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M. Kamali*(C.A.), F. Sheikholeslam* and J. Askari* 

 

 
Abstract: In this paper, a robust adaptive actuator failure compensation control scheme is 

proposed for a class of multi input multi output linear systems with unknown time-varying 

state delay and in the presence of unknown actuator failures and external disturbance. The 

adaptive controller structure is designed based on the SPR-Lyapunov approach to achieve 

the control objective under the specific assumptions and the SDU factorization method of 

the high frequency gain matrix is employed to drive the suitable form of the error equation.  

The two component controller structure with an integral term is used in order to 

compensate the effect of unknown state delay and external disturbance. Using a suitable 

Lyapunov-Krasovskii functional, it is shown that despite existing external disturbance and 

actuator failures, all closed loop signals are bounded and the plant Output asymptotically 

tracks the output of a stable reference model. Simulation results are provided to 

demonstrate the effectiveness of the proposed theoretical results. 

 

Keywords: Multivariable State Delay Systems, Adaptive Control, Actuator Failure 

Compensation. 

 

1 Introduction1 

OMPONENT failures occur in many practical 

systems and may cause performance deterioration 

and even lead to system instability and catastrophic 

accidents.  There have been many studies in the 

literature on control of systems with component failures 

[1-5]. In these papers, different design methods 

including multiple model, switching and tuning designs, 

fault detection and diagnosis designs, robust control 

designs and adaptive designs are used. In many 

applications, failures are uncertain, that is, during 

system operation, it is not known when components 

may fail, which components have failed and the extent 

of failures are also unknown. Adaptive control is a 

useful design method to handle uncertainties in both 

system dynamics and component failures. Some 

important results in the area of adaptive fault tolerant 

control systems exist in [6-12]. 

   Since delay phenomena are frequently encountered in 

mechanics, physics, applied mathematics, biology, 

economics and engineering systems and time delay is a 

source of instability and poor performance, considerable 

attention has been devoted to the study of different 

issues related to time-delay systems [13,14]. One of 

                                                 
Iranian Journal of Electrical & Electronic Engineering, 2017. 

Paper first received 01 Septempber 2016 and in revised form 07 May 

2017. 

* The authors are with the Department of Electrical and Computer 

Engineering, Isfahan University of Technology, Isfahan 84156-83111, 

Iran. 

E-mails: m.kamaliandani@ec.iut.ac.ir, sheikh@cc.iut.ac.ir and           

j-askari@cc.iut.ac.ir. 

Corresponding Author: M. Kamali. 

these issues is the fault tolerant control of time delay 

systems.  In the presence of time delay, the design of 

adaptive fault tolerant controller becomes more 

complex. Therefore, there are little results in this field 

compared with systems without delay. For example, in 

[15] a fault detection and accommodation method is 

considered for nonlinear state delay systems, based on 

an iterative design of an observer. The control signal is 

formed by treating component failures as bounded 

uncertainties. In [16] and [17], state feedback 

controllers are developed within the framework of 

Linear Matrix Inequalities for a class of linear systems 

with time delay in control inputs and constant actuator 

failures of stuck-type. A direct state feedback adaptive 

control scheme is introduced in [18] for linear state 

delay systems with unknown constant stuck failures in 

actuators. The same problem is solved for decentralized 

systems in [19]. Based on a linear matrix inequality 

technique, [20] and [21] suggest adaptive reliable 

controllers against loss of effectiveness actuator failures 

which are unknown. In this paper, the plant model is 

assumed to be known. In [22], an adaptive controller is 

designed for single input-single output (SISO) state 

delay systems with unknown parameters and actuator 

failures. An adaptive controller is designed for multi-

input-multi-output (MIMO) state delay systems in [23] 

for known state delay and in [24] for unknown time 

varying state delay. 

   In this paper, a robust adaptive actuator failure 

compensation controller is designed for a certain type of 

multi-input multi-output (MIMO) linear systems with 

unknown time varying state delay. The system is 

considered to have M groups of inputs and M outputs. 

Actuators may fail in each input group, during the 
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operation of the system, but at least one actuator does 

not fail in each group and can be used for the failure 

compensation. The main contribution of this paper is 

that considers the adaptive actuator failure 

compensation problem for MIMO linear time delay 

systems with unknown state delays and in the presence 

of external disturbance. 

 

2 Problem formulation 

   In this section, the control problem is formulated, 

including the plant and reference model, actuator failure 

model, assumptions and control objective. Consider a 

linear MIMO state delay plant described by 
 

(1) 
( ) ( ) ( - ( )) ( ) ( ), 0

( ) ( )

d f
x t Ax t A x t d t Bu t B f t t

y t Cx t

    


 

 

where ( ) nx t   is the state vector, ( ) My t   is the 

output vector and  ( ) Nu t  is the input vector whose 

elements may fail during system operation. ( ) Mf t   

is the external disturbance with *( )f t f . The 

constant matrices
n n

A


 ,
n n

dA  , n NB  , 
1n

fB  and M nC   are unknown. The unknown 

time-varying delay ( )d t  is a differentiable function 

satisfying 
 

(2) 
max0 ( ) , ( ) 1,d t d d t d     

 

where 
maxd  and d  are some unknown positive 

constants. 

