reduce the error of 

measurement data [15]. A methodology for customers' 

load allocation based on the probabilistic neural 

network is proposed in [16]. In [17], an approach to 

modeling the loads as pseudo measurements based on a 

Gaussian mixture model (GMM) has been presented. To 

compare the DSSE methods, a classification has been 

presented in Table 1. 

   To the best of our knowledge, error modeling using 

radial distribution function in DSSE has not been 

reported in the literature. In this paper, the ANN method 

is also implemented to model pseudo measurements of 

active and reactive power injections. The error between 

the target (power injection) and the output (load profile) 
is modeled using the radial basis function (RBF). This 

model is used to obtain the pseudo measurements' 

variance. On the other hand, it has been firstly assumed 

that the distribution network is observable and the focus 

of this paper is to truthfully model errors corresponding 

to pseudo measurement data. The innovative 

contributions of this paper are highlighted as follows: 

 To model pseudo measurements using multilayer 

perceptron artificial neural network and consider the 

error of the modeled neural network as pseudo 

measurement errors. 

 To extract effective Gaussian kernel in pseudo 

measurement errors of the Gaussian mixture model 

using radial basis function neural network. 

 To optimize the radial basis function neural network 

by the imperialist competitive algorithm and carry 

out self-tuning detection of pseudo measurement 

errors’ kernel number of the Gaussian mixture 

model. 

   The rest of the paper is organized as follows: The state 

estimation formulation based on the weighted least 

square method is described in Section 2. The pseudo 

measurements modeling with multilayer perceptron 
neural network is presented in Section 3. The 

measurement data encountering strategy is described in 

Section 4. The error modeling and effective error 

extraction are described in Section 5. The state 

estimation application and their roles are discussed in 

Section 6. The overall methodology and application of 

the error modeling and the usage of state estimation are 

presented in Section 7. The simulation results on the 

real network as a case study are aggregated in Section 8. 

The discussions about the methods that have been used 

for this application of state estimation are prepared in 
Section 9 and finally, the conclusion of this paper is 

presented in Section 10. 

 

2 State Estimation Methodology 

   The objective function of state estimation is to 

identify the maximum expected state of distribution 

networks. The weighted least square (WLS) algorithm 

widely used to estimate the state of distribution systems 

based on this assumption which measurements have a  
 

 
Table 1 Comparison of DSSE methods. 

Refs. 
State Estimation Based on 
Weighted Least Square Method 

Pseudo Measurements Modelling 
with Artificial Neural Network 

Pseudo Measurements Error 
Modelling with Radial Basis Function  

[17] ✔ 
 

 

[18] 
 

✔  

[19] ✔ ✔  

[20] ✔ ✔  

[21] ✔ ✔  

[22] ✔ 
 

 

[23] 
 

✔  

[24] 
 

✔  

[25] ✔ 
 

 

This Paper ✔ ✔ ✔ 
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Gaussian probability density [26]. The objective of the 

WLS algorithm aims at minimizing the following 

function: 
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where s is measurement vector, x is state vector of 

components, j is the nonlinear function describing 

measurement k to the state vector x and c is the vector of 

measurement error. It is assumed that measurements 
have an independent error, i.e. E{eiej} = 0. Hence 

Cov(e) = E[e.eT] = R = diag{σ12.σ22…σm2}. Thus, σi2 

indicates variance of measurement k which is 

considered to calculate the accuracy of corresponding 

metering data. The state vector can be optimized by a 

limit number of iterations using the Newton recursive 

method as given in (3)–(5) [26]: 
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where i is the iteration index, xi is the solution vector at 

iteration i, G is gain and J is Jacobian matrices. The 

state vector should estimate voltage magnitude and 

voltage angle at the bus k where the reference bus is bus 
1 with zero voltage angle. 

 

3 Artificial Neural Network 

   In this paper, a two-layer feed-forward ANN is 

used [17]. A layer, called hidden layer, locates between 

input nodes and the output layer. The hidden layer 

activation function is A sigmoid and linear functions are 

used to activate the hidden and the output layers, 

respectively. The ANN is trained by the scaled 

conjugate gradient backpropagation method which is a 

network training function. This function updates weight 

and bias values according to the scaled conjugate 
gradient method which is adequate for large-scale 

problems. The two ANNs are trained in which values of 

power flow measurements and power injections are 

considered as the input and the output, respectively. The 

first ANN relates to real active power flow 

measurements and active power injections, and the 

second ANN corresponds to real reactive power flow 

measurements and reactive power injections. The ANNs 

compare with load profiles and generate errors; then, the 

ANN updates its weight and is adjusted by those. To 

summarize the ANN training procedure, the following 

steps are given: 

1. Active and reactive power data are generated using 

the Monte Carlo simulation for the whole year. 

