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Abstract: this paper studies output feedback control of pure-feedback systems with 
immeasurable states and completely non-affine property. Since availability of all the states 
is usually impossible in the actual process, we assume that just the system output is 
measurable and the system states are not available. First, to estimate the immeasurable 
states a state observer is designed. Relatively fewer results have been proposed for pure-
feedback systems because the cascade and non-affine properties of pure-feedback systems 
make it difficult to find the explicit virtual controls and actual control. Therefore, by 
employing the singular perturbation theory in back-stepping control procedure, the 
virtual/actual control inputs are derived from the solutions of a series of fast dynamical 
equations which can avoid the “explosion of complexity’’ inherently existing in the 
conventional back-stepping design. The stability of the resulting closed-loop system is 
proved by Tikhonov’s theorem in the singular perturbation theory. Finally, the detailed 
simulation results are provided to demonstrate the effectiveness of the proposed controller, 
which can overcome the non-affine property of pure-feedback systems with lower 
complexity and fewer design parameters. 
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1 Introduction1 
The pure-feedback system represents a more general 

class of triangular systems, which have no affine 
appearance of the variables to be used as virtual 
controls. In practice, there are many systems falling into 
this category, such as mechanical systems, aircraft flight 
control systems, biochemical process, Duffing 
oscillator, etc. For a pure-feedback system, the 
backstepping control technique [1] provides a 
systematic framework for the design of tracking and 
regulation strategies with its constructive Lyapunov 
design procedures. However, the difficulties associated 
with the backstepping controller design for the pure-
feedback system lie in that, 1) no dynamical inverted 
virtual/actual control inputs can be found explicitly and, 
2) the problem of “explosion of complexity” inherently 
exists in the conventional back-stepping design because 
of the repeated differentiations of the virtual control 
inputs. 

Adaptive neural networks (NNs) control schemes in 
[2] and [3] are first proposed for a class of pure-
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feedback nonlinear systems, where the last equation of 
the controlled system is an affine nonlinear to avoid the 
algebraic loop problem. In [4-7] control of the 
completely non-affine pure-feedback systems are 
investigated. These papers employ the function 
approximation technique using NNs or fuzzy logic 
systems (FLs) to compensate unknown nonlinear terms 
in the control system design. In the previous studies [2-
7], the authors use the NNs or FLs to approximate the 
ideal virtual/actual control inputs. However, the time 
derivatives of the virtual control inputs are either 
ignored completely, leading to a poor tracking 
performance or approximated by the NNs or FLs, 
resulting in a complicated controller design. Moreover, 
these methods are suitable to the case in which the plant 
models are completely unknown and they cannot take 
advantage of the prior knowledge of the system even the 
plant model is exactly known. To overcome the 
“explosion of complexity” problem, dynamic surface 
control (DSC) was proposed in the controller design for 
non-affine system, by employing first-order filtering of 
the synthetic virtual control input at each step of 
backstepping approach [8]. However, this method will 
produce an algebraic loop, because the controller is 
employed in the approximation algorithm, whose output 
is simultaneously utilized in the controller. The problem 
of algebraic loop is solved in [9] and [10] by combining 
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the DSC technique and input-to-state stability- (ISS-) 
modular design method [4]. However, in [9] and [10], 
the corresponding neural network (NN) and filter are 
needed to be designed in each recursive step. Thus, the 
method is still complex. 

The combination of the backstepping and time scale 
separation for completely non-affine pure-feedback 
systems is proposed in [11, 12]. In this proposed 
technique, first by employing the time scale separation 
method, the time derivatives of the virtual/actual control 
inputs are defined as solutions of fast dynamic equations 
and then, their integrals are used as the virtual/actual 
control inputs. In this technique, the two mentioned 
problems of backstepping are solved simultaneously. 
However, the designed controller in [11, 12] is under 
the assumption that the full states are known and it is 
usually impossible that all the states are available in the 
actual process. 

Despite these efforts in in control of pure feedback 
systems, the above mentioned methods are all based on 
the assumption that the states of the controlled systems 
are available for measurement. It is well known that 
state variables are often immeasurable for many 
practical nonlinear systems. However, few attempts 
have been made on control of pure-feedback systems 
with immeasurable states, which are important and more 
practical. 

In [13-15] a new adaptive fuzzy output feedback 
control approach is developed in which, FLs are utilized 
to approximate the unknown nonlinear functions; and 
the filtered signals are introduced to circumvent 
algebraic loop systems encountered in the 
implementation of the controller, and a fuzzy state 
adaptive observer is designed to estimate the 
immeasurable states. Recently, a low-complexity and 
free backstepping like approach is proposed in [16] 
based on sliding mode control theory. In this technique, 
a novel transformation method is included, which can 
transform the state-feedback control of non-affine 
systems into output feedback control of strict-feedback 
affine systems. However, in [16], it is assumed that the 
bounds of the derivatives of the nonlinear functions for 
all the variables are known. Hence, for non-affine 
systems, it needs to further study the low-complexity 
controller design that needs less restrictive conditions 
and system knowledge. 