   For MIMO plant, it is considered that the N inputs 

can be separated into M groups. Each input group 

contains in inputs, with 
 

 
1,...,

, 1, 1,...,i i

i M

n N n i M


    

 

   In other words, the input vector ( )u t  can be expressed 

as 
 

 

(3) 

1

2

11 1 21

2 1

( ) [ ( ),..., ( ), ( ),...,

( ),..., ( ),..., ( )]
M

n

T

n M Mn

u t u t u t u t

u t u t u t


 

 

and the constant matrix B  is written as 11[ ,...,B b  

1 21 21 2 1, ,..., ,..., ,..., ]
Mn n M Mnb b b b b  . 

   When there is no delay term and no disturbance, the 

transfer matrix of the plant (1) is described by 
 

(4)      oy t W s u t  

where 
1 211 1 21 2( ) [ ( ),..., ( ), ( ),..., ( ),o n nW s W s W s W s W s  

1..., ( ),..., ( )]
MM MnW s W s  is an M N transfer matrix. 

   In this paper, one important type of actuator failure 

modeled as 
 

 

(5) 

 

 

( ) , 1, 2,..., ,

1, 2,...,

ij ij ij

i

u t u t t i M

j n

  


 

 

is considered, where the constant values iju  and the 

failure time instants ijt  are unknown. Each of system 

actuators may fail during system operation, but at least 

one actuator in each group continues its reasonable 

operation. With this type of actuator failure, the input 

vector 1( ) [ ,..., ]
i

T

i i inu t u u is defined as 

 

(6) ( ) ( ) ( ( ))i i i i iu t v t u v t    

 

where 1[ ,..., ] ,
i

T

i i inu u u   1 2diag , ,..., ,
ii i i in     

1, ( )

0, ( )

ij ij

ij

ij ij

u t u

u t u



 



 and 1( ) [ ,..., ]
i

T

i i inv t v v is an 

applied control input to be designed for group i . For 

this type of actuator failure, it is a basic assumption that 

[6]: 

(A1)- If the system parameters and actuator failures 

(up to 1in   failures in each group) are known, the 

remaining actuators can still achieve a desired 

control objective.  

The control objective is to determine an output feedback 

1 2( ) [ ( ), ( ),..., ( )]T T T T

Mv t v t v t v t for the plant (1) with 

unknown parameters and unknown actuator failures (5) 

such that despite the control errors 

( )i i i i iu v u v   , all signals of the closed-loop 

system remain bounded and the plant output vector 

( )y t  follows the output vector ( )my t  of  a stable 

reference model with the transfer matrix 
 

(7) ( ) ( ) ( ),m my t W s r t  

 

asymptotically; i.e., lim ( ) lim( ( ) ( )) 0.m
t t

e t y t y t
 

    In 

the above equation, ( )r t  is the reference input which is 

assumed to be uniformly bounded and piecewise 

continuous. 

   In order to design the controller structure, the “equal 

control” design 
 

(8) 1 2( ) ( ) ... ( ) ( ), 1,...,
ii i in iov t v t v t v t i M      

 

is chosen which assumes that the control inputs to all 

actuators of each group are the same. It is reasonable in 

many practical applications. For example, segments of a 

multiple-segment rudder or heating devices of an oven 
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have similar physical characteristics. With this actuation 

scheme, when there is no actuator failure, the transfer 

function of the system without delay (4) can be stated as 
 

(8) ( ) ( ) ( )oy t W s v t  

where  1 2( ) [ ( ), ( ),..., ( )]To o o Mov t v t v t v t  and 

 

(9) 
1

1

1,..., 1,...,

( ) [ ( ),..., ( )]
M

j Mj

j n j n

W s W s W s
 

    

 

is an M M  transfer matrix. 

   With the assumption that at time instant t , 
ip  

actuators fail in each group and there are totally 

1,...,

i

i M

p p


   failed actuators, i.e. , 1,..., ,ij iju u i M   

1,..., , 0 1.
ii ip i ij j j p n      

   Then from (6) and (8) the closed-loop system (9) can 

be expressed as 
 

(10) ( ) ( ) ( ) ( )a oy t W s v t y t   

 

where 
11 1 11

1

,..., ,...,

( ) [ ( ),..., ( )]
p M MpM

a j Mj

j j j j j j

W s W s W s
 

    

is an M M  transfer matrix with the state space 

representation 
1( ) ,aC sI A B

11 1 1

1

,...,

[ ,...,
p

a j

j j j

B b


   

1 ,...,

]
M MpM

Mj

j j j

b


  and 

 

(11) 
1

1,..., ,...,

( ) ( )
i i pi

ij ij

i M j j j

y t G s u
 

    

 

   To design the controller structure to meet the control 

objective, it is assumed that ( )aW s  satisfies the 

following assumptions for each failure pattern: 

(A2)- The transmission zeros of ( )aW s  have 

negative real parts. 

(A3)- An upper bound 
0 on the observability 

indices of all possible ( )aW s  is known. 

