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Abstract: Performance of the linear models, widely used within the framework of adaptive 

line enhancement (ALE), deteriorates dramatically in the presence of non-Gaussian noises. 

On the other hand, adaptive implementation of nonlinear models, e.g. the Volterra filters, 

suffers from the severe problems of large number of parameters and slow convergence. 

Nonetheless, kernel methods are emerging solutions that can tackle these problems by 

nonlinearly mapping the original input space to the reproducing kernel Hilbert spaces. The 

aim of the current paper is to exploit kernel adaptive filters within the ALE structure for 

speech signal enhancement. Performance of these nonlinear algorithms is compared with 

that of their linear as well as nonlinear Volterra counterparts, in the presence of various 

types of noises. Simulation results show that the kernel LMS algorithm, as compared to its 

counterparts, leads to a higher improvement in the quality of the enhanced speech. This 

improvement is more significant for non-Gaussian noises. 
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1 Introduction1 

IGNAL enhancement is one of the main problems 

encountered in the area of signal processing that has 

found various practical applications. Apart from the 

noise reduction, in general, this concept embraces other 

applications such as interference and echo cancellation. 

Adaptive noise cancellation (ANC) is one of the most 

efficient methods for speech signal enhancement. In 

addition to the primary noisy signal, this method 

requires a reference signal that is correlated to some 

sense to the corrupting noise and uncorrelated with the 

desired speech signal. In addition to simplicity and 

efficiency, the main advantage of this method is that it 

requires no prior information about the desired and 

noise signals. On the other hand, its main drawback is 

its necessity for a reference signal. However, this 

approach can be modified in a single-channel structure 

called adaptive line enhancement (ALE), in which a 
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delayed version of the input noisy signal serves as the 

reference channel. This technique works by virtue of the 

difference between the correlation lengths of the desired 

and noise signals. ALE has received various 

applications, in particular for sonar, speech and 

biomedical signal processing [1]. 

   Adaptive filters used within the ANC and ALE 

structures are usually based on linear algorithms such as 

the least mean square (LMS) and the recursive least 

squares (RLS) algorithms [2]. These models have 

satisfactory performance for Gaussian noises, but their 

performance deteriorates dramatically in the presence of 

non-Gaussian noises [3]; a phenomenon that can be seen 

in most practical applications. Nonlinear models, 

although with a higher complexity, can better extract the 

nonlinearities exist in the natural signals [4]. This idea 

has been considered somewhat, e.g. by utilizing 

Volterra filters [5, 6], neural networks [7, 8] and neuro-

fuzzy methods [9]. In spite of their good performance in 

a wide range of applications, adaptive implementations 

of these nonlinear models suffer from the severe 

problems of a large number of parameters, slow 

convergence and the risk of being trapped in local 

minima. Another alternative is to use the emerging 

methods of kernel adaptive filters. In kernel methods, 

filtering is applied on the transformed data in the 

S 
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reproducing kernel Hilbert spaces (RKHS) that are 

nonlinearly related to the original input space [10, 11]. 

The milestone in the evolution of the kernel adaptive 

filtering algorithms is the kernel LMS (known as the 

KLMS) algorithm devised in [12].  

   The aim of the current study is to extend the 

application of the linear adaptive algorithms to 

nonlinear models, within the ALE structure for noise 

cancellation from speech signals. Among the 

commonly-used nonlinear models, adaptive Volterra 

filtering can be accomplished using kernel adaptive 

algorithms. In fact, it is known that Volterra series can 

be represented implicitly as elements of RKHSs that 

admit polynomial kernels [13]. In this paper kernel 

adaptive filters are exploited within the ALE structure 

for speech signal enhancement, in the presence of 

various types of noises, and the performance of these 

nonlinear algorithms are compared with that of their 

linear and nonlinear Volterra-based counterparts. For 

this purpose, the celebrated KLMS algorithm, that has 

attracted substantial research interests due to its 

simplicity and robustness, is selected. The organization 

of the paper is as follows. In the next section the ALE 

technique is described briefly. Kernel methods and the 

KLMS adaptive algorithm are described in section 3. 

Section 4 is dedicated to the simulation results. Finally 

some conclusion remarks are presented in section 5. 

 

2 Adaptive Line Enhancement 
   In this paper noise is assumed to be additive and 

uncorrelated with the desired speech signal. In other 

words the noisy signal  ŝ k  is modeled as: 

 

(1)      ŝ k s k n k   

 

where s(k) and n(k) are the speech and the additive 

uncorrelated noise signals. 