In this paper, we present the output feedback control 
problem for completely non-affine pure-feedback 
systems with immeasurable states using the 
backstepping and time-scale separation technique. For 
the controller design, we first design the state observer 
to estimate the immeasurable states. Then, the time-
scale separation concept and the backstepping technique 
are combined to develop the approximate version of 
virtual/actual control laws. Therefore, the virtual/actual 
controllers are defined as solutions of fast dynamic 
equations which accomplish time-scale separation 
between the state observer and controllers. It is proven 

that the proposed control approach can guarantee that 
the observer and tracking errors converge to a small 
neighborhood of the origin. Finally, the simulation 
results are provided to validate the effectiveness of the 
proposed approach. 
 
2 Problem Formulation and Preliminaries 

2.1  Problem Statement 
Consider the following pure-feedback nonlinear 

system: 

ሶ௜ݔ ൌ ௜݂ሺݔ௜, ௜ାଵሻݔ ൅ ݅										௜ାଵݔ ൌ 1, 2, … , ݊ െ 1  

ሶ௡ݔ ൌ ௡݂ሺݔ௡, ሻݑ ൅ ݑ

ݕ	 ൌ  ଵ                                                                         (1)ݔ

where ݔ௜ ൌ ሾݔଵ, ,ଶݔ … , ௜ሿ்ݔ ∈ ܴ௜, ݅ ൌ 1, 2, … , ݊ is the 
system state vector, ݑ ∈ ܴ and ݕ ∈ ܴ are system input 
and output, respectively; ௜݂ሺ. ሻ, ݅ ൌ 1, 2, … , ݊ are smooth 
nonlinear functions. In this paper, it is assumed that 
output ݕ is available for measurement. 

Assumption 1: There exist a set of constants ݉௜, ݅ ൌ
1,… , ݊		,				∀	 ଵܺ, 	ܺଶ ∈ ܴ௜, such that the following 
inequality holds. 

| ௜݂ሺ	 ଵܺሻ െ ௜݂ሺ	ܺଶሻ| ൑ ݉௜‖	 ଵܺ െ 	ܺଶ‖          (2) 

where‖	 ଵܺ െ 	ܺଶ‖ expresses the two-norm of vector 
	 ଵܺ െ 	ܺଶ. 

Assumption 2: ሺ߲ ௜݂/߲ݔ௜ାଵሻ andሺ߲ ௡݂/߲uሻ are bounded 
away from zero for ݔ௜ାଵ ∈ ௫೔శభߗ ⊂ ,௡ݔ௫೔శభand ሺܦ ሻݑ ∈
௫೙,௨ߗ ⊂ ௫೙ܦ ൈ  ௫೙,௨ are compactߗ ௫೔శభandߗ ௨, whereܦ
sets; that is ሺ߲ ௜݂/߲ݔ௜ାଵሻ andሺ߲ ௡݂/߲uሻare either positive 
or negative. Without losing the generality, we assume 
ሺ߲ ௜݂/߲ݔ௜ାଵሻ ൐ 0 and ሺ߲ ௡݂/߲uሻ ൐ 0. 

Remark 1: Note that the constants ݉௜ in Assumption 1 
are only used for the purpose of the stability of the 
control system, instead of being used to implement the 
controller. Therefore, the constants ݉௜ are only required 
to exist, they may be unknown. Moreover, they do not 
need to be estimated in implementing the controller 
[14,15]. 

In this paper, it is assumed that the states ݔ௜, ݅ ൌ
2,… , ݊, are not available for the controller design. Our 
control objective is to design an output feedback control 
scheme by using time scale separation in backstepping 
procedure so that the state observer and tracking errors 
are as small as desired. 
 
2.2  Preliminaries on Singular Perturbation Theory 

For proving our main result, we will use Tikhonov’s 
theorem on singular perturbations, which we recall 
below [17]. Consider the problem of solving the state 
equation 

ሻݐሶሺݔ ൌ ݂ሺݐ, ,ሻݐሺݔ ,ሻݐሺݖ ሺ0ሻݔ																					ሻߝ ൌ  ሻߝሺߦ
ሻݐሶሺݖߝ ൌ ݃ሺݐ, ,ሻݐሺݔ ,ሻݐሺݖ ሺ0ሻݖ																			ሻߝ ൌ  ሻ      (3)ߝሺߟ

where ߝ is a “small” scalar parameter. ߦሺߝሻ and ߟሺߝሻ are 
smooth. It is assumed that the functions ݂ and ݃ are 
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continuously differentiable in their arguments for 
ሺݐ, ,ݔ ,ݖ ሻߝ ∈ ሾ0,∞ሻ ൈ ௫ܦ ൈ ௭ܦ ൈ ሾ0, ௫ܦ ଴ሿ whereߝ ⊂ ܴ௡ 
and ܦ௭ ⊂ ܴ௠ are open connected sets, ε଴˃ ൐ 0 . If 
݃ሺݐ, ,ݔ ,ݖ 0ሻ ൌ 0 has ݈	 ൒ 	1 isolated real roots ݖ ൌ
݄௔ሺݐ, ܽ			,ሻݔ ൌ 1,2, … , ݈, for each ሺݐ, ሻݔ ∈ ሾ0,∞ሻ ൈ  ௫ܦ
when ߝ ൌ 0	, we say that the model (3) is in ‘standard 
form’. Let us choose one fixed parameter ܽ ∈ ሼ1, . . . , ݈ሽ, 
and drop the subscript ܽ from ݄ from now on. Let ݒ ൌ
ݖ െ ݄ሺݐ,  ሻ. From singular perturbation theory, theݔ
‘reduced system’ is represented by 

