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Abstract: Today due to increasing and evolving of electrical grids, the optimal and 

profitable energy production is among producers' major concerns. Thus, conventional ways 

of production and trading energy are being replaced by modern economical procedures. In 

addition, distributed energy resources (DERs) in form of renewable and conventional 

resources as well as responsive loads play an important role in this issue. The mutual 

problem of DERs in joining power market is their rather small production compared to 

other units and intermittency of the corresponding resources. Forming coalition is an 

effective way to overcome DER difficulties for participating in power market. In this paper 

the problem of optimal bidding strategy of DERs integrated as a virtual power plant is 

investigated. Based on the proposed method, cooperative game is employed to obtain 

optimal DER outputs and the results are compared with individual non-cooperative bidding 

model. In order to mitigate the intermittent nature of renewable energies, existence of 

electric vehicles (EVs) as energy storage facilities in the proposed coalition is investigated. 

Due to the associated uncertainties regarding EVs and DERs, a stochastic optimization 

model is used. Finally, Shapley value method is employed to obtain corresponding 

allocated profits. Results show the eminence of forming coalition in terms of acquiring 

payoffs and optimal contributions. 
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Nomenclature1 

Indices 

Index of hours. T   
Index of DERs integrated into a coalition. u   

Index of scenarios. ,    

Index of electric vehicles. EV   
  

Constants 

Duration of time period t (h). td   

Lower and upper power limits for 

dispatchable units repectively (MW). 
,u uP P   

CPP ramp-up and ramp-down rates 

(MW/h). 
,u uR R   

CPP down time period beforebeginnig of 

scheduling day (h). 

,down initg   
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CPP minimum down time (h). 
,mindowng   

CPP on or off state before beginning of 

scheduling day (1 for 
( , ) 0down initg    and 

0 otherwise). 

on offg    

CPP up time period in the beginning of 

the scheduling day (h). 

,up initg   

CPP minimum up time (h). 
,minupg   

Marginal operation cost of CPP 

($/MWh). 

u

mC   

Marginal curailment cost of 

dispatchable load ($/MWh). 

L

mC   

Fixed, start-up and shut-down costs of 

CPP ($). 
, ,f s d

u u uC C C  

Occurrence probability of scenario ω.    

Efficiency coefficient of EV. effC   

Battery capacity of EV (MWh). cap   

Charging and discharging rates of EV 

(MW). 
max max,ch dch   

Binary coefficient for state of VPP 

members (1 for on and 0 for off). 
uk   
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Variables 

Operation cost of dispatchable units ($). utC    

Energy traded in positive and negative 

balancing markets (MWh). 
,B B

t tE E 

    

Power traded in day-ahead market 

(MW). 

D

tP   

Net power injected by unit u (MW). utP    

Forcasted power  production and 

consumption for non-dispatchable units 

(MW). 

utP 
  

Consumed power of EV (MW). 
,EV C

tP   

Injected power of EV (MW). 
,EV G

tP   

State of charge of  EV (MW). 
EV

tSOC    

Gained profit ($). t   

Day-ahead market price ($/MWh). 
D

t   

Positive and negative balancing market 

prices ($/MWh). 
,B B

t t      

Shapley value for combination i of 

units. 
 ,i N V   

Binary variable denoting on and off 

states of dispatchable units. (1 for on 

and 0 for off). 

utS    

Binary variables denoting start-up and 

shut-down decisions of CPP (For
, ,

s

u tZ  , 

1 is for turning on in time t and 0 is for 

shutting down. For 
, ,

d

u tZ   it is 

viceversa). 

, , , ,,s d

u t u tZ Z    

 

1 Introduction 

ISTRIBUTED energy resource is the name of a 

wide set of different types of electrical energy 

producers such as wind power plants, solar plants, 

conventional thermal plants, pump and hydro storage 

power plants. Considering the intermittency of the 

energy resources, some DERs are not able to be 

available 24 hours of a day. Also renewable power 

plants like solar and wind plants are vulnerable to 

forecast errors and in many cases, the slope of energy 

production and market prices are not monotonous which 

can cause benefit loss for the DERs.  

   Participants in day-ahead market offer their bids a day 

before clearing the market considering all uncertainties. 