(A4)- ( )aW s is strictly proper, has full rank and has 

relative degree 1 for each failure pattern. 

(A5)- Because of the assumption (A4) and without 

loss of generality, the referenced model is selected 

as 

(12) 
1

( ) diag[ ], 0, 1,...,
m mi

mi

W s a i M
s a

  


 

 

(A6)- All leading principal minors of the high-

frequency gain matrix lim ( )pa a
s

K sW s


  are 

nonzero and their signs are known and do not 

change as actuator failure patterns change. 

(A7)- There exist column proper 

M M polynomial matrix  
r

D s  and row proper 

M M polynomial matrix ( )lD s for all failure 

patterns such that 
 

(13) 
1 1( ) ( ) ( ) ( ) ( )a ra r l laW s N s D s D s N s    

 

where ( )raN s  and ( )laN s  are M M polynomial 

matrices associated with each failure pattern. 

( )raN s and ( )rD s are right coprime and ( )laN s  and 

( )lD s  are left coprime of matrix ( )aW s . 

 
3 Plant-model matching control 

   In this section, we consider the system without delay 

(9) and when the plant parameters and actuator failures 

are known. But the results of this section are only used 

to obtain a suitable error equation parameterization and 

design the adaptive controller for system with delayed 

states and unknown parameters and actuator failures in 

the next sections. Therefore, the final controller 

structure doesn’t need the plant parameters information 

to implement. The control input is denoted as 

 
* * * *

1 2( ) ( ) [ ( ), ( ),..., ( )]T

o o o o Mov t v t v t v t v t   

and the controller structure is defined as 
 

(14) 

* * * * * *

1 1 2 2 3

1

2

( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ),

( ) ( ) ( ),

( )
( ) ,

( )

T T

o e r

M o

M

M

v t K y t K x t K x t K r t K

x t H s v t

x t H s y t

s
H s

s



    








 

 

in which 0 2
( ) [ , ,... ]TM M M M M Ms I sI s I

 

   and ( )s  

is a monic Hurwitz polynomial of degree 0 1  , 

0

0 1

( 1)* * * *

1 11 12 1( )[ , ,..., ]
M MT T TK K K K



 

 
  , 

* *

2 21[ ,TK K  

0

0 1

( 1)* *

22 2( ),..., ]
M MT TK K



 

 
 , 

* M M

eK   and 

* M M

rK  are the parameters of the controller 

structure introduced in [25] for MRC of systems without 

delay and the additional term 
*

3

MK   is a constant 

that is chosen for the compensation of the control error 

( )i i i i iu v u v   . 

   In order to drive the controller parameters, ( )y t  from 

(10) is substituted in (14) and the control signal 
* ( )ov t  is 

obtained as 
 

 

 

(15) 

* * *

1 2

* 1

* * * *

2 3

( ) ( ( ) ( ) ( )

( ))

[ ( ) ].

T T

o M M a

e a

T

M e r

v t I K H s K H s W s

K W s

K H s y K y K r K



  



   

 

 

   Therefore, the closed-loop system (10) becomes 
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(16) 
* * * 1 * * * *

1 2 2 3( ) ( )( ( ) ( ) ( ) ( )) [ ( ) ] ( )T T T

a M M a e o M e ry t W s I K H s K H s W s K W s K H s y K y K r K y t          

 

   With the definition of ( )s , ( )MH s , ( )mW s ,  

( )rD s  and ( )aN s  there exist 
*

1K , 
*

2K , 
*

eK  and 

* 1

r paK K   such that [6] 

 

 

(17) 

* * *

1 2

* 1

( ) ( ) ( ( ) ( )) ( )

( )( ( ) ( ) ( )),

T T

r e ra

r r m ra

K s D s K s K s N s

s D s K W s N s

 



  

 
 

 

   Therefore, using the similar discussions as that of 

[25], the closed-loop system equation (10) can be 

written as 
 

(18) ( ) ( ) ( ) ( ),m py t W s r t f t   

 

with 
 

 

(19) 

* *

2

* 1 *

3

( ) ( ) [ ( )

( ) ]( ).

T

p m pa M e

r m

f t W s K K H s y K y

K W s y K t

 

 
 

 

   According to assumption (A7) and from (11), y  can 

be describe as 
 

 (20) 
1

1

1,..., ,...,

( ) ( ) ( ) ,
i i pi

l ij ij

i M j j j

y t D s N s u

 

    

 

and consequently, ( )pf t  from (19) is rewritten as 

 

 

 

(21) 
1

*

11

*

3

1,..., ,...,

( ) ( )
( ) ( ) [ ( )

( )

( ) ]( ).
i i pi

T

p m pa la

ij ij

i M j j j

s I K s
f t W s K N s

s

N s u K t

 

 

 




  
 

 

   Since ( )mW s , ( )s  and ( )laN s are all stable, it can 

be concluded that there exists a constant  
*

3K  such that 

( )pf t  converges to zero exponentially. In fact, because 

iju  is constant, the term 

1
1,..., ,...,

( )
i i pi

ij ij

i M j j j

N s u
 

   is a 

constant value also. Therefore, the output of 
 

 
1

*

11

1,..., ,...,

( ) ( )
( ) ( )

( )
i i pi

T

la ij ij

i M j j j

s I K s
N s N s u

s

 

 

 



   

which is a stable transfer function with constant input, 

converges to a constant value. If the constant 
*

3K  be 

chosen to be the negative of this value, ( )pf t converges 

to zero exponentially. Thus, we have: 

lim( ( ) ( )) 0m
t

y t y t


   and plant model matching is 

achieved. 