   Adaptive noise cancellation, based on the structure 

depicted in Fig. 1, is one of the most common and 

efficient methods for two-channel signal enhancement 

that has received various applications in echo, 

interference and noise cancellation. The noisy speech 

signal  ŝ k  is fed to the main channel to serve as the 

desired signal d(k) of the adaptive filter. The second 

channel receives the noise n1(k) which is correlated with 

n(k) and uncorrelated with s(k). The reference noise 

n1(k), which is used as the input to the adaptive filter, is  

adaptively filtered to make an estimate of the corrupting 
 

w(k)

d(k)=ŝ(k)=s(k)+n(k)

x(k)=n1(k)

Enhanced Signal+

-

y(k =) ñ(k)

 
Fig. 1 General structure for adaptive noise cancellation (ANC). 

noise, denoted by  n k . This estimate is then 

subtracted from the noisy signal that acts as the desired 

signal of the adaptive filter, to obtain the enhanced 

signal. The objective is to minimize the error signal, by 

adaptively adjusting the filter coefficients [1]. 

   The adaptive line enhancement technique, depicted in 

Fig. 2, was first proposed by Widrow as an application 

of the ANC [1]. In the ALE a delayed version of the 

input signal is utilized as the secondary or reference 

input. This technique works by virtue of the difference 

between the correlation lengths of the desired and the 

noise signals. The principle is that the delay should 

decorrelate the noise, between the primary and the 

generated reference inputs, while leaving the speech 

signal correlated. In this case, it is possible for the 

adaptive filter to make a Δ-step-ahead prediction of s(k) 

based on the present and past samples of s(k-∆). 

However, this filter will not be able to predict n(k) from 

knowledge about the present and past samples of 

 n k  . As a result, after the parameters of w(k) have 

converged towards their optimal values, the ALE output 

y(k) is an approximated version of the desired speech 

signal. Successful performance of this technique 

depends highly on the separablity of frequency bands of 

the involving signals. 

   In general the objective of an adaptive FIR filter is to 

adaptively estimate the desired signal d(k)∈R based on 

the input vector  

       1 1
T Nk x k x k x k N       x  , 

where x(k) is the input signal to the adaptive filter. At 

each instant this estimation can be carried out by a 

linear combination of the samples of this input vector, 

i.e. past samples of the input signal. Among the most 

well-known adaptive linear algorithms is the LMS 

algorithm [2, 14]. In practice the normalized version of 

this algorithm is used to alleviate the dependency of the 

LMS adaptive filter on the statistics of the input signal. 

The weight update equation for this algorithm is: 
 

(2)    
 

 
 

2
1

x

e k
k k k

k




  w w x  

 

0 < μ ≪ 1 is the convergence parameter to control the 

memory span of the predictor filter and therefore the 

convergence speed of the algorithm and  2

x k  is an 

estimate of the input signal variance that can be updated 

sequentially as: 
 

w(k)

d(k)=ŝ(k)=s(k)+n(k)

y(k)

e(k)+

-
z-Δ

Enhanced

Signal

x(k)=ŝ(k-∆)

 
Fig. 2 General structure for adaptive line enhancement (ALE). 
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(3)        
22 2 1 1 1x xk k x k        

 

β is a forgetting factor affecting the memory of this 

estimation. 

 

3 Kernel LMS 

3.1 Kernel Methods 

   It can be shown that for any RKHS H with the kernel 

function K, one can imagine a space, known as the 

feature space, in which the inner product can be 

calculated through evaluating its kernel function in the 

original input space [10, 11]. In other words, 

representing the function       ,  K  x x  

as  i x , the kernel K corresponds to a feature mapping 

  for which: 
 

(4)      ,  ,  ,  , k l k l k lK   x x x x x x  

 

   In kernel adaptive filtering, at each instant k, the input 

vector x(k) is assumed to be mapped into the 

transformed data φ(x(k)). Then, if for simplicity we 

denote φ(x(k)) by φ(k), the desired signal d(k) is 

estimated by linear combination of the samples of the 

transformed data φ(k). Calculation in the high-

dimensional feature space can be done by reformulating 

the original linear algorithms in terms of the inner 

products and then replacing the inner products with the 

kernel function evaluations in the original space. This 

will be equivalent to implicitly solving the linear 

adaptive algorithms in the feature spaces induced by the 

kernel functions, where transformed input signals are 

more likely to be linearly related to the so-called desired 

signal. The resultant algorithms possess the properties 

of convexity and universal nonlinear approximation. 