Units that are not able to fulfill their commitments in the 

day-ahead market, bid in balancing market. This market 

is divided into two subsets containing positive and 

negative balancing markets. The former is for units that 

have surplus production or consumption deficit for 

which the prices are lower than day-ahead market. The 

latter is for producers that have lack of production or the 

loads that have surplus demand compared to day-ahead 

bids. The prices in this market are higher than day-

ahead market [1]. On the other hand small capacity and 

stochastic generation of DERs are known as an obstacle 

for participation of these resources in energy and 

ancillary service markets. Therefore DERs need to find 

a suitable way for participating in market and providing 

reliable energy for the grid. DERs integrated in form of 

virtual power plant (VPP) can overcome this problem 

and even make a surplus profit by taking advantage of 

this market structure, a goal they could never achieve 

individually. Since VPP may have both generation and 

demand units, it may offer (to sell) or bid (to purchase), 

with the upstream network. Optimal offering problem of 

a VPP for participating in the day-ahead and the 

balancing markets is presented in [2]. Mashhour and 

Moghaddas-Tafreshi present an integrated operation of 

DERs into a VPP to participate in a joint energy and 

spinning reserve market without considering stochastic 

generation [3,4]. A non-equilibrium model based on the 

deterministic price-based unit commitment (PBUC) is 

proposed to adopt the bidding strategy problem. In [5] 

building an offering model for a VPP consisting of 

intermittent resource, storage facility, and dispatchable 

power plant is discussed. The proposed two-stage 

stochastic MILP model aims to maximize the VPP 

expected profit. The VPP participates in the day-ahead 

market as a price-taker and in the balancing market as a 

deviator. In order to compensate wind power deviations 

and reduce loss of profits incurred by wind power 

producer through balancing market, a combined wind 

farm-cascaded hydro system is proposed in [6]. The 

optimization model for day-ahead scheduling is 

formulated as a two-stage stochastic programming 

problem and the objective function is to maximize the 

VPP expected profit. In [7] a coordinated trading of 

wind and thermal energy is proposed and formulated as 

a mixed-integer stochastic linear programming. A joint 

cooperation of WPP and pumped-storage plant which 

participate in day-ahead, spinning and regulation 

reserve markets is proposed in [8]. 

   Ref. [9] presents a day-ahead scheduling framework 

for virtual power plant (VPP) in a joint energy and 

regulation reserve market. It is assumed that the VPP 

provides required reserve through its distributed 

generator and pump storage units based on the delivery 

request probability of day-ahead market. Ref. [10] 

presents a novel architecture to integrate the 

participation of DERs into the electricity market. It 

concludes that the commercial and technical 

functionality of individual DERs are improved using the 

VPP concept.  

   DER aggregation usually needs to have a storage 

system in order to save their produced energy in peak 

hours and use it during time periods in which DERs face 

lack of production. Storage facilities also can be used to 

store produced energy when prices are low and sell it 

when the prices are high enough. In this regard, various 

types of storage units may be employed in terms of 

pump hydro storage, batteries, electrical vehicles (EVs), 

etc. EVs are being considered feasible storage sources 

in smart grids. Several techniques are incorporated to 

manage EVs interactions with the power network 

D 
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[11,12]. An energy management model regarding 

intensive use of distributed generation and EVs is 

addressed in [13] that implements a sensitivity analysis 

to DER costs and capacities. Practically, with increasing 

in number of plug-in vehicles in parking lots, a great 

amount of storage capacity is accessible to VPP owners 

that do not impose usual operational storage costs.  

   Different types of participants face various sorts of 

uncertainties. The uncertainties seen in market prices 

and DER productions and consumptions, can have 

severe influences on the final revenue of DERs. 

Integration of DERs in the form of a coalition is a 

proper solution to mitigate risk of small scale and 

intermittency of DERs. They also can overcome the 

intermittency of energy resource and fluctuation in 

market prices by supporting each other in the coalition 

[14].  

   Forming cooperative game in terms of coalition can 

reassure profit-related concerns of individual 

participants [15]. The cooperative game theory is a 

well-known method to analyze and solve the 

cooperative game problems. With this procedure the 

profit acquired by a coalition can be fairly distributed 

between the participants [16]. In power system studies, 

cooperative game theory has been used for different 

purposes such as network cost and profit allocations 

[17], optimal bidding strategies [18] and transmission 

loss allocation [19]. Core, Nucleolus and Shapley value 

methods are three common techniques for profit 

allocation in cooperative game theory [20].  