ሻݐሶሺݔ ൌ ݂ሺݐ, ,ሻݐሺݔ ݄ሺݐ, ሺ0ሻݔ								ሻሻ,0ሻݐሺݔ ൌ  ሺ0ሻ         (4)ߦ

and the ‘boundary layer system’ with the new time scale 
߬ ൌ  is defined as ߝ/ݐ
ݒ݀
݀߬

ൌ ݃൫ݐ, ,ݔ ݒ ൅ ݄൫ݐ, ,ሻ൯ݐሺݔ 0൯ 

ሺ0ሻݒ ൌ ଴ߟ െ ݄ሺ0,  ଴ሻ          (5)ߦ

where ߟ଴ = ߟሺ0ሻ and ߦ଴ ൌ ,ݐሺ0ሻ, ሺߦ ሻݔ ∈ ሾ0,∞ሻ ൈ  ௫ܦ
are treated as fixed parameters. 
 
3  State Observer Design 

Note that the states ݔଶ, ,ଷݔ … ,  ௡ in system (1) areݔ
not available for feedback; therefore, a state observer 
should be established to estimate the unmeasured states, 
and then output feedback control scheme is investigated 
based on the designed state observer. To begin with, 
rewrite (1) as 

ሶ௜ݔ ൌ ௜݂ሺݔො௜, ො௜ାଵሻݔ ൅ ௜ାଵݔ ൅ ∆ ௜݂										݅ ൌ 1, 2, … , ݊ െ 1 

ሶ௡ݔ ൌ ௡݂ሺݔො௡, ሻݑ ൅ ݑ ൅ ∆ ௡݂            

ݕ ൌ  ଵ                                                                          (6)ݔ

where ∆ ௜݂ ൌ ௜݂ሺݔ௜, ௜ାଵሻݔ െ ௜݂ሺݔො௜, ,ො௜ାଵሻݔ ݅ ൌ 1, 2, … , ݊ െ
1;		∆ ௡݂ ൌ ௡݂ሺݔ௡, ሻݑ െ ௡݂ሺݔො௡,  ො௜ is the estimate of theݔ ;ሻݑ
state vectors ݔ௜, which can be obtained by the state 
observer designed later. Rewrite (6) in the state space 
form 

ሶ௡ݔ ൌ ௡ݔܣ ൅ ݕܭ ൅෍ܤ௜

௡ିଵ

௜ୀଵ

ሾ ௜݂ሺݔො௜, ො௜ାଵሻݔ ൅ ∆ ௜݂ሿ

൅ ௡ሾܤ ௡݂ሺݔො௡, ሻݑ ൅ ݑ ൅ ∆ ௡݂ሿ 

௡ݔܣ	= ൅ ݕܭ ൅ ∑ ௜ܤ
௡
௜ୀଵ ሾ ௜݂ሺݔො௜, ො௜ାଵሻݔ ൅ ∆ ௜݂ሿ ൅  (7)      ݑ௡ܤ

where ܣ ൌ ൦

െ݇ଵ

⋮ ܫ

െ݇௡ 0 … 0

൪ , ܭ ൌ ൦

݇ଵ

⋮

݇௡

൪	,				      and 

௡ܤ ൌ 	 ൦

0

⋮

1

൪	,				ܤ௜ ൌ ሾ0 … 1 … 0ሿ்.  

Choose the vector ܭ to make matrix ܣ a strict 
Hurwitz matrix. Given a matrix ܳ ൌ ்ܳ ൐ 0, there 
exists a matrix ܲ ൌ ்ܲ ൐ 0satisfying 

்ܲܣ ൅ ܣܲ ൌ െ2ܳ                                                       (8) 

Design a state observer as 

ොሶ௜ݔ ൌ ො௜ାଵݔ ൅ ݇௜ሺݕ െ ොଵሻݔ ൅ ௜݂ሺݔො௜,  						ො௜ାଵሻݔ

	݅ ൌ 1, 2, … , ݊ െ 1 

ොሶ௡ݔ ൌ ݇௡ሺݕ െ ොଵሻݔ ൅ ௡݂ሺݔො௡, ሻݑ ൅  (9)                   ݑ

ොݕ ൌ  ොଵݔ

Rewrite (9) as 

ොሶ௡ݔ ൌ ො௡ݔܣ ൅ ݕܭ ൅෍ܤ௜

௡

௜ୀଵ

௜݂ሺݔො௜, ො௜ାଵሻݔ ൅  ݑ௡ܤ

ොݕ ൌ  ො௡                                                                     (10)ݔܥ

where ܥ ൌ ሾ1 … 0 … 0ሿ. 

Let ൌ ௡ݔ െ	ݔො௡be observer error. Then from (7) and 
(10), one has 

ሶ݁ ൌ ݁ܣ ൅ ∑ ௜ܤ
௡
௜ୀଵ ∆ ௜݂ ൌ ݁ܣ ൅  (11)                              ܨ∆

where ∆ܨ ൌ ሾ∆ ଵ݂, … , ∆ ௡݂ሿ். 
Consider the Lyapunov function candidate ଴ܸ as 

଴ܸ ൌ
ଵ

ଶ
்݁ܲ݁                                                                (12) 

The time derivation of ଴ܸ is 

ሶܸ଴ ൌ
ଵ

ଶ
ሶ݁ ்ܲ݁ ൅

ଵ

ଶ
்݁ܲ ሶ݁                                                (13) 