Furthermore, nonlinear kernel methods are quite 

flexible so that one can change the nonlinear model just 

by changing the kernel function used. 

 

3.2 Extending the LMS Algorithm into the RKHS 

   The normalized KLMS algorithm [12, 15] can be 

derived by employing the normalized LMS algorithm to 

predict the desired signal {d(1), d(2), ⋯} based on the 

transformed input vector {φ(1), φ(2), ⋯} as: 
 

(5) 

       

   
 

 
 

2

1

1

T
e k d k k k

e k
k k k

k





  

  

ω φ

ω ω φ
 

 

where ω(k) is the filtering coefficients vector in the 

feature space at instant k. Since  ,  , k k k kKφ φ x x , 

one can sequentially update  2 k , i.e. the estimate of 

the input signal variance in the feature space, as: 
 

        2 2 1 1 , k kk k K       x x  

Assuming ω(0) = 0, it is easy to see that: 
 

(6)  
 

 
 

2
1

k

l

e l
k l

l




 ω φ  

 

At instant k, having the coefficients vector ω(k-1), the 

filter’s output can be written as: 
 

(7)      
 

 
   

1

2

1

1

k

T T

l

e l
y k k k l k

l









  
 
 
 
ω φ φ φ  

 

which is efficiently computed using the kernel trick in 

the input space as: 
 

(8)  
   

 

1

2
1

, k
l k

l

e l K
y k

l








 
x x

 

 

   In other words, it is possible to compute the output of 

the filter without direct access to its coefficients in the 

high-dimensional feature space. However, it is 

necessary to retain the input vectors x(l) along with the 

corresponding coefficients    2l /e l  in a set called 

dictionary. The resultant algorithm, called normalized 

kernel LMS, or shortly KLMS, is summarized in Table 

1. It has been shown that the KLMS algorithm possesses 

the property of self-regularization that makes an extra 

regularization unnecessary [15]. In addition to 

simplifying the implementation, this property improves 

the performance, because regularization biases the 

optimal solution. 

 

3.3 Sparsification 

   Essentially the size of the network over which the 

signal is expanded, or the number of past samples based 

on which the signal is estimated, increases with the size 

of the data, as a result of the representer theorem [16]. 

This phenomenon is also clear from the KLMS 

algorithm, where the size of the dictionaries  x k  

and  e k  grow linearly with the time. In practice, 

redundancy among input data makes it possible to 

drastically reduce the size of the memory, at the cost of  
 

Table 1 The normalized KLMS algorithm. 
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a negligible effect on the quality of the model. This is 

generally carried out based on selecting, based on a 

measure, the most informative data and discarding the 

others from the dictionary. This procedure is termed 

sparsification and many techniques have been proposed 

for this purpose. One of the first and still widely used 

measures is the novelty criterion (NC) proposed in [17] 

which acts based on a simple distance measure in the 

input space. In NC, at iteration k, the minimum distance 

of the new input vector x(k) to all the vectors retained in 

the dictionary  x 1k   (i.e.
   

   
x 1

min
l k

k l
 


x

x x ) is 

first calculated. The new input vector will be accepted 

as a new element of the dictionary only if this measure 

is larger than a preset threshold (say δ1), and the 

estimation error e(k) is also larger than another preset 

threshold (say δ2). 

 

4 Results 

   To alleviate the drawbacks of the commonly-used 

adaptive nonlinear models, the kernel adaptive filters 

are utilized within the ALE structure for speech signal 

enhancement. Due to its appealing properties, the 

normalized kernel LMS algorithm is adopted for this 

purpose. To show its usefulness, this algorithm is 

compared with its linear as well as nonlinear Volterra 

counterparts. The KLMS algorithm is utilized with a 

quadratic kernel, including the first-order term. Defining 

the first and second-order input vectors as 
 

(9) 

        

        

1

2

1 1

2 2

1 1

1 1

T N

T N

k x k x k x k N

k x k x k x k N

     

     

x

x

 

respectively, this quadratic kernel can be described as 
 

 

 

(10) 

          

        

1 2 1 2

2

1 1 2 2

,  ,  , 

T T

K l l k k

l k l k





x x x x

x x x x

 

 

N1 and N2 are the memory spans of the first and second-

order terms. This kernel is defined in a general form to 

make it possible to distinguish between memory spans 

of the linear and quadratic terms. 