   In this paper optimal bidding strategy of DERs 

integrated as a virtual power plant is investigated. Based 

on the proposed method cooperative game is employed 

to obtain optimal DER outputs and the results are 

compared with individual non-cooperative bidding 

model. In order to mitigate the intermittent nature of 

renewable energies, existence of electric vehicles (EVs) 

as energy storage facilities in the proposed coalition is 

studied. Due to the associated uncertainties regarding 

the EVs and DERs, a stochastic optimization model is 

used. Finally Shapley value method is employed to 

obtain corresponding allocated profits.  

   Considering aforementioned framework the novel 

contributions of this paper are summarized as follows: 

1. Presenting a cooperative game procedure that allows 

small units to have more profitable and effective 

participation in power market compared to non-

cooperative (individual) bidding case. Shapley value 

method is employed to obtain corresponding 

allocated profits. 

2. To mitigate the intermittency of renewable outputs, 

impact of electric vehicles as reliable resources in 

DERs coalition is investigated. In this regard, 

probabilistic qualities for EVs entitled, time 

dependent features and travelled distance are 

modeled in order to produce more accurate 

estimation of EVs real life behaviors. 

   This article is structured as follows. In section II the 

assumptions and definitions are provided. Problem 

formulation is expressed in section III. A case study is 

implemented in section IV and the results are 

represented and discussed in section V. Finally 

conclusion is represented in section VI. 

 

2 Assumptions and Definitions 

A. Types of Coaliton Participants 

   Two major types of units containing producers and 

consumers are considered in this paper: 

1. Dispatchable units (DUs) including conventional 

power plant (CPP), storage facility, and 

dispatchable load (DL). 

2. Non-dispatchable units (NDUs) including wind 

power plant (WPP), photovoltaic plant (PV) and 

non dispatchable load (NDL). 

   Coalition can alter power of dispatchable units based 

on different variables and criteria that results in higher 

profits. Non-dispatchable units are defined by several 

scenarios with corresponding assigned probabilities. 

Therefore VPP is not able to make any changes in non-

dispatchable unit scheduling. 

 

B. Market Charactristics 

   Beside all of the advantages in profitability and 

reliability, integration of DERs can yield a surplus profit 

as a result of market structure. When a DER bids alone, 

because of uncertainties and forecast errors, it might not 

be able to fulfill previously accepted trades in day-ahead 

market precisely. So DER should trade its negative 

deviation at higher price or positive deviation at lower 

price in negative and positive balancing markets, 

respectively. Thus any trading in balancing market 

causes reduction in profitability. Forming a coalition 

can reduce the risk of participation in balancing market. 

Integration allows units to compensate their deviations 

with power produced or consumed by other units, 

resulting in surplus profits for the coalition after 

clearing the market. 

 

C. Uncertainty Modeling 

   In this paper, the uncertainties addressed in the 

optimization problem are modeled by stochastic 

programming and scenarios [21]. Scenarios are used to 

express the uncertainties of DERs’ consumed and 

produced powers and market prices as well. For 

simplicity, all of the scenarios are assumed to be equally 

probable. 

 

D. Surplus Profit 

   Surplus profit is defined as the extra income made by 

each DER through forming a coalition in the power 

market. Suppose that DERs bid separately to the day-

ahead and balancing markets. In this case, any deviation 

in previously scheduled trades should be compensated 
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in regulation balancing market. The DER can sell/buy 

generation surplus/deficit in positive or negative 

balancing markets with corresponding prices. 

Integrating DERs enables deviations to compensate 

other units’ surplus/deficit which can also be used by 

producers with relatively high generation costs. In other 

words, making a coalition may decrease unnecessary 

interactions with regulation balancing markets that in 

turn results in a drastic surplus profit. 

 

3 Problem Formulation 

   The offering curves proposed by integrated DERs are 

obtained by a two-stage stochastic optimization problem 

described as follows. 

 

3.1 Objective Function 

   For day-ahead optimization, coalition DERs is solving 

an optimal dispatch problem. Dispatchable unit outputs 

are variables that must be dispatched based on 

operational constraints, however non-dispatchable units 

are uncontrollable due to stochastic nature of their 

resources. In the proposed two stage stochastic problem, 

taking operational constraints, costs and market prices 

into account, integrated DERs decide how much energy 

should be traded in day ahead and balancing markets in 

order to obtain the maximum profit. 