   Remark 1. Suppose that the actuator failures occur at 

the times 0, 1,...,iT i m , with 0 1m N M    since 

at least one actuator in each group does not fail. Then 

 1 0, , 0,...,i iT T i m  with 
0 0T   and 

0 1mT     are 

the time intervals on which the actuator failure pattern is 

fixed. Since the actuator failure pattern changes at times 

0, 1,...,iT i m , the parameters of the transfer matrix 

( )aW s , and hence ( )aZ s , paK  and the controller 

parameters 
* ,eK  

*

1 ,K  
*

2 ,K  
*

rK , and 
*

3K  also change, 

thus, they are all piecewise constant parameters. 
 

4 Error equation 

   Now consider the system with state delay (1) and when 

the system parameters and actuator failures are unknown 

and suppose that that ip  actuators fail in each group. With 

the assumption that there exist constant matrices 
*

da  and 

F  of appropriate dimensions such that 

 
* , ,T

d a d f aA B a B B F   

and from (6) and (8) the closed-loop system (1) can be 

expressed as 
 

 

(22) 

*( ) ( ) ( ) ( ) ( ( ))

( ) ( ) ( ).

T

a o a d

a

y t W s v t W s a x t d t

W s Ff t y t

  

 
 

 

   Operating both sides of (17) on ( )y t  and using (10) 

and (22) we have 
 

 

 

 

 

 

 

 

 

(23) 

*

1 0

* *

1

*

1

* *

1 2

*

0

*

* 1

( ) ( ) ( )

( ) ( ) ( ( ))

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ( )) ( ) ( )

( ) ( ) ( ) ( ) ( ).

T

M ra

T T

M ra d

T

M ra

T T

M M ra

e ra ra

T

ra d ra

r r ra m

K H s N s v t

K H s N s a x t d t

K H s N s Ff t

K H s y t K H s N s y t

K N s y t N s v t

N s a x t d t N s Ff t

D s y t K N s W s y t




 



 

 

  



 

 

   Because ( )ufN s  and ( )mW s  are stable, by dividing 

both sides of the equality (19) on 
1( ) ( )ra mN s W s

, ( )y t  

is obtained as 
 

 

 

 

 

 

 

 

 

(24) 

 

*

1

* * *

2 3

* * *

1

*

1

*

1 1 *

3

( ) ( ) [ ( ) ( ) ( )

( ) ( ) ( )

( ( )) ( ) ( ( ))

( ( )) ( )]

( )

( ) ( ) ( )
( ),

( )

T

m pa o M o

T

M e

T T T

d M d

T

M

m pa

T

r

ra

y t W s K v t K H s v t

K H s y t K y t K

a x t d t K H s a x t d t

I K H s Ff t

W s K

s K s D s
N K t

s






  

  

   

 



 
 



 
 
 
 
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in which ( )t  is related to the system initial conditions. 

Based on the analysis of [26] and as it is stated in [6], 

( )t  converges to zero exponentially. By ignoring 

exponentially decaying terms ( )pf t  and ( )t , the 

tracking error ( ) ( ) ( )me t y t y t   equation can be 

written as 
 

 

 

 

 

 

(26) 

* *

1 1

* * * *

2 2 3

* *

1

*

1

( ) ( ) [ ( ) ( ) ( )

( ) ( ) ( ( ))

( ) ( ( ))

( ( )) ( )].

T

m pa o e

T T

r d

T T

M d

T

M

e t W s K v t K y t K x t

K x t K r t K a x t d t

K H s a x t d t

I K H s Ff t

  

    

 

 

 

 

  To find a suitable error equation parameterization the 

dynamic system 
 

(27) 
* * *

1( ) ( )[ ( ( ))] ( )T T T

M d z xz t K H s a x t d t K z t    

 

is defined in which, 
 

(28) 

0

0

0

* * * * * * *

11 12 1( 1)

2

( 1)

[ , ,..., ],

( ) ( )[ ( ( ))],

[ ,..., , ]
( ) .