2. Load profiles corresponding to active and reactive 

power data are generated using the load flow 

calculation. 

3. The calculated active and reactive power flows and 

the load profiles are used as the input and the 
output of ANN, respectively. 

4. To save the ANN errors in the previous step for 

the following calculations. 

 

4 Measurement Data Encountering Strategy 

   The measurement data has been built by means of 

Monte Carlo simulation using real historical data. 

However, in each run of the program, a new series of 

data is generated with predetermined mean and variance 

values. This methodology has been selected in order to 

show the robustness of the proposed method against 
various input measurement data. The input data for 

carrying out state estimation has been provided as 

follows: 
1. The load data of the test network has been 

generated using Monte Carlo simulation in a 30 

min period for a year (17520 load profiles) based 

on the network data given in [29]. 

2. For all 17520 load profiles, the load flow problem 

is calculated and the corresponding voltage of 

buses and flow of lines are provided. 

3. After that, errors are randomly added to the values 
of bus voltages and line powers using the Monte 

Carlo method. 

   The aim of this data production is to provide both 

actual and noisy data within the test network for 

analyzing the robustness of the proposed method in 

properly modeling the pseudo measurement data error. 

Like a real network, data of bus voltage and line power 

vary according to load variations. Then, these values 

may receive errors when measured by measurement 

devices. In this paper, in order to have correct data, 

power flow calculations are executed based on some 

randomly generated load profiles. Then, to provide 
measurement data with error, randomly errors are added 

to the correct data. 

 

5 Error Modelling 

   Errors refer to a difference between load profiles and 

power injection outputs of ANN. In DSSE, typically, 

this error is assumed to have a Gaussian density 

distribution. To analyze the validation of the 

assumption, the probability density distribution of a 

typical ANN output error is illustrated in Fig. 1. As 

shown, the error between the input and output of ANN 

is not similar to a Gaussian density distribution. In this 
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paper, the radial basis function network is proposed to 

process the ANN error. 

 

5.1 Radial Basis Function Neural Network 

   The Radial Basis Function Network (RBF) is an ANN 

that uses a radial basis function as the activation 

function. The output of the network is a radial basis 

function of inputs; neurons parameters are linearly 

summed as illustrated in Fig. 2. The RBF network 

commonly uses for function approximation, time series 

prediction, classification and system control [27]. The 

RBF network is designed using three layers which 
include input, hidden and output layers. In the hidden 

layer, a non-linear RBF activation function is used 

where the linear function is implemented in the output 

layer. The output of the network is a scalar function of 

the input vector and as expressed in (6): 
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where m is the number of neurons in the hidden layer, γ 

is the center vector for neuron k, and α is the weight of 

neuron k in the linear output neuron. The Mahalanobis 

distance and Gaussian function respectively are used to 

model the norm and RBF as given in (7): 
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The RBF a Gaussian kernel on feature vector is defined 
as (8): 
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5.2 Function Approximation 

5.2.1 Non-Normalized Radial Basis Function 

   The non-normalized RBF is made out by (9): 
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5.2.2 Normalized Radial Basis Function 

   The normalized RBF is made out by (9): 
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and also 
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The objective function of error modeling problem can 

be defined as (14) which is obtained from (13): 
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   The variables of this problem are σ2, α and γ and the 

number of these variables is equal to the number of 

Gaussian kernels that should be optimized. The 

optimization is carried out via a meta-heuristic 

algorithm named the imperialist competitive 

algorithm (ICA) [28]. In this optimization problem, the 

ANN output that is a non-linear function error can be 

approximated by Gaussian kernels. Each of these 

kernels has its own weight which represents the 

effectiveness of the corresponding kernel in the 
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Fig. 1 Probability density of typical ANN error. Fig. 2 Radial basis function network. 
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optimization problem. The largest weight in the 

optimization corresponds to the error of pseudo 

measurement data. Actually, a Gaussian function with 

higher variance has more impact. Also, the optimization 

algorithm recognizes that how many Gaussian functions 

should be generated for an error function. 

 

6 State Estimation Application 

   In the previous section, pseudo measurements are 

generated by ANN and errors are created using the RBF 

network. A state estimation problem includes the 
following steps: 

Step 1: to produce active and reactive power injection 

in period t by measuring real active and reactive power 

flows as the input of ANN and then, save them as 

pseudo measurements. 