Thus, the objective function maximizes the expected 

coalition profit gained from day-ahead market (DAM) 

and balancing market (BM) that can be formulated as 

below: 
 

(1) max t

t

 



   

 

3.2 Trading Constraints 

   The profit of the integration is described in (2) as the 

difference between corresponding revenue and costs. It 

is assumed that VPP is a price-taker party in perspective 

of which market prices are random variables that should 

be estimated. Binary coefficient k_u denotes the 

presence and absence of DERs in different 

combinations. Energy balance constraint represented in 

Eq. (3) shows that the net difference between 

aggregated productions and consumptions is equal to 

the gross amount of energy sold. Constraints (4) and (5) 

are non-anticipativity constraints for day-ahead and 

constraint (6) ensures that the traded energy in negative 

and positive balancing markets are positive variables 

[12]. 
 

 

 

(2) , ,

D D B B B B

t t t t t t t t ut u

u

P d E E C k

t

         



       

 


 

 

 

(3) 

[ ]

, ,

G CEV EV D B B

ut t t t t t t t t

u

P d P P d P d E E

t

     



     

 


 

(4) , ,       D D D D

t t t tP P t            

(5) , ,       D D D D

t t t tP P t            

(6) 0 ,  ,B

tE t      

 

3.3 Operational Constraints 

   Operational constraints express the limits and 

equations of dispatchable units. Constraint (7) defines 

maximum and minimum limits of dispatchable units. 

Ramp up and down limits of CPP are provided in Eq. 

(8). Eqs. (9)-(10) set the number of time periods that 

CPP has to be down or up from the beginning of 

scheduling horizon, respectively. In constraint (11) CPP 

is forced to stay off; if it has been off less than 

minimum off time at the beginning of the scheduling 

horizon. Constraint (12) sets the minimum down time 

for any consecutive  ( ,min)downg  hours. Minimum down 

time for last ( ,min) 1downg   hours is presented in 

constraint (13). Similarly, Eqs. (14)-(16) illustrate the 

same conditions for minimum up time constraints. 

Constraints (17)-(19) are logical expressions for setting 

CPP start-up and shut-down binary variables. Eq. (19) 

ensures that non-dispatchable unit outputs are equal to 

predefined scenarios. Finally, Eqs. (20)-(21) are the cost 

functions of CPP and dispatchable loads, respectively 

[22]. 

 

(7) ,  , ,ut u u ut ut u uS P k P S P k u Du t          

(8) 1 ,  , ,u ut ut uR P P R u DP t           

 

 

(9) 

 ,min ,

,min  min ,

1

down down init

down

on off

L T g g

g 

    

  

 

(10) 
( ,min) ( , ) ( )

( ,min) min ,[ ].up up init on off

upL T g g g    

(11) 
,min

1

0 ,   , ,
downL

ut

t

S u DP t 


      

 

 

 

 

(12) 

 
,min 1

,min

1

,min

,min

1 .( ),

1 1 , 

, ,

downt g
down

utt ut ut

tt t

down

down

S g S S

L t T g

u DP t

  



 





  

     

   



 

 

 
 

(13) 

  1

,min

1 0,

2 ,   , ,

T

utt ut ut

tt t

down

S S S

T g t T u DP t

  







   

        


 

(14)  
,min

1

1 0 ,   , ,
upL

ut

t

S u DP t 


       

 

 

 

 

(15) 

,min 1
,min

, ,

,

,

. ,

1 1, 

, ,

upt g
up s

utt u t

tt t

up min

up min

S g Z

L t T g

u DP t

 



 





     

   


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(16) 

 , ,

,min

0,

2 ,  , ,

T
s

utt u t

tt t

up

S Z

T g t T u DP t

 





 

        


 

(17) 1 , , ,    , ,s

ut ut u tS S Z u DP t          

(18) 1 , , ,    , ,d

ut ut u tS S Z u DP t           

(19) ,  , ,ut ut uP P k u NDU t        

 

(20) 

, 

, ,

u f s s d d

ut m ut t u ut u ut u utC C P d C S C Z C Z

u DP t

    



   

   
 

(21) ( ), , ,u

ut m ut utC C P P u DL t          

 

3.4 Electric Vehicles 

   Several parameters such as departure time, daily 

travelled distance and arrival time are among the most 

effective factors on the EVs charging and discharging 

profile. Moreover, other important factors such as road 

traffic condition, driving habits, battery capacity, and 

charger efficiencies are considered as other effective 

factors in this regard. In this paper, probabilistic models 

of departure time, daily travelled distance and arrival 

time are used to describe stochastic behavior of EVs and 

storage availability of the integration. To create EVs 

random variables, non-Guassian probability distribution 

functions (PDFs) are used due to their accurate 

approximations [23]. 

