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Abstract: This article presents an improved direct vector command (DVC) based on 

intelligent space vector modulation (SVM) for a doubly fed induction generator (DFIG) 

integrated in a wind turbine system (WTS). The major disadvantages that is usually 

associated with DVC scheme is the power ripples and harmonic current. To overcome this 

disadvantages an advanced SVM technique based on fuzzy regulator (FSVM) is proposed. 

The proposed regulator is shown to be able to reduce the active and reactive powers ripples 

and to improve the performances of the DVC method. Simulation results are shown by 

using Matlab/Simulink. 
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1 Introduction1 

HE DFIG is at present the most commonly used in 

WTSs due to their advantageous qualities of cost, 

robustness, and performances. In the most WTSs 

configurations, the stator side is directly connected to 

the grid and the rotor side is connected to the grid 

through a back-to-back converter [1, 2]. Many 

command schemes such as vector command (VC) [3, 4], 

sliding mode command (SMC) [5, 6], artificial 

intelligent command (AIC) [7], direct torque command 

(DTC) [8-10], LQR command of DFIG [11] and direct 

power command (DPC) [12, 13] have been proposed to 

command especially active and reactive powers of the 

DFIG. 

   Since vector command scheme is employed to 

command the grid-side converter (GSC) and rotor-side 

converter (RSC). Controlling the active and reactive 

energy of DFIG is separately performed by vector 

command of RSC, thus achieving the regulatory energy 

factor is possible. However, VC of GSC in addition to 

supporting the DC link voltage can command the active 
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energy exchanged between the GSC and the grid [14]. A 

decoupled command of the stator active and reactive 

powers has been achieved by regulating the 

decomposed rotor currents with PI regulators [15]. 

Since the PWM (pulse width modulation) strategy is 

usually used in command of machine drive. However, 

this strategy scheme is the simple one and easy to 

implement. On the other hand, this strategy gives more 

THD (total harmonic distortion), and high ripple in 

torque, flux and powers of the DFIG machine. To 

overcome the drawbacks of classical PWM strategy, a 

new modulation strategy for the inverter control was 

proposed by [16, 17] as space vector modulation to 

command active and reactive powers. However, this 

technique gives 15% more voltage output compared to 

the classical PWM technique. On the other hand, the 

SVM technique is complex command and need to 

calculate the sector and angle. In this article, we propose 

a new SVM strategy based on the calculation of 

minimum and maximum of three-phase voltage. The 

advantages of the proposed SVM strategy is not needed 

to calculate the angle and sector, easy to implement, 

simple scheme and gives minimum THD compared to 

PWM modulation. 

   On the other hand, the essential drawbacks of SVM 

strategy using hysteresis controllers are the variable 

switching frequency and high ripples. To avoid these 

problems of the SVM technique, a new SVM technique 

has been proposed in this article based on fuzzy logic 

(FSVM). 

   In our paper, three different DVC command schemes 

T 
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will be compared with each other. These schemes are 

DVC command using classical PWM technique, DVC 

using SVM technique and DVC using FSVM strategy. 

The proposed commands schemes are described clearly 

and simulation results are reported to demonstrate its 

effectiveness. The used command schemes are 

implemented in Matlab. 

 

2 The Model of DFIG 

   The model of the DFIG is same as the cage induction 

machine. The application of Park model of the DFIG 

permits to write the dynamic voltages and fluxes 

equations in dq reference frame are given by the 

following equations [18, 19]: 
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The torque is done as: 
 

( . . )e dr qs qr dsT pM I I I I   (3) 
 

and its associated motion equation is: 
 

e r
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where Idr, Iqr are rotor current components, Vds, Vqs are 

stator voltage components, Vdr, Vqr are rotor voltage 

components, Rs and Rr are stator and rotor resistances, 

Ls and Lr are stator and rotor inductances, M is mutual 

inductance, Te is the torque, Tr is the load torque, Ω is 

the mechanical rotor speed, J is the inertia, f is the 

viscous friction coefficient and p is the number of pole 

pairs. 

   The stator area Ps and Qs powers are defined as: 
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3 DVC Command  

   In this work, the DFIG model can be described by the 

following state equations in the synchronous orientation 

frame whose axis d is aligned with the stator flux 

vector. 
 

      and 0ds s qs     (6) 
 

On the other hand, by neglecting Rs the stator voltage 

can be expressed by: 
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The active and reactive powers consequently given by 

the following expression: 
 

2
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The torque can then be expressed by [20]: 
 

3

2
e qr ds

s

M
T p I

L
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Fig. 1 represents the DVC command technique of DFIG 

driven by a classical inverter using PWM inverter. 

 

 
Fig. 1 DVC method block with PWM inverter. 
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   The internal structure of DVC method is shown in 

Fig. 2. 