( )

T T T T T T T

z d d d

x n

n nn n n n n n

n

K K a K a K a

z t H s x t d t

I s I s I
H s

s










   



 

 


 

 

   By decomposing  ( )xz t  into two components as 
 

(29) 

( ) ( ) ( ),

( ) ( )[ ( ( ))],

( ) ( )[ ( ( ))],

( ( )) ( ( )) ( ( )),

x e m

m n m

e n x

x m

z t z t z t

z t H s x t d t

z t H s e t d t

e t d t x t d t x t d t

 

 

 

    

 

 

where ( ) n

mx t   is the state of the reference model 

(5). Using (27) and (29), the error equation (26) can be 

rewritten as follows 

 

 

 

 

 

 

 

(30) 

* *

1 1

* * *

2 2 3

*

*

*

*

1

( ) ( ) [ ( ) ( ) ( )

( ) ( ) ]

( ) [ ( )

( ( ))

( )

( ( )) ( )],

T

m pa o e

T

r

T

m pa m m

T

d x

T

z e

T

M

e t W s K v t K e t K x t

K x t K r t K

W s K K w t

K e t d t

K z t

I K H s Ff t

   

 

 

 





 

 

where  
* *

d dK a   , * *

m

T T

x m eK c K  and 

 

 

* * * *[ , , ] ,

( ) [ ( ), ( ( )), ( )] .

m

T T T T

m x d z

T T T T

m m m m

K K K K

w t x t x t d t z t



 
 

 

   Now the SDU factorization of paK  is employed to 

drive the suitable form of the error equation. For this 

purpose, the following two lemmas are needed. 

   Lemma 1 ([27]). Every M M  real matrix pK with 

nonzero leading principle minors 1 2, ,.., M    can be 

factored as 
 

(31) pK SDU  

 

where S  is symmetric positive definite, U  is unity 

upper triangular and  1diag ,..., MD d d  is diagonal 

with 
 

 1

1 1

( ) ( ), 2,..., ,

( ) ( ).

l

l

l

sign d sign l M

sign d sign




 



 

 

 

   Lemma 2 ([27]). For any ( )mW s  from (7), there 

exists a positive definite matrix TS S such that 

( )mW s S is SPR. 

   From assumption (A6) and using Lemma 1, for any 

possible failure pattern the high frequency gain matrix 

paK  has the SDU factorization 

(32) pa a a aK S D U  

where both symmetric positive definite matrix aS  and 

unit upper triangular matrix aU can be unknown and are 

allowed to change with failure patterns. The sign of the 

entries , 1,...,aid i M of the diagonal matrix aD   

 1diag ,...,a aMd d  is the only information that is needed 

for an adaptive control design and is determined by the 

sign of the leading principle minors of paK . According 

to assumption (A6), the sign of aD  is known and dose 

not change when actuator failure pattern changes. 

   By substituting the high frequency gain matrix 

decomposition (32) in (30) and introducing the 

decomposition ( )a o o a oU v v I U v   , the error 

equation 

 

 

 

 

 

 

 

 

 

 

(33) 

* *

1 1

* *

2 2

*

3

*

*

*

*

1

( ) ( ) [ ( ) ( ) ( )

( ) ( )

( ) ( )

]

( ) [ ( )

( ( ))

( )

( ( )) ( )],

m a a o a o

T

a e a

T

a a r

a

T

m a a a m m

T

a d x

T

a z e

T

a M

e t W s S D v t I U v t

U K e t U K x t

U K x t U K r t

U K

W s S D U K w t

U K e t d t

U K z t

U I K H s Ff t

   

 

 

 

 





 

 

is obtained. By defining 
* *

e a eU K  , 
* *

1 1

T T

aU K  , 
* *

2 2

T T

aU K  , 
* *

r a rU K  , 
* *

3 3aU K  , 
* ( )u aI U   , 
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* *T T

m a mU K  , 
* *T T

d a dU K  , 
* *T T

z a zU K   and ( )t   
*

1( ( )) ( )T

MI K H s Ff t  the above equation is rewritten 

as 
 

 

 

 

 

 

(34) 

*

*

*

*

( ) ( ) [ ( ) ( )]

( ) [ ( )

( ( ))

( ) ( )],

T

m a a o

T

m a a m m

T

d x

T

z e a

e t W s S D v t K w t

W s S D w t

e t d t

z t U t





 

 

 

 



 

 

where 
 

 

* * * * * * *

1 2 3

1 2

[ , , , , , ] ,

( ) [ ( ), ( ), ( ), ( ),1, ( )] .

T T T

e r u

T T T T T T

o

K

w t e t x t x t r t v t

     


 

 

   Noting that 
*

u  is strictly upper triangular, as in [27], 

the new parameterization 
 

(35) 
* * * *

1 1 2 2( ) [ ( ), ( ),..., ( )] ,T T T T T

M MK w t t t t        
 

is introduced in order to remove the zero entries from 
*

u . Each row vector 
*T

i  is obtained by concatenating 

the i th row of the matrices 
*

e , 
*

1

T , 
*

2

T , 
*

r  and 
*

3  

together with the nonzero entries of the i th row of 
*

u . 

The corresponding regressor vectors are 
 

(36) 

1 1 2 2 3

2 1 2 3

1 2

( ) [ ( ), ( ), ( ), ( ),1, ( ), ( ), ..., ( )] ,

( ) [ ( ), ( ), ( ), ( ),1, ( ), ..., ( )] ,

( ) [ ( ), ( ), ( ), ( ),1] .