   According to EVs usual departure time, Weibull is 

known as the most appropriate PDF describing this 

characteristic as shown in Eq. (22). 
 

(22)  
 1

( )

  ,   0
t

t

d

t
f t e t







 


 

  
 

 

 

The mean and variance of the Weibull distribution can 

be calculated from the scale (α) and shape (β). 

   Similarly, in order to model EVs daily travelled 

distance (trd) and arrival time (at), type-III generalized 

expected value (GEV) PDF would be the most relevant 

function as represented in Eqs. (23) and (24): 
 

(23)  
 

1 1
1

1 1
1

kaa tt atat
tat

t t

t t

d
kk

a

a a

a a

d
f t e k






 

 
     

    
 
 

 
  
 
 

 

(24)  
 

1 1
1

1 1
1

ktrtr dd
trtr dd

dtrd

d d

d d

d
kk

tr

tr tr

tr tr

d
f t e k






 

 
 

 
        

 


 
 
 
 
 

 

 

It is notable that both aforementioned functions return 

GEV probability distribution with shape parameter k, 

scale parameter σ, and location parameter, μ. 

   The travelled distance for each EV is a criterion to 

calculate the state of charge (SOC) of the battery. The 

SOC shows the amount of the energy remained in the 

battery of each EV after returning to the parking lot. Eq. 

(25) illustrates SOC formulation that is calculated based 

on EV daily travelled distance and corresponding 

battery capacity. 
 

(25) 0 100 100,  d

eff

tr
SOC EV

C cap
   


 

 

The rest of constraints pertaining to EVs are listed as 

follows. 

 

 

 

 

(26) 

, ,

0( ) , 

, ,

t

t

b

EV C EV G

t t

t a

P P SOC cap

EV t

 





  

  


 

 

(27) 

, ,

1 ( ),

, ,

EV EV EV C EV G

t t t tSOC SOC P P

EV t

   



  

  
 

(28) min max , , ,EV

tSOC SOC SOC EV t       

(29) 
,0 ,   , ,EV C

t maxP ch EV t       

(30) 
,0 ,   , ,EV G

t maxP dch EV t       

 

Eq. (26) enforces that each EV can be charged up to its 

battery capacity considering corresponding amount of 

SOC. The state of charge of batteries in each time step 

considering charging power is given in (27).EVs 

maximum and minimum state of charge for each 

interval and maximum charging and discharging rates 

are described in Eqs. (28), (29) and (30) 

respectively[12]. 

 

5.3 Profit Allocation 

   The cooperative game theory is an effective tool to 

analyze the collusive behavior of agents in a cooperative 

game. The main interest of the players in a coalition is 

profit allocation based on fairness. The cooperative 

game theory proposes several methodologies for this 

fair asset distribution. Shapley value is one of the 

aforementioned procedures. 

   The Shapley value of a given game is defined with 

reference to other games. It is a value or a function that 

assigns a unique feasible pay-off profile to every 

coalitional game with transferable pay-off. 

   This method can be described in form of objections 

and counter objections. To define these objections and 

counter objections, let (N,V) be a coalitional game with 

transferable pay-off and for each coalition S a sub game 

is defined in the form of (S,VS) to be the coalitional 

game with transferable pay-off  VS(T) for T⊆S. For a 

predefined value, ψ, an objection of player i against 

player j to the division x of V(N) may take one of the 

following forms: 

 “Give me more otherwise I will leave the game, 

causing you to obtain only ψj(Ni,V(Ni)) instead of 

larger pay-off xj, that causes you to lose ψj(Ni,V(Ni)) 

- xi .” 