Using (8) and substituting (11) into (13) results in 

ሶܸ଴ ൑ െߣ௠௜௡ሺܳሻ‖݁‖ଶ ൅  (14)                                 ܨ∆்ܲ݁

By the Young’s inequality 2ܾܽ	 ൑ 	ܽଶ ൅ ܾଶ, and by 
Assumption 1, one can obtain the following inequalities: 
|ܨ∆்ܲ݁| ൑

ଵ

ଶ
‖݁‖ଶ ൅

ଵ

ଶ
‖ܲ‖ଶ‖∆ܨ‖ଶ ൑

ଵ

ଶ
‖݁‖ଶ ൅

																							
	ଵ

ଶ
‖ܲ‖ଶሺ|∆ ଵ݂|ଶ ൅ ⋯൅ |∆ ௡݂|ଶሻ  

																	൑
ଵ

ଶ
‖݁‖ଶ ൅ ‖ܲ‖ଶ ∑ ݉௜

ଶ௡
௜ୀଵ ‖݁‖ଶ                 (15) 

Substituting (15) into (14) yields 

ሶܸ଴ ൑ െݎଵ‖݁‖ଶ                                                            (16) 

where  ݎଵ ൌ ௠௜௡ሺܳሻߣ െ 1 െ ‖ܲ‖ଶ ∑ ݉௜
ଶ௡

௜ୀଵ  . 

Remark 2. The designed state observer (9) can 
guarantee the convergences of the observer errors if we 
choose ݎଵ ൐ 0. Thus the designed state observer of this 
paper is reasonable [14, 15]. 
 
4  Output Feedback Control Design and Stability 
Analysis 

In this section, an output feedback controller will be 
developed by using the above state observer in the 
framework of the combination of the backstepping 
technique and singular perturbation theory. Similar to 
the backstepping method, this design procedure contains 
n steps. Employing time-scale separation concept, the 
virtual control laws ߙ௜, i = 1, . . . , n − 1  and finally, the 
actual control law u are obtained. 

݅
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The design procedure is presented in the following. 
Define the error variables as ݖଵ ൌ ݕ െ ௜ݖ  ௥ andݕ ൌ ො௜ݔ െ
	݅ ௜ିଵ whereߙ ൌ 	2, . . . , ݊. 
Step 1: Expressing ݔଶ in terms of its estimate as ݔଶ ൌ
ොଶݔ ൅ ݁ଶ, we obtain 

ሶଵݖ ൌ ሶଵݔ െ ሶ௥ݕ ൌ ଶݔ ൅ ଵ݂ሺݔଵ, ଶሻݔ െ ሶ௥ݕ ൌ ොଶݔ ൅
ଵ݂ሺݔොଵ, ොଶሻݔ െ ሶ௥ݕ ൅ ݁ଶ ൅ ∆ ଵ݂                                         (17) 

Taking ݔොଶ as a virtual control, one has 

ሶଵݖ ൌ ଶݖ ൅ ଵߙ ൅ ଵ݂ሺݔොଵ, ଶݖ ൅ ଵሻߙ െ ሶ௥ݕ ൅ ݁ଶ ൅ ∆ ଵ݂      (18) 

Then, ߙଵ as the first virtual controller can be specified 
as the solution of 

ଵߙ ൅ ଵ݂ሺݔොଵ, ଶݖ ൅ ଵሻߙ െ ሶ௥ݕ ൌ െܿଵݖଵ                           (19) 

where ܿଵ ൐ 1 is the first control gain. However, in (19), 
because of the non-affine property of the non-linear 
functions, ߙଵ cannot be explicitly computed. According 
to the following fast dynamics based on time-scale 
separation concept, an approximate virtual controller is 
designed 

ሶଵߙଵߝ ൌ െsign ቀ
பொభ
பఈభ

ቁܳଵሺݐ, ,ଶ̅ݖ  ଵሻ                              (20)ߙ

along with the initial condition ߙଵሺ0ሻ ൌ ଵߝ ,ଵ,଴ߙ ≪ 	1, 
ଶ̅ݖ ൌ ሾݖଵ,  ,ଶሿ்ݖ

ܳଵሺݐ, ,ଶ̅ݖ ଵሻߙ ൌ ܿଵݖଵ ൅ ଵߙ ൅ ଵ݂ሺݔොଵ, ଶݖ ൅ ଵሻߙ െ    (21)			ሶ௥ݕ

If ߙଵ ൌ ݄ଵሺݐ,  ଶ̅ሻ be an isolated root ofݖ
ܳଵሺݐ, ,ଶ̅ݖ ଵሻߙ ൌ 0, then the reduced system is defined as 

ሶଵݖ ൌ െܿଵݖଵ ൅ ଶݖ ൅ ݁ଶ ൅ ∆ ଵ݂										ݖଵሺ0ሻ ൌ  ଵ,଴         (22)ݖ

and the boundary layer system can be represented by 

ௗ௩భ
ௗఛభ

ൌ െsign ቀ
பொభ
பఈభ

ቁܳଵሺݐ, ,ଶ̅ݖ ଵݒ ൅ ݄ଵሺݐ,  ଶ̅ሻሻ               (23)ݖ

where ݒଵ ൌ ଵߙ െ ݄ଵሺݐ, ଶ̅ሻ and ߬ଵݖ ൌ  .ଵߝ/ݐ
Considering the control Lyapunov function ଵܸ ൌ