   In these testes, N1 as well as N, i.e. the memory span 

of the linear LMS algorithm, are set to 10, but N2 is set 

to 5. Volterra LMS (VLMS) algorithm is also 

considered using a quadratic kernel identical to that of 

the KLMS algorithm with the same parameters, i.e. 

N1=10 and N2=5. The best values for other parameters, 

for each algorithm, are chosen based on an exhaustive 

search over some ranges of possible choices. To this 

end, in all experiments, the convergence parameter μ 

and the forgetting factor β are set to 0.0005 and 0.9, 

respectively. For the KLMS algorithm, novelty criterion 

is used for sparsification, with the distance threshold 

δ1=0.2 and the error threshold δ2=0.1. Using NC, less 

than 10% of the input vectors are retained in the 

dictionary, on average, at the end of processing a speech 

signal. All the results reported throughout this paper are 

averaged over all 504 SI speech signals in the test set of 

the DARPA TIMIT corpus [18]. These signals have an 

average length of about 3.5 seconds containing each a 

whole sentence in English, uttered by both male and 

female speakers. They were originally sampled at 16 

kHz and are down-sampled to 8 kHz, after applying a 

20th order anti-aliasing low-pass filter, and then 

quantized uniformly at 16 bps. 

   Various noise signals were first added to the speech 

signals at several signal-to-noise-ratio (SNR) levels and 

the ALE is then used to enhance the noisy signals. 

These noise signals are the white Gaussian, pink and 

high frequency channel noises as well as natural sounds 

of the factory, F16 aircraft, destroyer engine and babble. 

The comparison is drawn based on improvement in 

three criteria of SNR, segmental SNR (SegSNR) and 

PESQ. Segmental SNR is calculated by averaging the 

short-time SNRs computed on segments of 20 ms (160 

samples) length. PESQ measure is evaluated as 

suggested by the ITU-T P.862 recommendation [19] 

that has a good correlation with the subjective measure 

of mean opinion score (mos). 

   Average results for improvement in the quality of the 

noisy speech signals, using the LMS, VLMS and KLMS 

adaptive algorithms, are summarized in Tables 2-4. 

These tests have been launched in the presence of 

various noises with three SNR levels of 0, -3 and -5 dB. 

As one can see from these results, higher improvement 

can be achieved using nonlinear kernel-based LMS 

algorithm. This improvement is more considerable with 

non-Gaussian noises. This is while the nonlinear 

Volterra-based model does not result in a considerable 

improvement, as compared to the linear algorithm. This 

is mainly due to the shortcomings the adaptive Volterra 

filters suffer from, in particular the slow convergence. 

The better performance of the kernel-based model can 

be more clearly observed from Fig. 3 in which the 

average improvement achieved by the KLMS algorithm 

is compared against that of the LMS and the VLMS 

algorithms, at the noise level of -3 dB. Some marker 

symbols are hidden, in this figure, below the other 

symbols. 

   These results are in agreement with the argument 

provided on the linear and nonlinear adaptive filtering 

algorithms. In fact, although linear models have 

satisfactory performance for Gaussian noises, their 

performance deteriorates dramatically in the presence of 

non-Gaussian noises [3]. Therefore it is reasonable to 

expect nonlinear adaptive filters to result in a better 

performance, in presence of non-Gaussian noises. In 

other words, nonlinear models, although with a higher 

complexity, can better extract the nonlinearities exist in 

the natural signals [4]. In spite of their good 

performance in a wide range of applications, adaptive 

implementations of nonlinear Volterra filters suffer  
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Table 2 Average improvements obtained by means of the LMS algorithm for various noises at three SNR levels. 
 SNR Improvement SegSNR Improvement PESQ Improvement 

SNR (dB) -5 -3 0 -5 -3 0 -5 -3 0 

White Gaussian 6.99 5.46 3.12 11.53 10.32 8.46 0.15 0.18 0.22 

F16 Aircraft 4.43 2.86 0.26 7.24 6.42 5.01 0.00 -0.02 -0.05 

Babble 4.56 3.10 0.69 7.48 6.61 5.14 -0.09 -0.07 -0.04 

Destroyer Engine 1.99 1.29 -0.13 2.80 2.42 1.69 -0.01 -0.02 -0.04 

Pink 3.76 2.39 0.01 6.46 5.66 4.30 0.01 0.03 0.04 

Factory 4.78 3.09 0.38 8.70 7.69 6.03 0.02 0.03 0.03 

HF Channel 5.39 3.53 0.68 11.30 10.07 8.11 -0.09 -0.08 -0.04 

 
Table 3 Average improvements obtained by means of the VLMS algorithm for various noises at three SNR levels. 