 “Give me more otherwise I will persuade other 

players to exclude you from the game causing me 
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to obtain ψi(Nj,V(Nj))  rather than the smaller pay-

off xi, so that I will gain positive amount 

ψi(Nj,V(Nj)) - xi .” 

A counter objection by player j can be made in the 

following forms respectively: 

 “It is true that if you leave the game I will lose but if 

I leave you will lose at least as much as xi -

ψi(Nj,V(Nj)) ≥ xj - ψj (Ni,V(Ni)).” 

 “It is true that if you exclude me I will gain but if I 

exclude you I will gain at least as much as 

ψj(Ni,V(Ni)) - xj ≥ ψi(Nj,V(Nj)) - xi .” 

The Shapley value is required to satisfy the property 

that for every objection of any player i there is a counter 

objection of player j and it is defined as a set of pay-offs 

that balances these objections and counter objections as 

represented in Eq. (31). 
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The unique value that satisfies this condition is Shapley 

value that is defined as follows: 
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∆i (Si (R)) is the marginal profit of player i defined in 

Eq. (33). 
 

(33)      i iS V S i V S     

 

   It can be interpreted that if all of the players are 

arranged in equally likely orders, then φi(N,V) is the 

expected marginal contribution over all orders of player 

i to the sets of players which precede it [16].  

To calculate the allocated profit to the VPP members by 

Shapley method, the binary variable ku is set to 1 and 0 

for existence and absence of each unit respectively and 

each time the marginal profit is calculated. After 2(n-1) 

re-runs all of the marginal profits can be obtained. The 

weighted average for each unit gives the allocated pay-

offs. 

 

4 Case Study 

   A case study is implemented in which there are 5 

individual DERs and loads that bid as non-cooperative 

competition. The assumed DERs are a wind power 

plant, a photovoltaic plant, a conventional power plant, 

and 50 EVs as well as dispatchable and non-

dispatchable loads among which non-dispatchable loads 

and renewable producers do not impose any sort of 

operational cost. Tables 1 and 2 represent CPP 

operational characteristics and cost coefficients as well 

as EVs specifications. 

Rated power amounts of existing units as well as 

dispatchable and non-dispatchable loads are represented 

in Table 3. 

Table 1 CPP operational characteristics and cost coefficients. 

Rated power (MW) 17.4 

Ramp-up rate (MW/h) 3 

Ramp-down rate (MW/h) 3 

Minimum down time (h) 2 

Minimum on time (h) 2 

Minimum power (MW) 2 

Marginal cost ($/MW) 33 

Fixed cost ($) 2 

Shut-down cost ($) 2 

 

 
Table 2 EVs specifications. 

Number of EVs 50 

Battery capacity (KWh) 30 

Charging rate (KW) 3.2 

Discharging rate (KW) 3.2 

 

 
Table 3 Rated powers of VPP members. 

Unit Rated power 

Wind power producer (MW) 24.8 

Photovoltaic producer (MW) 6.1 

Dispatchable load (MW) 9.5 

Non dispatchable load (MW) 6.2 
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Fig. 1 Time dependent characteristics of EVs; a) Home 

departure time, b) Travelled distance and c) Arrival time [23]. 
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The curtailment cost for all dispatchable loads is 

assumed 27 $/MW. 

As mentioned, due to stochastic behavior of EV owners, 

probability distribution functions are used to model 

these stochastic behaviors. Figs 1(a)-(c) represent 

Weibull and GEV probability functions related to EVs 

departure time, daily travelled distance and arrival time. 

   Table 4 shows the constants used in the PDFs of time 

dependent characteristics of the EVs. 

   In order to bid in day ahead and regulation balancing 

markets, each DER should forecast corresponding 

market prices. It is assumed that these predictions are 

obtained by considering several scenarios for each hour 

of the day. In this paper, the scenarios are assumed to 

occur with the same probabilities. The price scenarios 

for day-ahead, positive and negative balancing markets 

are depicted in Fig. 2 (a)-(c). The same procedure takes 

place for non-dispatchable productions and demands.  

Figs 3 (a)-(b) illustrate non-dispatchable unit output 

scenarios. Similarly, corresponding scenarios for non-

dispatchable and dispatchable load consumptions are 

represented in Figs 3(c)-(d). 
 

Table 4 EVs PDFs constants. 