	 ଴ܸ ൅
ଵ

ଶ
 ଵଶ and using the reduced system (22), it isݖ

deduced that 

ሶܸଵ ൌ ሶܸ଴ ൅ ଵݖଵሾെܿଵݖ ൅ ଶݖ ൅ ݁ଶ ൅ ∆ ଵ݂ሿ 

					൑ െݎଵ‖݁‖ଶ െ ܿଵݖଵଶ ൅ ଶݖଵݖ ൅ ଵ݁ଶݖ ൅ ∆ଵݖ| ଵ݂|        (24) 

By Young’s inequality and Assumption 1, one has 

ଵ݁ଶݖ ൑
ଵ

ଶ
ଵଶݖ ൅

ଵ

ଶ
|݁ଶ|ଶ ൑

ଵ

ଶ
ଵଶݖ ൅

ଵ

ଶ
‖݁‖ଶ                       (25) 

∆ଵݖ| ଵ݂| ൑
ଵ

ଶ
ଵଶݖ ൅

ଵ

ଶ
|∆ ଵ݂|ଶ ൑

ଵ

ଶ
ଵଶݖ ൅ ݉ଵ

ଶ‖݁‖ଶ            (26) 

Substituting (25) and (26) into (24) yields 

ሶܸଵ ൑ െݎ‖݁‖ଶ െ ሺܿଵ െ 1ሻݖଵଶ ൅  ଶ                           (27)ݖଵݖ

where ݎ ൌ ଵݎ െ
ଵ

ଶ
െ ݉ଵ

ଶ. 
Steps ݅	ሺ݅	 ൌ 	2, . . . , ݊	 െ 	1ሻ: The time derivative of ݖ௜ is 
expressed as 

ሶ௜ݖ ൌ ොሶ௜ݔ െ ሶߙ ௜ିଵ ൌ ො௜ାଵݔ ൅ ݇௜݁ଵ ൅ ௜݂ሺݔො௜, ො௜ାଵሻݔ െ ሶߙ ௜ିଵ 

					ൌ ௜ାଵݖ ൅ ௜ߙ ൅ ݇௜݁ଵ ൅ ௜݂ሺݔො௜, ௜ାଵݖ ൅ ௜ሻߙ െ ሶߙ ௜ିଵ     (28) 

Similar to step 1, we should find ߙ௜ such that 

௜ߙ ൅ ݇௜݁ଵ ൅ ௜݂൫ݔො௜, ௜ାଵݖ ൅ ௜൯ߙ െ ሶߙ ௜ିଵ ൌ െܿ௜ݖ௜ െ        ௜ିଵݖ

(29) 

where ܿ௜ ൐ 	0 is the ݅th positive control gain. To 
overcome the non-affine property, the ݅th approximate 
virtual controller can be designed as the following	݅th 
fast dynamics 

ሶߙ௜ߝ ௜ ൌ െsign ቀ
డொ೔
డఈ೔
ቁܳ௜ሺݐ, ,௜̅ାଵݖ  ௜ሻ                             (30)ߙ

where ߙ௜ሺ0ሻ ൌ ௜ߝ ,௜,଴ߙ ≪ ௜̅ାଵݖ ,1	 ൌ ሾݖଵ, … ,  ௜ାଵሿ், andݖ

ܳ௜ሺݐ, ,௜̅ାଵݖ ௜ሻߙ ൌ ܿ௜ݖ௜ ൅ ௜ିଵݖ ൅ ௜ߙ ൅ ݇௜݁ଵ  

                           ൅ ௜݂൫ݔො௜, ௜ାଵݖ ൅ ௜൯ߙ െ ሶߙ ௜ିଵ               (31) 

Remark 3: In this step, the time derivative of the virtual 
control input ߙሶ ௜ିଵ is appeared which has been designed 
in the previous step ߙሶ ௜ିଵ ൌ

െsign ቀ
డொ೔షభ
డఈ೔షభ

ቁܳ௜ିଵሺݐ, ,௜̅ݖ  ௜ିଵ. Therefore, theߝ/௜ିଵሻߙ

“explosion of complexity” arising from the calculation 
of this term is avoided [12]. 

Let ߙ௜ ൌ ݄௜ሺݐ,  ௜̅ାଵሻ be an isolated root ofݖ
ܳ௜ሺݐ, ,୧̅ାଵݖ ୧ሻߙ ൌ 	0. Then the reduced system is defined 
as 

ሶ௜ݖ ൌ െܿ௜ݖ௜ െ ௜ିଵݖ ൅ ௜ሺ0ሻݖ								௜ାଵݖ ൌ  ௜,଴                 (32)ݖ

and the boundary layer system can be represented by 

ௗ௩೔
ௗఛ೔

ൌ െsign ቀ
பொ೔
பఈ೔
ቁܳ௜ሺݐ, ,௜̅ାଵݖ ୧ݒ ൅ ݄௜ሺݐ,  ௜̅ାଵሻሻ           (33)ݖ

where ݒ௜ ൌ ௜ߙ െ ݄௜ሺݐ, ௜̅ାଵሻand ߬௜ݖ ൌ  ௜. Consideringߝ/ݐ

the control Lyapunov function ௜ܸ ൌ ௜ܸିଵ ൅	
ଵ

ଶ
௜ݖ
ଶ and 

using the reduced system (32), it is deduced that 

ሶܸ௜ ൑ ሺ∑ െ ௝ܿݖ௝
ଶ௜

௝ୀଵ ሻ ൅ ௜ାଵݖ௜ݖ െ ଶ‖݁‖ݎ ൅  ଵଶ               (34)ݖ

Step n: In the last step, the actual control input ݑ 
appears and is at our disposal. We derive the 
 ௡dynamicsݖ