 SNR Improvement SegSNR Improvement PESQ Improvement 

SNR (dB) -5 -3 0 -5 -3 0 -5 -3 0 

White Gaussian 6.88 5.44 3.15 10.84 9.89 8.30 0.16 0.19 0.23 

F16 Aircraft 4.37 2.83 0.25 7.15 6.37 4.99 0.00 -0.02 -0.06 

Babble 4.44 2.87 0.27 7.60 6.71 5.18 -0.07 -0.08 -0.08 

Destroyer Engine 1.23 0.91 0.18 1.66 1.44 0.99 0.05 0.05 0.04 

Pink 3.72 2.37 0.01 6.41 5.64 4.29 0.01 0.03 0.03 

Factory 4.74 3.07 0.38 8.60 7.63 6.00 0.01 0.02 0.02 

HF Channel 5.39 3.54 0.69 11.24 10.04 8.10 -0.09 -0.08 -0.04 

 
Table 4 Average improvements obtained by means of the KLMS algorithm for various noises at three SNR levels 

 SNR Improvement SegSNR Improvement PESQ Improvement 

SNR (dB) -5 -3 0 -5 -3 0 -5 -3 0 

White Gaussian 6.39 4.66 1.87 10.81 9.40 7.93 0.25 0.27 0.30 

F16 Aircraft 4.94 3.07 0.14 10.88 10.42 9.01 0.09 0.13 0.18 

Babble 5.04 3.36 0.61 9.10 8.18 6.51 0.14 0.14 0.13 

Destroyer Engine 5.11 4.17 1.65 7.74 8.10 7.61 0.07 0.11 0.16 

Pink 4.37 3.86 1.53 6.38 7.57 7.84 0.19 0.26 0.29 

Factory 4.96 3.33 0.60 10.08 9.42 7.67 0.19 0.25 0.27 

HF Channel 5.55 3.72 0.84 10.56 9.48 8.11 0.15 0.22 0.28 

 

from severe problems of a large number of parameters, 

slow convergence and the risk of being trapped in local 

minima. Nonetheless, kernel methods are emerging 

solutions that can tackle these problems by extending 

linear algorithms to reproducing kernel Hilbert spaces 

created by nonlinear mapping of the original input 

space. This in turn results in a better performance of the 

kernel adaptive algorithms, in particular in the presence 

on non-Gaussian noises. 

 

5 Conclusions 

   Adaptive filters used within the ALE structure are 

usually based on linear algorithms that have not 

satisfactory performance in the presence of non-

Gaussian noises. The aim of the current study was to 

extend the application of the linear adaptive algorithms 

to nonlinear models, within the ALE structure for noise 

cancellation from speech signals. One of the commonly-

used solutions is to utilize the Volterra filters. However, 

adaptive implementations of these models suffer from 

severe problems of large number of parameters and 

slow convergence. On the other hand, adaptive Volterra 

filtering can be accomplished using kernel adaptive 

algorithms. 

   The main contribution of this paper was to alleviate 

drawbacks of the nonlinear models within the ALE 

structure for speech signal enhancement, by way of 

utilizing the kernel adaptive filters. For this purpose, the 

celebrated KLMS algorithm, that has attracted 

substantial research interests due to its simplicity and 

robustness, was selected. Performance of this kernel 

adaptive algorithm was compared to that of their linear 
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(a) 

 
(b) 

 
(c) 

Fig. 3 3Average improvements obtained by means of the KLMS, LMS and VLMS algorithms, at the noise level of -3 dB, for a) 

SNR, b) Segmental SNR and c) PESQ measures. 
 

and nonlinear Volterra-based counterparts, i.e. the LMS 

and VLMS algorithms. Simulation results revealed that, 

higher improvement can be achieved using nonlinear 

kernel-based LMS algorithm. This improvement in 

performance was considerably higher for non-Gaussian 

noises. This is while the nonlinear Volterra-based model 

does not result in a considerable improvement, as 

compared to the linear algorithm. 

   The current study showed the capability of the KLMS 

algorithm in dealing with non-Gaussian interfering 

signals. Evaluating other nonlinear kernel adaptive 

filtering algorithms within the ALE structure as well as 

utilizing these algorithms in the more general 

framework of the ANC for noise, interference and echo 

cancellation remain some topics for future studies. 
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