Step 2: to compare the output of ANN (active and 

reactive power injection) with the corresponding load 

profile and calculate pseudo measurements errors in 

period t. 

Step 3: to create a model for errors in RBF network 

with the Gaussian kernel and optimize it by ICA 
algorithm in order to obtain the variance of pseudo 

measurement errors. 

Step 4: to construct the covariance matrix by the matrix 

created in the previous step and then carry out the state 

estimation. 

   In the state estimation function, inputs are real 

measurements, pseudo measurements, network 

parameters and the network topology. 

 

7 Methodology 

   The aim of this paper is to accurately model the error 
corresponding to pseudo measurement data in order to 

provide an acceptable pseudo measurement data while 

the real measurement data is not sufficient. The pseudo 

measurement data is calculated from available real 

measured parameters and is validated by state 

estimation criterion. At first, the injected active and 

reactive powers are estimated using ANN from load 

demand data and real lines current measured data. The 

estimated values enter into RBF network aiming at 

detecting error. Now, there are some pseudo 

measurement data with known errors that can be used in 

state estimation. In other words, it is like a situation in 
which there are some measurement devices and the 

measurement error of these devices are known to the 

operator. As a result, more accurate detection of pseudo 

measurement error results in a more accurate estimation 

of system state. In this case, when the error of ANN 

enters the RBF network, the components of errors are 

separated. Then, the error distribution with the most 

impact is considered as pseudo-measurement error. 

 

 

8 Case Study 

   The proposed method was applied to IEEE 123-bus 

distribution test system given in [29]. The system 

comprises 126 buses, 125 branches, and 85 active and 

reactive loads. Half-hourly load profiles over one year 

have been provided. State variables in the state 

estimation problem are voltage magnitude and voltage 

angle. The first bus assumed to be reference bus which 

has zero voltage angle. Two scenarios represented in 

Table 2 are defined to evaluate the proposed method. To 

model pseudo measurements, two ANN are considered. 

In the first ANN, variables are two real power flow 

measurements at the substation (P116-1, Q116-1, P1-17, Q1-17 

and P13-18, Q13-18). The variables in the second ANN are 

three additional sets of measurements (P8-13, Q8-13, P7-8, 

Q7-8 and P118-52, Q118-52). It is assumed that the real 
measurement is available at the substation and DG 

locations. Thus, the voltage magnitude at bus 85 (V85), 

the reactive power flows in lines 116-1, 1-17 and 13-18 

(P116-1, Q116-1, P1-17, Q1-17 and P13-18, Q13-18), the active 

and reactive power injection at bus 1, 2, 6, 7 and 10 (P1, 

Q1, P2, Q2, P6, Q6, P7, Q7 and P10, Q10), were considered 

as real measurements in scenario 1. The additional 

voltage measurement at bus 84 and 94 (V84, V94), the 

active and reactive power flows in line 8-13, line 7-8 

and line 118-52 (P8-13, Q8-13, P7-8, Q7-8 and P118-52, Q118-

52) were used as additional measurements in scenario 2. 
Real measurements are obtained by running a load flow 

calculation in which a Gaussian uncertainty with 3% 

error around the mean values has been considered. Also, 

load flow with Gaussian uncertainty values is 

implemented to provide the input of ANN and the 

function of state estimation. The mixture component is 

recognized by RBF with Gaussian Kernel and self-

tuning by ICA algorithm. To test ANN training 

performance, error modeling and state estimation are 

considered in 30-minute steps during a year. In 

scenarios 1 and 2, the voltage magnitude and the voltage  
 

 
Table 2 Summary of scenarios. 

Scenario ANN Input Real Measurements 

1 P116-1, Q116-1, P1-17, Q1-17 ,P13-18, Q13-18 V85 

P116-1, Q116-1, P1-17, Q1-17,P13-18, Q13-18, 
P1, Q1, P2, Q2, P6, Q6, P7, Q7 ,P10, Q10 

2 P116-1, Q116-1, P1-17, Q1-17 , P13-18, Q13-18 ,P8-13, Q8-13, P7-8, 
Q7-8 , P118-52, Q118-52 

V85, V84, V94 

P116-1, Q116-1, P1-17, Q1-17, P13-18, Q13-18, P8-13, Q8-13, P7-8, Q7-8, 
P118-52, Q118-52, 

P1, Q1, P2, Q2, P6, Q6, P7, Q7 ,P10, Q10 
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Fig. 3 Voltage magnitude and voltage angle at bus 83 in scenario 1. 