   The PI regulators terms are calculated with a pole 

compensation strategy [21]. The time response of the 

regulated system will be fixed at 10 ms. This value is 

adequate for our application and a lower value might 

involve transient with important overshoot. The 

calculated terms are: 
 

1000
.

s r

i

s

L R
K

M V
  (11) 

1000
.

s r

p

s

L R
K

M V


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The terms Ki and Kp represent respectively the integral 

and proportional gains of PI regulator. 

   On the other hand, the DVC scheme of DFIG is the 

simple command method and easy to implement. Like 

an every scheme method has some advantages and 

disadvantages. The basic disadvantages of DVC scheme 

using PWM inverter are the variable switching 

frequency, the stator reactive and stator active powers 

ripples. In the aim to improve the performance of the 

electrical drives based on classical DVC command, 

Space Vector Modulation (SVM) inverter and fuzzy 

logic space vector modulation inverter (FSVM) to 

reduce the reactive, active powers ripple and minimize 

the THD value of current (Ias). 

   Fig. 3 shows the schematic block of a DVC method 

with FSVM technique. The principal of the DVC 

command using FSVM technique is similar to classical 

DVC command. However, the PWM inverter is 

replaced by FSVM inverter. This strategy technique 

based on fuzzy classification has the advantage of 

simplicity and easy to implement. 

 

 

 
Fig. 2 Structure of DVC scheme. 
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Fig. 3 DVC method block with FSVM inverter. 

 

Vrd
* 

Vrq
* 

Qs_ref 

Ps_ref 

Qs 

 

Ps 

 

 

+ - 

+ - 

+ 
+ 

+ 
- 

PI 
 

PI 
 

g(M.Vs)/Ls 

 

(Rr.Vs)/(ws.M) 

 



Direct Vector Control of a DFIG Supplied by an Intelligent SVM 

 
… H. Benbouhenni, Z. Boudjema and A. Belaidi 

 

Iranian Journal of Electrical and Electronic Engineering, Vol. 15, No. 1, March 2019 48 

 

4 Intelligent Space Vector Modulation 

4.1 SVM Strategy 

   The SVM technique considers this contact of the 

phase and reduced the ripple content of the three-phase 

isolated neutral load as shown in Fig. 4 [22]. The SVM 

method is recently showing popularity for inverter 

applications.  

   The three phases sinusoidal and balance voltages 

given by the equations as follows: 
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   In this article, we propose a simple technique of SVM 

based on following steps: 

 Calculate the minimum voltages, min(VAo, VBo, VCo), 

 Calculate the maximum voltages, max(VAo, VBo, VCo), 

 Find the switching states. 

   The SVM inverter block represents the two-level 

inverter model as shown in Fig. 5. The energy converter 

has been implemented in terms of the switching 

function gi connected with each energy switch. The 

switching function gi of a given energy switching can 

assume either 1 or 0 according to its conducting state. 

Since two energy switches of the similar leg cannot be 

on at the same time, the switching function of the phase 

‘A’ for example, is distinct as: 
 

' 1a ag g   (15) 
 

   The principle of SVM method is that the command 

electrical energy vector is approximately calculated by 

using three adjacent vectors [23]. However, this 

modulation technique is detailed in [24-26]. 

  The output phase voltages, in terms of the switching 

functions are:  
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4.2 Fuzzy Space Vector Modulation 

   In order to improve the two-level DVC performances, 

a complimentary use of the fuzzy regulator (FR) is 

proposed. The principle of Fuzzy Space Vector 

Modulation (FSVM) is similar to traditional SVM. The 

difference is using FRs to replace the hysteresis 

comparators. As shown in Fig. 6. 

   Fuzzy logic (FL) is recently getting increasing 

emphasis in drive command applications. The main 

preference of the FL is that is easy to implement the 

command that it has the ability of generalization [27]. 

The block diagram of FR based hysteresis comparator is 

shown in Fig. 6. The FR rules are written by absorbing 

the performance of the hysteresis comparators. 

   The membership function definition for the input 

changes “Error in comparators hysteresis” and “Change 

in Error of comparators hysteresis” is given by Fig. 8. 

   The FL rules for the proposed system are given in 

Table 1 [28, 29]. We use the next designations for 

membership functions: 

NB : Negative Big   NM : Negative Middle 

NS : Negative Small   PS: Positive Small 

PB: Positive Big    EZ : Equal Zero 

PM : Positive Middle. 

   Table 2 shows the parameters of FR. 

 

 

 

 

 
Fig. 4 Voltage source inverter type three phase. 
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Fig. 5 Simulation block of proposed SVM technique. 

 
Fig. 6 SVM method with FR. 

 

 
Fig. 7 Fuzzy command of comparators hysteresis. 

 

 
Fig. 8 FR sets and its memberships functions. 