T T T T T

o o oM

T T T T T

o oM

T T T T T

M

t e t x t x t r t v t v t v t

t e t x t x t r t v t v t

t e t x t x t r t

 

 

 

 

 

5 Adaptive controller 

   In this section, adaptive controller is designed for 

system with delayed states and unknown parameters and 

actuator failures. In view of the parameterization (35), 

the controller structure 
 

 

 

(37) 

1 1 2 2

0

( ) [ ( ), ( ),..., ( )]

( ( )) ( ) ,

T T T T

o M M

t

I

v t t t t

K sign e t e d 

      

 
 

 

is suggested where ( )i t  is the estimate of 
*

i  and IK  

is a diagonal matrix with constant entries 

, 1,..., .Ikk k M  sign( ( ))e t  is a diagonal matrix of the 

form 
 

 1sign( ( )) diag[sign( ( ),...,sign( ( ))]Me t e t e t  
 

with 
 

 

1 ( ) 0

sign( ( )) 0 ( ) 0

1 ( ) 0

i

i i

i

e t

e t e t

e t




 
 

 

and 
1

0 0 0
( ) ( ) ,..., ( ) .

T
t t t

Me d e d e d      
      

   The control law (37) is composed of two terms. The 

first component is the same as the controller structure 

introduced in [20] for actuator failure compensation of 

MIMO systems with the difference that the output 

vector ( )y t is replaced with the error vector ( )e t  in the 

regressor vector  w t . The integral term 

  
0

sign ( )
t

IK e t e d   is used to achieve robustness 

with respect to unknown plant delay and external 

disturbance. 

   Introducing the parameter errors *( ) ( )i i it t    

and using (35) and (37), the tracking error (36) is 

rewritten as 
 

 

 

 

 

 

(38) 

1 1 2 2

0

* *

*

( ) ( ) [( ( ), ( ),..., ( ))

( ( )) ( ) ]

( ) [ ( ) ( ( ))

( ) ( )],

T T T T

m a a M M

t

I

T T

m a a m m d x

T

z e a

e t W s S D t t t

K sign e t e d

W s S D w t e t d t

z t U t

 

 

 

      



  

 


 

 

   Now the augmented state vector 1
ˆ ( ) [ ( ), ( ),T Tx t x t x t  

2 ( )]T Tx t  is defined. Let ˆ ˆ ˆ( ) ( ) ( )me t x t x t   where 

ˆ ( )mx t  is the state of a nonminimal realization 

1ˆ ˆ ˆ( )C sI A B  of ( )m aW s S . Then the state space 

representation 
 

(39) 

1 1 2 2

0

* *

*

ˆ ˆˆ ˆ( ) ( ) [( ( ), ( ),..., ( ))

( ( )) ( ) ]

ˆ [ ( ) ( ( ))

( ) ( )],

ˆˆ ˆ( ) ( ) ( ( )),

ˆ( ) ( ),

ˆ ˆ( ) ( ),

T T T T

a M M

t

I

T T

a m m d x

T

z e a

T

e e e e

e e e

e t Ae t BD t t t

K sign e t e d

BD w t e t d t

z t U t

z t A z t B L e t d t

z t C z t

e t Ce t

 

 

 

       



  

 

  







 

 

is obtained for (28), where 
0( 1)[ ,0 ,n n n ML I     

0( 1)0 ]Tn M   and the triple ( , , )e e eA B C  is a minimal 

state space realization for the stable transfer matrix 

( )nH s . 

   Because 1ˆ ˆ ˆ( ) ( )m aW s S C sI A B   is SPR [28], there 

exist matrices 0TP P  , and ˆ ˆ 0TQ Q   satisfying 
 

(40) 
ˆ ˆ ˆ ,

ˆˆ .

T

T

A P PA Q

PB C

  


 

 

   For the next discussions, Q̂  is considered to be the 

sum of two positive symmetric matrices Q  and Q   
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(41) ˆ , 0, 0T TQ Q Q Q Q Q Q       
 

   Since 
eA  is stable, there exist symmetric positive 

definite matrices 0T

z zP P   and 0T

z zQ Q   that 

satisfy 
 

(42) .T

e z z e zA P P A Q    
 

Now we are ready to state the following theorem. 

   Theorem 1: Consider the system (1) with actuator 

failures (5) and the reference model (7). Suppose that 

assumptions (A1) to (A7) hold. Then for positive 

constants 
i  and , 1,...,Ii i M   the adaptive control 

(37) with coefficients 
 

(43) 
( ) sign ( ) ( ) ( )

sign ( ),

i i ai i i

Ii Ii ai

t d t e t

k d





   


 

 

assures that all the closed-loop signals are bounded and 

the tracking error e(t) converges to zero asymptotically.  

   Proof To prove this theorem, the Lyapunov-

Krasovskii functional 
 

 

 

 

 

 

 

 

(44) 

( )

1

1

1 * 2

0
1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )

ˆ ˆ( ) ( )

( ) ( )

( ( ) )

T T

e z e

t

T

t d t

M
T

i ai i i i i

i

M t

Ii ai Ii i

i

V t e t Pe t z t P z t

e s Qe s ds

d K K

d e t dt



  











 



    

  





 

 

 

is chosen in which i and , 1,...,Ii i M  are positive 

constant scalars and the parameter 
* 0   with arbitrary 

value will be defined later. The vectors iK are defined 

as 
 

 1[ ,0,...,0]
2

T

i ai M M

r
K d I

   

 

where 0r   is an as yet unspecified constant scalar. 

