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Abstract: In this paper, we propose a new chaos-based communication scheme using the 

observers. The novelty lies in the masking procedure that is employed to hide the 

confidential information using the chaotic oscillator. We use a combination of the addition 

and inclusion methods to mask the information. The performance of two observers, the 

proportional observer (P-observer) and the proportional integral observer (PI-observer) is 

compared that are employed as receivers for the proposed communication scheme. We 

show that the P-observer is not suitable scheme since it imposes unpractical constraints on 

the messages to be transmitted. On the other hand, we show that the PI-observer is the 

better solution because it allows greater flexibility in choosing the gains of the observer and 

does not impose any unpractical restrictions on the message. 
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1 Introduction 1 

There has been a growing interest in the problem of 

synchronisation of chaotic systems for secure 

communication purposes over the last decade. Being 

fundamentally broadband, the presence of information 

signal does not necessarily change the properties of the 

transmitted modulated chaotic carrier signal. Although 

it offers an advantage from a security viewpoint, the 

output power remains constant regardless of the 

information content (or lack of it). Note that, when a 

chaotic signal is adopted as a carrier, the unmodulated 

bandwidth is infinite (or it is clearly a broadband) 

compared to a conventional narrowband sinusoidal 

based carrier signal. Indeed, several chaotic 

communication schemes have been developed using 

different techniques including the method via 

addition/masking [1-6], chaotic shift keying [3, 7], 

chaotic modulation [3, 8] or inclusion [3, 9-11] etc. The 

classical masking technique where the message is added 

to the output of the chaotic oscillator or transmitter is 

illustrated in Fig. 1. This method of masking is 

sometimes known as the chaotic masking or masking by 
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addition or simply the addition method [2]. In this 

scheme a message signal )t(m  is superimposed on to 

the chaotic carrier signal )t(y  before being transmitted 

over a communication channel. At the receiver, an 

observer is used to generate an estimate )t(ŷ  of )t(y  

from the received signal m(t)y(t)(t)y
t

+= . This 

implies that a certain degree of robustness must be 

exhibited by the observer in generating the estimated 

output )t(ŷ  since it is excited by the masked signal 

)t(y
t

 which obviously provides only partial 

information about the carrier signal )t(y . 

This implies that )t(m should not be of too high 

amplitude and should be at least 20 to 30 dB lower than 

)t(y [2]. As a result one drawback of this method is that 

it is difficult to retrieve the message if channel noise 

power is of the same order to that of the message power. 

One important criterion of the masking method is such 

that the strange attractor of the oscillator is not modified 

by the message. A message recovery module is used to 

recover )t(m , which performs the following 

subtraction: 

 

ˆ ˆm (t) y (t) y(t) y(t) y(t) m(t)
r t

= − = − += − = − += − = − += − = − +  (1) 

 

Here we have assumed that the channel is ideal and 

noise free hence )t(y
t

≈ )t('y
t

. The observer is 

generally designed such that 0)t(ŷ)t(ylim
t

→−
+∞→

. As a 

result, the difference )t(m)t(ŷ)t(y)t(
rt

=−=ξ  will
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asymptotically converge to )t(m . Obviously, if )t(ŷ  

converges exponentially to ),t(y  then we will have a 

better convergence between )t(m
r

 and )t(m . However, 

it has been shown that the above scheme is not perfectly 

secure [12-14]. In effect, it has been made known that 

this method of masking is sensitive to the external 

attack. Parameter modulation technique can be 

employed but it is shown to be insecure as well [15]. 

One alternative scheme to overcome this problem is 

to employ the method of inclusion [3, 10, 11, 16, 17] as 

illustrated in Fig. 2. In this method the message is either 

included in a state or the derivative of the state of the 

chaotic oscillator while a different state is used as the 

transmitted signal. This method has been proven to be 

more secure than the chaotic masking by addition 

scheme because it uses the message to modify the 

strange attractor of the chaotic oscillator. Also the 

transmitted state does not carry any information of the 

message or key. This signal is used only to synchronize 

with the oscillator at the receiving end to generate the 

key. Care should be taken so that the inclusion of the 

message does not disturb the chaotic regime of the 

oscillator and bring it to a normal periodic motion. 

However, with the inclusion method the message 

recovery becomes more difficult since it requires a 

inverse system at the receiving end [10, 16]. This 

problem is regarded as left invertible problem. 

To address the above two issues, we propose the 

hybrid inclusion and the chaotic masking technique as 

illustrated in Fig. 3. In this scheme, the message signal 

actually drives the chaotic oscillator in addition to being 

superimposed on to the chaotic carrier signal. We 

compare the effectiveness of the above schemes by 

using a class of chaotic oscillators. We study the effect 

of employing two different observers at the receiver; 

namely a proportional observer (P-observer) and a 

proportional integral observer (PI-observer) [18]. We 

show that the P-observer does not work properly for this 

particular oscillator. In effect, a residual term is always 

present in the error dynamics of the observer, which 

implies that the convergence of the observer is only 

asymptotic. Also, the inclusion of the message signal 

changes the chaotic regime of the oscillator into a 

normal periodic behaviour. 

On the other hand we show that the PI-observer is 

the most adequate solution for this scheme when using 

the Duffing oscillator. The gain of the PI-observer can 

be chosen in such a way that the effect of the message 

signal is negligible in the error dynamics. Simulations 

are carried out to support the above argument and to 

show the performance of both observers. In Section 2 

details are described for the observer based chaotic 

communication systems using the P-observer and the 

PI-observer. Also, the message recovery procedure is 

described mathematically and the simplicity of using a 

hybrid system to recover the message signal is shown. 