 

 
Table 1 FL rules of hysteresis comparators. 
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       e = V2-Vp, ∆e = d(V2-Vp)/dt 

Table 2 Parameters of FR. 
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5 Simulations Results 

   The DVC scheme of a DFIG is implemented with 

simulation tools of MATLAB. The DFIG (1.5 MW) 

attached to a 398 V/50 Hz grid. Parameters of the DFIG 

are given in Table 3 [30, 31]. The both command 

strategies DVC using PWM, DVC using SVM and 

DVC using FSVM technique are simulated and 

compared regarding reference tracking, current 

harmonics distortion, and robustness against DFIG 

parameter variations. 

 

5.1 Reference Tracking Test 

   Figs. 9-19 show the obtained simulation results. As it 

is shown in Figs. 9-12, for the three DVC command 

strategies, the reactive, electromagnetic torque and 

stator active powers tracks almost perfectly their 

references values. Moreover, the DVC command using 

FSVM strategy reduced the powers ripples and torque 

ripple compared to the DVC command using PWM and 

SVM technique (see Figs. 13-16). On the other hand, 

Figs. 17-19 show the THD of stator current of the 

doubly fed induction generator obtained using Fast 

Fourier Transform (FFT) method for both DVC 

command schemes. It can be clearly observed that the 

THD value is minimized for DVC using FSVM 

technique (THD = 0.09%) when compared to DVC 

command using PWM (THD = 1.22%) and DVC 

command using SVM technique (THD = 1.19%). 

 

 
Table 3 The DFIG parameters. 

Parameters Rated Value Unity 

Nominal power 1.5  MW 

Stator voltage 398 V 

Stator frequency 50  Hz 

Number of pairs poles 2  

Stator  resistance 0.012 Ω 

Rotor  resistance 0.021 Ω 

Stator  inductance 0.0137 H 

Rotor  inductance 0.0136 H 

Mutual  inductance 0.0135 H 

Inertia 1000 Kg.m2 

Viscous friction 0.0024 Nm/s 
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Fig. 9 Active power (Reference tracking test). Fig. 10 Reactive power (Reference tracking test). 
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Fig. 11 Torque (Reference tracking test). Fig. 12 Stator current (Reference tracking test). 
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Fig. 13 Zoom in the active power (Reference tracking test). Fig. 14 Zoom in the reactive power (Reference tracking test). 
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Fig. 15 Zoom in the torque (Reference tracking test). Fig. 16 Zoom in the stator current (Reference tracking test). 
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Fig. 17 THD of one phase stator current for DVC-PWM 

(Reference tracking test). 
Fig. 18 THD of one phase stator current for DVC-SVM 

(Reference tracking test). 
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Fig. 19 THD of one phase stator current for DVC-FSVM (Reference tracking test). 
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5.2 Robustness Test 

   In order to study the robustness of the proposed 

command schemes, the nominal value of the Rr and Rs is 

multiplied by 2, the values of inductances Ls, M, and Lr 

are multiplied by 0.5. Simulation results are presented in 

Figs. 20-30. As it is shown by these figures, these 

variations present an apparent effect on the active, 

reactive powers, and electromagnetic torque curves and 

that the effect appears more significant for the DVC 

using PWM technique compared to DVC using SVM 

strategy (see Figs. 24-27). 

   On the other hand, this variation does not effect on the 

DVC using FSVM technique. However, the THD value 

of stator current in the DVC using FSVM technique has 

been reduced significantly (see Figs. 28-30). Table 4 

shows the comparative analysis of THD value. Thus it 

can be concluded that the proposed DVC using FSVM 

inverter is more robust than the DVC using PWM and 

SVM technique. 

 

Table 4 Comparative analysis of THD value. 

 THD [%] 

DVC-PWM DVC- SVM DVC-FSVM 

Stator Current 6.92 6.86 0.19 
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Fig. 20 Active power (robustness test). Fig. 21 Reactive power (robustness test). 
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Fig. 22 Torque (robustness test). Fig. 23 Stator current (robustness test). 
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Fig. 24 Zoom in the active power (robustness test). Fig. 25 Zoom in the reactive power (robustness test). 
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Fig. 26 Zoom in the torque (robustness test). Fig. 27 Zoom in the stator current (robustness test). 
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Fig. 28 THD of one phase stator current for DVC-PWM 

(robustness test). 
Fig. 29 THD of one phase stator current for DVC-SVM 

(robustness test). 
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Fig. 30 THD of one phase stator current for DVC-FSVM (Reference tracking test). 

 

 

6 Conclusion 

   This article presents a novel DVC scheme of a DFIG 

using a new modulation technique based on SVM and 

fuzzy logic compared with the classical PWM and SVM 

strategies. With results obtained from the simulation, it 

was clear that for the same operation conditions, the 

DVC scheme with FSVM technique presents good 

performance compared to the DVC one using SVM and 

PWM strategies and that was clear in the THD of 

current which the use of the FSVM minimize the THD 

more and more than the classical PWM and SVM 

strategy. 
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