Data Normal PDF Purposed PDF 

dt 

7.48436
tNd    

0.43178
tNd    

7.67454    

21.3812    

trd 

21.4150
tNd    

8.58711
tNd   

0.052368
dtrk    

17.6568
dtr    

7.1222
dtr    

at 

17.7170
tNd    

1.01385
tNd   

0.060798atk    

17.2700at    

0.84832at    
 

10 4 6 8 10 12 14 16 18 20 22 24
30

40

50

60

70

80

90

100

110

Hours (h)

P
ri
c
e
 (

$
)

 
(a) 

2 4 6 8 10 12 14 16 18 20 22 24
20

30

40

50

60

70

Hours (h)

P
ri
c
e
 (

$
)

 
(b) 

 

2 4 6 8 10 12 14 16 18 20 22 24
20

40

60

80

100

120

140

Hours (h)

P
ri
c
e
 (

$
)
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Fig. 2 Price scenarios; a) Day-ahead market prices scenarios, b) 

Positive BM market price scenarios and c) Negative BM price 

scenarios. 
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Fig. 3 DERs production and consumption; a) Wind production 

scenarios, b) Photovoltaic production scenarios, c) NDL 

consumption scenarios and d) DL forecasted consumption 

scenarios [15]. 
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5 Resuts and Descussions 

   The case study is solved using CPLEX solver under 

GAMS software [24].In this regard two scenarios are 

considered: non cooperative bidding and bidding in 

form of coalition entitled cooperative bidding. 

Accordingly, Fig. 4 depicts contributions and 

consumptions of each participant when they 

individually bid in form of non-cooperative competition 

and when they bid as a cooperative competition. 

Furthermore, summation of the produced and consumed 

powers in case of non-cooperative individual bidding is 

illustrated in Fig. 4. As it is seen, the traded power of 

the cooperative scenario is less than summation of DER 

contributions. In other words, by forming a cooperative 

competition, less power is produced in comparison to 

individual bidding in a non-cooperative one. It should 

be noted that for non-dispatchable units in terms of 

wind and PV producers and non-dispatchable loads, the 

plotted power curves are the expected amounts of their 

productions or consumption scenarios in each hour 

considering corresponding assigned probabilities 

   Figs 5 and 6 illustrate paticipants’ tradings in terms of 

individual and aggregated bidding in positive and 

negative balancing markets, respectively. Likewise, 

power traded by the integration in the balancing markets 

is less than the summation of individual unit 

contributions. 

   It can be interpreted that, by forming a coalition, the 

DERs cover for each others’ deviations in production or 

consumption that in turn reduces DERs participation in 

positive and negative balancing markets. 

   During the planning day, coalition DERs bid less 

power in comparison to DERs aggregated outputs that 

causes higher pay-offs for the coalition. Note that, the 

wind power contribution exceeds coalition production in 

most of hours. 

   In order to investigate the impact of electric vehicles 

on cooperative trading, Table 5 represent EVs 

consumed and injected powers for three different 

expected prices at hour 23. The prices are 0.1, 0.6 of 

and equal to expected price at hour 23, respectively. 

   Comparing three rows pertaining to each expected 

price it can be concluded that with increasing the price, 

EVs consumed energy reduces. In other words, coalition 

decides to store much more energy when the price is 

cheap in order to use it or sell it in subsequent hours. 

   Same statement is true for EVs injected power under 

different price scenarios. As shown with increasing 

expected price, EVs injected power reduces. Thus 

integration can use EVs as storage to save energy when 

prices are low and sell it back to the grid when prices 

are high. 
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Fig. 4 Power trades in the DAM. 
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Fig. 5 Positive BM trades. 
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Fig. 6 Negative BM trades. 
 

Table 5 First EVs' consumed and injected power for three price scenarios in hour 23. 

 Expected price ($) consumed power (MW) Injected power (MW) 

4.62 0.03 0 

27.72 0.028 0 

46.20 0 0.002 
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15-20 21-2 2-7 Predefined price scenarios in 24 hours

 
Fig. 7 SOC of the first EV for three price scenarios. 
 

   Fig. 7 represents SOC of the first EV for three 

different expected prices. The time period between EV’s 

arrival and departure is divided into three intervals and 

in each interval, expected prices are considered equal to 

half of the predefined price scenarios. It is shown that in 

the first time period between 15 to 20 and the second 

between 21-2, reduction in market prices increases SOC 

compared to the SOCs in the unmodified case. The third 

interval is the last hours before departure by the end of 

which EV needs to leave with a fully charged battery. 