ሶ௡ݖ ൌ ොሶ௡ݔ െ ሶ௡ିଵߙ ൌ ݇௡݁ଵ ൅ ௡݂ሺݔො௡, ሻݑ ൅ ݑ െ  ሶ௡ିଵ     (35)ߙ

We now obtain an approximate actual control input 
via time-scale separation to satisfy 

݇௡݁ଵ ൅ ௡݂൫ݔො௡, ൯ݑ ൅ ݑ െ ሶ௡ିଵߙ ൌ െܿ௡ݖ௡ െ  ௡ିଵ        (36)ݖ

as 

ሶݑ௡ߝ ൌ െ݊݃݅ݏ ቀ
డொ೙
డ௨
ቁܳ௡ሺݐ, ,௡̅ݖ  ሻ                                (37)ݑ

with the initial condition ݑሺ0ሻ ൌ ௡ߝ	, ଴ݑ ≪ 	1 and 

ܳ௡ሺݐ, ,௡̅ݖ ሻݑ ൌ ܿ௡ݖ௡ ൅ ௡ିଵݖ ൅ ݇௡݁ଵ  

																									൅ ௡݂൫ݔො௡, ൯ݑ ൅ ݑ െ  ሶ௡ିଵ                       (38)ߙ
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where ݖ௡̅ ൌ ሾݖଵ, … ,  ௡ሿ் and ܿ௡ is the nth positiveݖ
control gain. Let ݑ ൌ ݄௡ሺݐ,  ௡̅ሻ be an isolated root ofݖ
ܳ௡ሺݐ, ,௡̅ݖ ሻݑ ൌ 	0. Then the reduced system is defined as 

ሶ௡ݖ ൌ െܿ௡ݖ௡ െ ௡ሺ0ሻݖ										௡ିଵݖ ൌ  ௡,଴,                     (39)ݖ

and the boundary layer system can be represented by 
ௗ௩೙
ௗఛ೙

ൌ െ݊݃݅ݏ ቀ
பொ೙
ப௨
ቁܳ௡ሺݐ, ,௡̅ݖ ௡ݒ ൅ ݄௡ሺݐ,  ௡̅ሻሻ            (40)ݖ

where ݒ௡ ൌ ݑ െ ݄௡ሺݐ, ௡̅ሻand ߬௡ݖ ൌ  .௡ߝ/ݐ
We choose the Lyapunov function ௡ܸ ൌ ௡ܸିଵ ൅

	
ଵ

ଶ
 ௡ଶ. The resulting derivatives of ௡ܸ is given asݖ

ሶܸ௡ ൑ െݎ‖݁‖ଶ െ ሺܿଵ െ 1ሻݖଵଶ െ ∑ ௝ܿݖ௝
ଶ௡

௝ୀଶ                    (41) 

Let ݎ ൐ ߚ			,0 ൌ ݉݅݊ሼ2ݎ ⁄,௠௜௡ሺܲሻߣ 		2ܿ௜	, 2ሺܿଵ െ 1ሻ; ݅ ൌ
2,… , ݊	ሽ 

Then Eq. (41) becomes 
ሶܸ ൑ െ	(42)                                                                   ܸߚ 

Equation (42) can be further rewritten as 

ܸሺݐሻ ൑ ܸሺ0ሻ݁ି	ఉ௧                                                      (43) 

which guarantees the exponentially stability of the 
origin of reduced system (22), (32) and (39). 

For the stability analysis of the proposed control 
system, we present the following theorem using 
Tikhonov’s theorem (Theorem 11.2 in [17]). 

Theorem 1: Consider the singular perturbation 
problem of the state observer (9) and the controllers 
(20), (30), (37). Assume that the following conditions 
are satisfied for all ሾݐ, ,௜̅ାଵݖ ௜ߙ െ ݄௜ሺݐ, ,௜̅ାଵሻݖ ௜ሿߝ ∈
ሾ0,∞ሻ ൈ ௭̅೔శభܦ ൈ ௩೔ܦ ൈ ሾ0,  ଴ሻ for some domainsߝ
௭̅౟శభܦ ⊂ ܴ௜ାଵand ܦ௩౟ ⊂ ܴ, which contain their 
respective origins, where	݅ ൌ 1, . . . , ݊, ௡̅ାଵݖ ൌ ,௡̅ݖ
௭̅೙శభܦ ൌ ௡ߙ ௭̅೙andܦ ൌ  .ݑ

௭̅೔శభܦ On any compact subset of (1ܤ) ൈ  ௩೔, theܦ
functions ܳ௜, their first partial derivatives with respect 
to ሺݖ௜̅ାଵ,  ௜ሻ and the first partial derivative of ܳ௜withߙ
respect to ݐ are continuous and bounded. Also 
݄௜ሺݐ,  ௜ሻhave bounded first derivativesߙ߲/and ሺ߲ܳ௜	௜̅ାଵሻݖ
with respect to their arguments, ሺ߲ܳ௜/߲ݖ௜̅ାଵ) is 
Lipschitz in ݖ௜̅ାଵ, uniform in t.  