   With this definition we have 
 

 

 

 

(45) 

1

1 1

2 2

ˆ ˆˆ ˆ( ) .

M M
T

i ai i i ai i i i

i i

T T

d K d K e

re t PBB Pe

 

 

   

 

 
 

 

Also since aD  is diagonal, 
 

 

 

 

(46) 

1

1 1

2

ˆˆ2 ( ) [ ,..., ] .

M
T

ai i i i

i

T T T T

a M M

d e

e t PBD



   

    


 

 

   According to the update law (43) and using (40), (42), 

(45) and (46), the time derivative of V(t) along (39) is 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(47) 

*

*

*

ˆ ˆ( ) ( ) ( )

ˆ ˆ(1 ( )) ( ( )) ( ( ))

ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

ˆˆ ˆ2 ( ) ( ( ))

ˆˆ ˆ2 ( ) ( )

ˆˆ2 ( ) ( )

ˆˆ2 ( ) ( )

ˆˆ2 ( ) (

T

T

T T T

e z e

T T T

a d

T T

a z e e

T T

a m m

T

a a

T T

e z e

V t e t Qe t

d t e t d t Qe t d t

re t PBB Pe t z t Q z t

e t PBD L e t d t

e t PBD C z t

e t PBD w t

e t PBD U t

z t P B L e









 

   

 

 









1 1 1

0

0

*

0
1

( ))

ˆˆ2 ( ) [ sign( ( )) ( ) ,...

, sign( ( )) ( ) ]

2 ( ) ( ( ) )

t

T

a I

t

T

IM M M

M t

ai i Ii i

i

t d t

e t PBD k e t e t dt

k e t e t dt

d e t e t dt 






  





 
 

 

for 
1( , )i it T T  , 

00,1,...,i m . 

   Because ( )mW s  and ( )nH s  are stable and the 

reference input ( )r t  is bounded, the reference signals 

( )mx t , ( )mx t d  and ( )mz t  are bounded. Therefore 

there exists a constant 
*

mw  such that *( )m mw t w  and 

we can write 
 

 

 

 

(48) 

*

*

* *

ˆˆ2 ( ) ( )

ˆˆ2 ( ) ( )

2 ( )

T T

a m m

T T

a m m

T T

a m m

e t PBD w t

e t PBD w t

e t D w







 

  

 

for the seventh term of (47). By choosing * * *

1

T

m mw  , 

we have 
 

(49) 

* *

1

*

1

1

ˆˆ2 ( ) ( ) 2 ( )

2 ( ) .

T T T

a m m a

M

ai i

i

e t PBD w t e t D

d e t

 




 

 
 

 

   For the eighth term of (47), the inequality 
 

 

 

 

(50) 

 * *

1

* *

2 2

1

ˆˆ2 ( ) ( )

2 ( ) ( )

2 ( ) 2 ( )

T

a a

T T

a M

M
T

a ai i

i

e t PBD U t

e t D I K H s F f

e t D d e t



 


 



  

 

 

with  * * *

2 1 ( )T

MI K H s F f    can be written. 

   According to the inequality  
 

 
12 T T Tx y x Sx y S y    
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that is true for any vectors x, y and any positive definite 

matrix S of appropriate dimensions, the following 

expressions can be written for the fifth, sixth and ninth 

terms 
 

(51) 

*

1

*

2

3

ˆˆ ˆ2 ( ) ( ( ))

ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ( )) ( ( )),

ˆˆ ˆ2 ( ) ( )

ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( ),

ˆˆ2 ( ) ( ( ))

ˆ ˆˆ ˆ( ) ( ) ( ( )) ( ( )),

T T T

a d

T T T

T T

a z e e

T T T

e e

T T

e z e

T T

e e

e t PBD L e t d t

e t PB B Pe t e t d t Se t d t

e t PBD C z t

e t PB B Pe t z t Sz t

z t P B L e t d t

z t z t e t d t Se t d t





  

   

 

 

 

   

 

 

where 
 

(52) 

* 1 *

1

* 1 *

2

1

3 .

T T T

a d d a

T T T

a z e e z a

T T T

z e e z

D L S L D

D C S C D

P B L S LB P

 

 







 

 

 

 

 

Using (49), (50) and (51), choosing the coefficients Iik  

from (43) and defining
* * *

1 2    , the inequality 
 

 

 

 

 

(53) 

*

1 2

3

ˆ ˆ( ) ( ) ( )

ˆ ˆ( )( 2 ) ( ( ))

ˆˆˆ ˆ( ) ( ) ( )

ˆ ˆ( )( ) ( )

T

T

T T

T

e z e

V t e t Qe t

e t d d Q S e t d t

e t PB r b Pe t

z t Q S z t

 

   

  

  

 

 

is obtained, where * 1d d  . If the arbitrary values 

,Q r  and zQ  be chosen as 

 

 

 

min max

max 1 2

min max 3

( ) (2 ),

( ),

( ) ( )z

Q S

r

Q S

 



 



  

  

 

 

we have ( ) 0V t   for 1( , )i it T T  , 00,1,...,i m . 