As illustrated in Fig. 7, there is an intense increase in 

SOC level during these hours. Comparing three 

scenarios to the unmodified curve shows that most of 

charging process takes place within aforementioned 

intervals with lower prices which is a good means 

towards profitability for the coalition. 

   It can be seen that in all four scenarios, EV is fully 

charged before leaving the parking lot. 

   The profit allocation in a cooperative competition 

occurs based on fairness and effectiveness of each 

member in profitability of the coalition. Shapley value 

method distributes aggregated gained profit among 

coalition members considering said factors. Table 6 

represents allocated profit of each DER calculated based 

on Shapley value method. The pay-offs are expected 

marginal profits that each DER adds to all possible 

combinations of aggregated DERs. 

 
  Table 6 Profit allocation based on Shapley value method. 

# DER 
 Shapley pay-

offs ($) 

Single DER 

Profits ($) 

1 WPP 10921.900 10747.126 

2 PVP 3029.883 2922.389 

3 NDL -6753.020 -6886.224 

4 CPP 23759.790 23702.277 

5 DL -10327.300 -10465.310 

Total Coalition DERs 

Profit 20575.580 ($) 20020.258 ($) 
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   Table 6 also shows DERs individual profits in case of 

bidding alone in a non-cooperative competition. It 

appears, the allocated coalition pay-offs are more than 

non-cooperative ones. 

   Finally, Table 7 represents surplus profit gained by 

forming coalition for all possible VPP combinations. As 

it is seen, in all of the cases, surplus profit is obtained. 

Since VPP cannot alter non dispatchable unit outputs 

based on hourly market prices, it can make use of 

dispatchable unit and load capacities to compensate 

inevitable deviations. The surplus amounts in Table 7 

are obtained in comparison to DER's individual bidding. 

Thus, surplus profit is higher for combinations with non 

dispatchable units compared to cases with adjustable 

dispatchable ones. Accordingly, maximum surpluses are 

obtained when all non dispatchable units and load exist 

in coalition. On the other hand minimum surplus occurs 

when the majority of coalition members are 

dispatchable DERs. This proves the potential capability 

of aggregation in increasing the incomes of DERs. 

 
Table 7 Surplus profit for all possible combinations. 

DERs Surplus 

profit($) WPP PVP NDL CPP DL 

×     0 

 ×    0 

  ×   0 

   ×  0 

    × 0 

×   ×  59.763 

× ×    136.563 

 ×  ×  59.760 

× ×  ×  196.326 

×  ×   168.100 

 × ×   102.841 

  × ×  79.763 

× × ×   304.541 

 × × ×  162.604 

 ×  × × 150.088 

 × ×  × 224.465 

  × × × 187.872 

×  × ×  79.763 

× × × ×  364.304 

×    × 146.162 

 ×   × 90.326 

   × × 59.762 

  ×  × 128.109 

× ×   × 327.644 

×   × × 250.925 

×  ×  × 359.285 

× ×  × × 387.407 

× × ×  × 495.560 

×  × × × 419.012 

 × × × × 284.227 

× × × × × 555.322 

 

 

 

6 Conclusion 

   This paper represents a cooperative competition 

model among individual market participants such as, 

DERs, dispatchable and non dispatchable loads and 

electric vehicles as storage facilities. It is shown that 

coalition can maximize its profit by optimizing the 

produced and consumed powers of the dispatchable 

units and electric vehicles transactions, considering non-

dispatchable units and price scenarios. A two-stage 

stochastic programming problem is used to simulate a 

cooperative competition in form of a coalition in day-

ahead and regulation balancing markets. The results 

shows that in the proposed market structure, DERs in 

form of a coalition have the advantage of losing less 

revenue by covering for each other’s deviations and 

obtaining a surplus profit. The results also express that 

the coalition members gain more profit in comparison 

with the case of individual bidding in a non-cooperative 

competition. 

   It is also stated that integrated DERs can use EVs as 

storage facilities in order to increase the related pay-

offs. Three different price scenarios are used to illustrate 

the validity of this statement. Finally in order to find the 

fair DERs sharing amounts, Shapley value method is 

used to allocate pay-offs based on their effectiveness in 

the coalition. 
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