(B2) ሺݐ, ,௜̅ାଵݖ ௜ሻݒ ↦ ሺ߲ܳ௜ ⁄௜ߙ߲ ሻሺݐ, ,௜̅ାଵݖ ௜ݒ ൅
݄௜ሺݐ,  ௜̅ାଵሻሻ is bounded below by some positive constantݖ
for all ሺݐ, ௜̅ାଵሻݖ ∈ ሾ0,∞ሻ ൈ   .௭̅೔శభܦ

Then, the origins of (23), (33) and (40) are 
exponentially stable. Besides, let ߗ௩೔be a compact 
subset of ߁௩೔,where ߁௩೔ ⊂  ௩೔, is the region of attractionܦ
of the autonomous system ሺ݀ݒ௜/݀߬௜ሻ ൌ െ݊݃݅ݏሺ߲ܳ௜/
,୧ሻܳ௜ሺ0ߙ߲ ,୧̅ାଵ,଴ݖ ୧ݒ ൅ ݄௜ሺ0, ௜̅ାଵ,଴ݖ ௜̅ାଵ,଴ሻሻwithݖ ൌ
ሾݖଵ,଴, … , ௭̅೙ߗ ௜ାଵ,଴ሿ்.Then, for each compact subsetݖ ⊂
ܶ and ∗ߝ ௭̅೙, there exist a positive constantܦ ൐ 0 such 
that for all ݐ ൒ ௜̅ାଵ,଴ݖ , 0 ∈ ௜,଴ߙ ,௭̅೔శభߗ െ ݄௜ሺ0, ௜̅ାଵ,଴ሻݖ ∈
௩೔ and 0ߗ ൏ ߝ ൏  the system of (9), (20), (30) and ,∗ߝ
(37) has the unique solution ݔො௜,ఌ೔ሺݐሻ, ݅ ൌ 1,… , ݊  on 
ሾ0,∞ሻ, and ݔොଵ,ఌభሺݐሻ ൌ ሻݐ௥ሺݕ ൅ ܱሺߝଵሻ holds uniformly 
for ݐ ∈ ሾܶ,∞ሻ. 

Proof: For the use of Tikhonov’s theorem, it should be 
verified that the conditions in our theorem satisfy 
assumptions (A1), (A2) and (A3) in Tikhonov’s 
theorem. First, Assumption (B1) directly implies that 
Assumption (A1) holds. Second, we can show easily 
that Assumption (A2) holds because the origins of the 
reduced system (22), (32) and (39) are exponentially 
stable equilibrium points, that is, ‖ݖ௡̅ሺݐሻ‖ ൑
ฮݖ௡̅,଴ฮ݁ି௪బ௧ for t ൒ 0 and for some ݓ଴ ൐ 0 where 
௡̅,଴ݖ ൌ ሾݖଵ,଴, … ,  ௡,଴ሿ். From the converse Lyapunovݖ
theorem, there exists a Lyapunov function ௖ܸ such that 

௡̅‖ଶݖ‖ଵݓ ൑ ௖ܸሺݐ, ௡̅ሻݖ ൑                                  ௡̅‖ଶݖ‖ଶݓ
డ௏೎
డ௧
ሺݐ, ௡̅ሻݖ ൅

డ௏೎
డ௭̅೙

ሺݐ, ௡̅ݖܥ௡̅ሻݖ ൑ െݓଷ‖ݖ௡̅‖ଶ                  (44) 

where ݓଵ, ݓଶ, ݓଷ are positive constants and ܥ ൌ
diagሾെܿଵ, . . . , െܿ௡ሿ denotes a diagonal matrix. We note 
that any positive ܿ can be chosen in Assumption (A2), 
and so ߗ௭̅೙ ⊂ ൛ݖ௡̅ ∈ ௡̅ሻݖଵሺݓ|௭̅೙ܦ ൑ ,ܿߩ 0 ൏ ߩ ൏ 1ൟ can 
be any compact subset of ܦ௭̅೙. 

Finally, we show that assumption (A3) holds. The 
exponential stability of the boundary layer system (23), 
(33) and (40) can be easily obtained locally by 
linearization with respect to ݒ௜. Using Assumption 2 and 
(B2) yields 

sign ቀ
డொ೔
డఈ೔
ቁ ൌ sign ቀ

డ௙೔
డఈ೔
ቁ ൐ 0                                      (45) 

sign ቀ
డொ೙
డ௨
ቁ ൌ sign ቀ

డ௙೙
డ௨
ቁ ൐ 0								                              (46) 

This implies that the boundary layer system has a 
locally exponentially stable origin. Therefore, we can 
apply Tikhonov’s theorem. Accordingly, for each 
compact subset ߗ௭̅೙ ⊂  ௭̅೙, there exist the constantܦ
∗௜ߝ ൐ 0 and ܶ ൐ 0	such that for all ݐ ൒ 0 and ݖ௜̅ାଵ,଴ ∈
௜,଴ߙ ,௭̅೔శభߗ െ ݄௜ሺ0, ௜̅ାଵ,଴ሻݖ ∈ ௩೔ and 0ߗ ൏ ߝ ൏  the ,∗ߝ
system of (9), (20), (30) and (37) has the unique 
solution ݔො௜,ఌ೔ሺݐሻ	, ݅ ൌ 1,… , ݊ on ሾ0,∞ሻ, ݔොଵ,ఌభሺݐሻ ൌ
ሻݐ௥ሺݕ ൅ ܱሺߝଵሻ holds uniformly for ݐ ∈ ሾܶ,∞ሻ. 
 