 

 
Fig. 4 Voltage magnitude and voltage angle at bus 83 in scenario 2. 
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where ve is voltage magnitude estimation value, vt is 

voltage magnitude true value, δe is voltage angle 

estimation value, δt is voltage angle true value, k is 

sampling step and n is measurement sampling steps. 

The errors of voltage angle in scenario one and two for 

bus 83 are shown in Figs. 5 and 6. The results showed 

that the average of the state estimation in scenario 2 has 

been improved if compared with the one in scenario 1. 

The increase in voltage measurement at ANN input 

improves state estimation accuracy. Table 3 presents the 

mean of comparative voltage magnitude and voltage 

angle errors for buses 114, 83 and 109 in two scenarios. 

In order to show the advantage of the proposed method, 

the simulation has been also carried out using the error 
modeling method presented in [21] where the network 

and input data are the same. The comparison results are 

shown in Table 4. It should be noted that the maximum 

amount of relative voltage magnitude error provided by 

the method in [21] was 0.07%. As a comparison, the 

relative voltage magnitude error provided by the 

proposed method is 0.03%. Also, regarding relative 
voltage angle errors, the maximum values provided by 

the methods presented in [21] and this paper are 25% 

and 4.05%, respectively. So, the proposed method 

results in lower relative error if compared to the one 

presented in [21]. Load profile with 25% uncertainty is 

used where ANN-based approach provides pseudo 

measurements. It is observed that voltage magnitude 

errors are the same in scenarios but the proposed 

approach generates an estimated voltage angle with a 

lower error. Meanwhile, for the accuracy of power flow 

estimations, the performance of the proposed method is
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Fig. 5 Errors of comparative voltage phase and magnitude in scenario 1 at bus 83. 

 

 
Fig. 6 Errors of comparative voltage phase and magnitude in scenario 2 at bus 83. 

 
Table 3 Voltage average relative errors [%]. 

Scenario 
Bus 114 Bus 83 Bus 109 

Magnitude Phase Magnitude Phase Magnitude Phase 

1 0.030 0.088 0.07 0.3 0.023 0.072 
2 0.008 0.007 0.025 0.05 0.009 0.012 

 

evaluated via a scenario. It is assumed that the load 

demand is high in a critical day of winter. The ANN-

based pseudo measurement modeling approach is used 

to estimate the line power flow. To verify the concept, it 

is assumed that the mean value of power flow 

estimations was around 96% of the line rating. The 

mean and variance values used for probability densities 

of line power flow estimations in all lines are computed 

for scenario 1. The state estimated line flow probability 

densities for comparison purposes are computed using 

25%, 35%, 50%, and 65% uncertainty in pseudo 
measurements of the load which derived from the load 

profile mean and are also shown in Fig. 7. The 

uncertainty in the measurement of the load increases 

while the variation around the mean increases. 

 

9 Discussion 

   On the other hand, in the absence of real measurement 

data from measurement devices, the observability of the 

network reduces. In this case, pseudo measurement data, 

as an alternative, can be taken into account for 

measurement data. It is worth to be noted that accurate 

modeling of pseudo measurement data results in 

accurate state estimation of the system. 

   A new approach for error modeling of pseudo 
measurement data has been presented in this paper. In 

the related works, some approaches such as GMM-

MLE [21] have been presented aiming at modeling  
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Table 4 Voltage maximum error comparison [%]. 

 
Maximum 

Voltage Error 
Maximum 

Phase Error 

GMM method [21] 0.07 25 
The proposed method 0.03 4.05 

 

 
Fig. 7 Probability density of power flow estimate in line 1-17 

[KVA]. 

 

pseudo measurement error by extracting from the 

Gaussian distribution function. However, the proposed 

method models the error more accurate than the one 

produces by other methods. It is because of the 

dependency of the proposed method on optimization 

parameters. So, by modifying optimization parameters 

corresponding to different conditions, appropriate 

solutions are provided. 

 

10 Conclusion 

   This paper has presented an efficient method to model 

errors associated with distribution state estimation by 

using the RBF network. The proposed method uses 

offline load flow and load profiles to train two ANNs. 

An RFB-based approach including ANNs can 

effectively synchronize the average load profiles with 

the real measurements. The results showed that the main 

advantage of the proposed method is to provide more 

accuracy in terms of error modeling. Also, in the case of 

large-scale networks and the network with low available 

metering data, the proposed method has acceptable 
compatibility. 
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