   Since there are only a finite number of failures in 

system, 
0

( )mV T  is finite and from 

 

(54) 
0

( ) 0, ( , )mV t t T    

 

we have ( )V t L  and therefore ˆ( )e t , ( )e t , ˆ ( )ez t , 

( )t , ( )t L  . Because ˆ ˆ ˆ( ) ( ) ( )me t x t x t   and 

ˆ ( )mx t  is bounded, 1 2
ˆ ( ) [ ( ), ( ), ( )]T T T Tx t x t x t x t L  , 

which implies that  1 2( ), ( ), ( )x t x t x t  and ( )y t L . 

Since ( )r t  is uniformly bounded by assumption, 

1 2( ) [ ( ), ( ), ( ), ( ),1]T T

M t e t x t x t r t   and consequently 

( ) [ ]T

oM M Mv t     is bounded. Therefore, 1( )T

M t   

[ ]T

M Mu  is bounded. Repeating this argument, it is 

shown that 
1,...,M   and  

1,...,oM ov v  are all bounded. 

Therefore, all the signals in the closed loop system are 

bounded.  

   From (44) and (53) we establish that ˆ( )e t  and 

therefore 2( )e t L . Using the boundedness of signals in 

(39) it can be concluded that ˆ( )e t  and ( )e t L . 

Hence, ( ), ( )e t e t L  and 
2( )e t L , which by 

Barbalat’s lemma [28] imply that lim ( ) 0
t

e t


 . 

 

6 Simulation results 

To verify the performance of the proposed adaptive 

controller, consider system (1) with the  parameters 
 

(55) 
11 12 21 22

1 0 0

0 0.5 0 ,

0 0 2

0.1 0.4 0.4

0.1 0.7 0.3 ,

0.2 0.3 0.1

0.5 1 0.25 0.75

[ ] 1 2 1.5 4.5

1.5 3 1 3

1

2 ,

0

1 1 0.5
,

1 0.5 0.25

( ) 4 0.5sin( ), ( ) 0.4sin(0.1 ) 0.3,

d

f

A

A

B b b b b

B

C

d t t f t t

 
 


 
  

 
 

 
 
  

 
 

 
 
  

 
 


 
  

 
  
 

   

0 [0.1 0 0.5].x 

 

 

   With these parameters, a MIMO time delay system 

with two outputs and two groups of inputs is considered, 

i.e., the input vector u(t) can be expressed as 
 

 11 12 21 22[ , , , ]Tu u u u u  
 

in which the first input group consists of  11u  and 12u  

and the second input group consists of  21u  and 22u . 

   Let the transfer function of the reference model be 

given by 
 

(56) 
1 1

( ) diag , .
1 1

mW s
s s

 
  

  
 

 

The system parameters (55) and reference model (56) 

satisfy the assumptions defined in section 2 and 

therefore we can use the controller structure (37) with 

update rules (43) for this example. Simulation results 

are obtained for the failure pattern 



 

Iranian Journal of Electrical & Electronic Engineering, Vol. 13, No. 2, June 2017 191 

 

 
Fig. 1 Simulation results: (a) The plant and reference model outputs and; (b) The plant and reference model outputs and; (c) The 

error norm 

 
Fig. 2 Simulation results: The system states. 

 

 
12

21

( ) 1, 60,

( ) 0.5, 100,

u t t

u t t

  

 
 

 

in which failures occur in the second actuator in the first 

group and the first actuator in the second group. All 

parameters of the system and actuator failures are 

assumed to be unknown to the controller. The only 

information available to design the controller is that 

assumptions (A1) – (A7) are satisfied. Fig. 1 and 2 show 

the simulation results by choosing the controller 

parameters 1 250  , 2 20  , 1 2 0.01I I   , ( )s  
2( 1)s   and  the reference input ( ) [1,1] .Tr t   

   It is clear from simulation results that design 

performances are satisfied. At the time instant when one 

actuator fails, there exist a transient response in the 

tracking error, but as the time goes on, the tracking error 

converges to zero. Clearly the values affect the transient 

performance of the closed-loop system. Increasing 

i values will improve the transient performance of the 

system response and speed up the convergence of  to 

zero. But large  values, may make the differential 

equation of  updating the gains, stiff that will require a 

very small sampling period and therefore, more difficult 

to solve numerically. Thus, these gains may need to be 

selected suitably according to the performance that we 

expect of our system. 

 

7 Conclusions 

   A Robust output-feedback adaptive actuator failure 

compensation controller is suggested for MIMO linear 

systems with unknown time varying state delay. The 

controlled plant is considered to have M groups of 

inputs and M outputs. In each actuator group, unknown 

actuator failures of stuck type may occur. The controller 



 

192 Iranian Journal of Electrical & Electronic Engineering, Vol. 13, No. 2, June 2017 

 

is designed based on the SPR-Lyapunov design method 

to drive a suitable structure for the case with the relative 

degree of one. The two component controller structure 

ensures asymptotic output tracking and robustness with 

respect to unknown time varying state delay and 

external disturbances. The results of this paper can be 

extended to higher relative degrees using normalized 

MRAC schemes. 
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