5  Simulation Results 

In this section, a simulation example is presented to 
show effectiveness of the proposed control approach. To 
compare our proposed approach with the designed 
control in [15], the following system already discussed 
in [15] is considered  

ሶଵݔ ൌ ଵݔ ൅	ݔଶ ൅
௫మయ

ଶ
  

ሶଶݔ ൌ ଶݔଵݔ ൅ ݑ	 ൅
௨య

଻
                          

ݕ ൌ 	ଵ                                                                        (47)ݔ
The control object is to synthesize a control law ݑ 

for pure feedback system (47) such that the output of 
system (47) follows the desired reference trajectory ݕ௥ 
generated from the van der Pol oscillator described by 

ሶௗଵݔ ൌ   ௗଶݔ

ሶௗଶݔ ൌ െݔௗଵ ൅ ሺ1ߚ െ             ௗଶݔௗଵଶሻݔ

௥ݕ ൌ  ௗଵ                                                                     (48)ݔ
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which yields a limit cycle trajectory when ߚ ൐ ߚ) 0 ൌ
	0.2 in the simulation) for initial states starting from 
points other than ሺ0, 0ሻ. Let ݔௗଵሺ0ሻ 	ൌ 	0.5	and 
ௗଶሺ0ሻݔ 	ൌ 	0.8. Note that ݔଶ is immeasurable. The 
initial conditions are chosen as ݔଵሺ0ሻ ൌ 	0.5, ଶሺ0ሻݔ ൌ
	0, ොଵሺ0ሻݔ ൌ 	0, ොଶሺ0ሻݔ 	ൌ 	0, and the design parameters 
for the proposed control system are adopted as follows: 
݇ଵ ൌ 5, ݇ଶ ൌ 6, ଵߝ ൌ ଶߝ ൌ 0.01. The simulation results 
are shown by Figures 1–4. 

From Fig. 1, we can see that fairly good tracking 
performance is obtained. After a short transient process 
the output tracks the reference input at a high precision. 
Figures 2 and 3 demonstrate the prediction results 
between the system states and state estimation. Figure 4 
shows the control input.These figures reveal that the 
proposed approach has the good control and prediction 
performance regardless of  immeasurable states and 
non-affine property of the system. In addition, note that 
the states and the control input in the controlled closed-
loop system are bounded. 
 
 

 
Fig. 1 ݔଵ (dash-dotted) and ݕ௥ (solid line). 
 

 
Fig. 2 ݔଵ	(dash-dotted) and ݔොଵ (solid line). 

 
Fig. 3 ݔଶ	(dash-dotted) and ݔොଶ (solid line). 
 

 
Fig. 4 Control input ݑ. 
 

In this part, control performances between the 
proposed approach in this paper and the two mentioned 
cases in [15] are compared. For this purpose, define the 
performance indexes of the observer errors as ܫଵ ൌ
∑ ଵሺ݇ሻݔ| 	െ 	|ොଵሺ݇ሻݔ
௡
௞ୀଵ and ܫଶ ൌ ∑ ଶሺ݇ሻݔ| 	െ

௡
௞ୀଵ

 .The tracking error and control indexes are	ොଶሺ݇ሻ|ݔ
defined as ܫଷ ൌ ∑ ሺ݇ሻݕ| 	െ |	௥ሺ݇ሻݕ

௡
௞ୀଵ  and ܫସ ൌ

∑ ௡	ሺ݇ሻ|ݑ|
௞ୀଵ , where ݊ is the number of sampling data. 

The tracking error, observer errors and control indexes 
are calculated from 0 to 50s with a sampling period of 
1s. From results discussion for two cases in [15], it was 
concluded that the faster convergence rates of the 
tracking and the observer errors are, the larger control 
energy is. However, according to Table 1, in our 
proposed approach all of indexes are smaller than in 
case 1. In the other words, it is not necessary to cost 
larger control energy to have smaller tracking error and 
observer errors. Therefore, in comparison to [15] with 
lower complexity and fewer design parameters, the 
reasonable results are obtained in this paper. 
Furthermore, the implementation of the controller is 
much simpler than in [15]. 
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Table 1 Performance comparisons between proposed 
approach in this paper and the two cases in [15] with the 
tracking error, observer errors and control indexes. 

Performance 
comparisons 

Case 1[15] Case2 [15] 
Proposed 
approach 

 ଵ 2.141 15.632 0.672ܫ

 ଶ 3.375 12.589 0.467ܫ

 ଷ 1.811 2.070 0.669ܫ

 ସ 81.342 41.132 66.397ܫ

 
 
6  Conclusion 

In this paper, an output feedback control approach 
has been developed for completely non-affine pure-
feedback systems with immeasurable states. A state 
observer has been designed to estimate the 
immeasurable states. The backstepping and singular 
perturbation concept has been combined to design the 
virtual / actual control laws. The proposed control 
approach can overcome the non-affine property of pure-
feedback systems with lower complexity and fewer 
design parameters. The stability proof is carried out by 
Tikhonov’s theorem in singular perturbation theory. The 
simulation results show the good control and tracking 
performance of the system regardless of immeasurable 
states. 
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