Simulations are carried out for both observers using the 

Duffing oscillator and the performance are compared 

and presented in Section 3. Finally, concluding remarks 

are outlined in Section 4. 

 

2 Main Methodology 

There are number of possible methods that have 

been developed for synchronization in chaotic 

communications. In the masking method, 

synchronization is achieved by simply if the conditional 

Lyapunov exponents for the systems are negative for the 

given operating parameters. Thus, one could simply 

recover the message signal from the received chaotic 

signal through by means of a subtraction at the receiver. 

This synchronization is robust against small 

perturbations of the carrier signal. In the chaotic 

modulation method the message signal becomes part of 

the dynamics, which is more robust because of the 

greater symmetry between chaotic oscillator and 

response. In the chaos shift keying technique the 

message information is encoded onto the attractor by 

means of modulating a parameter of the chaotic 

oscillator, typically in a binary manner. In all these three 

schemes synchronization is an obvious way of 

recovering the original information. In this section, the 

proposed observer-based chaotic synchronization 

scheme for a secure communication link, illustrated by 

Fig. 3, is described. 

We assume that the transmitter is a chaotic system 

described by: 

 





= Cx

hBAxx

y

)t()y(f ++++++++====�
 (2) 

 

where nR∈∈∈∈x , Ry∈∈∈∈ , f  is a smooth function and h is 

the forcing function. The matrices A, B and C are of the 

following form: 
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For simplicity, we have considered only one non 

linearity to clarify the design procedure. Note that many 

chaotic systems, if not of the above form, can be 

transformed into it by a change of variable. However the 

Duffing oscillator is already of the above form. 
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Fig. 1 A schematic block diagram of chaotic masking system. 

 

 

 

 
Fig. 2 Schematic block diagram of chaotic inclusion method. 

 

 

 

 

Fig. 3 A block diagram of the hybrid chaotic masking and inclusion method. 

 

 

 

2.1  Masked System 

According to the proposed scheme, the masked 

system is described as:  

 





=

+

)t(mdy

)t(m)t()
t
y(f

0t
++++

++++++++====

Cx

BhBAxx�
 (4) 

 

Note, that the message is located in the last row; i.e. 

on the derivative of the state variable 
n

x . 

 

2.2  Proportional-Observer-Based Scheme 

A classical Luenberger type observer for the masked 

system (4) is given by: 

 

tptp

.

tpt

.

y)t()y(fˆ)(ˆ

)ˆy()t()y(fˆˆ

KhBxCK-Ax

xCKhBxAx

+

−+

++++++++====

++++++++====
 (5) 

 

where the gain Kp is chosen such that the matrix  

(A – KpC) is stable so that the error converges to zero as 

we will see later. 

We shall show that Eq. (5) is an asymptotic observer 

for Eq. (4). In effect, let xxe ˆ−−−−=  be the error between 

real and estimated states. Then, the error dynamics is 

given by: 

 

( ) ( )
)t(m)(

)t(md

)ˆ)t(md()t(m

)ˆy()t(m

p

0pp

0p

tp

EeCKA

KBeCKA

xCCxKBAe

xCKBAee

+−=

−+−=

−−+=

−−+=

++++

�

 (6) 

 

Ideally, we would like to choose such that in order to 

eliminate the influence of the message on the error 

dynamic e� . This is mainly because the message here is 

seen as a 'noise' which is affecting the convergence of 
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the error to zero. However, if 
1

0p
d

−= BK  then it is not 

possible to arbitrarily choose the eigen values of the 

matrix CKA
p

−  so that the latter is stable. 

Consequently, one has to choose 
p

K  judiciously such 

that the matrix CKA
p

−  is stable while at the same 

time reducing the influence of m(t). It is clear that one 

cannot achieve exponential convergence of the error to 

zero with the proportional observer. Only asymptotic 

convergence to zero can be achieved, therefore the 

message is retrieved by performing the following 

difference: 

 

t 0
ˆ ˆy (t) y(t) y(t) y(t) d m(t) (t).ξ− = − + =− = − + =− = − + =− = − + =  (7) 

 

Since 0)t(ŷ)t(ylim
tt

t
→−

∞→
, we have: 

 

)t(
r

m

0
d

)t(
)t(m =

ξ
≈  (8) 

 

We shall see next that the PI-observer provides a 

better solution in terms of much reduced influence of 

the message signal on the error dynamics. 

 

2.2  Proportional-Integral Observer-Based 

Scheme 

Fig. 4 depicts a block diagram of PI-observer based 

communication systems, where an integrator s
-1
 is 

placed at the receiver side. As shown in figure, both the 

transmitted message and its integrated version are 

applied to the chaotic receiver in order to provide an 

estimate of the state of the oscillator. To design the PI-

observer, we set (((( ))))t

0 t I0
x y d yτ τ= == == == =∫∫∫∫ . In other words 

).t(mdxyx
01t0

+==�  We then have the following 

augmented system: 
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t

010
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 (9) 

 

A PI-observer for the above system is given by: 

 

)x̂y()ˆy()t()y(fˆˆ

)x̂y(k)x̂y(lx̂x̂

0Itpt

.

0I01t010

.

−+−+

−+−+=

I
LxCKhBxAx ++++++++====

(10)

where 
p

K  and 
I

L  are the proportional gain and the 

integral gain, respectively. It should be noted that 

channel is considered to be ideal with unity gain and 

noise free in Eq. (10). 

We will show that Eq. (10) is an asymptotic 

observer for Eq. (9) but offering greater flexibility with 

regards to the choice of the gains compared to the 

proportional observer. For this, let xxe ˆ−−−−=  and 

000
x̂xe −= . Then, the error dynamics is given by:  

 

)x̂y()ˆx̂y()t(m

)x̂y(l)x̂y(k)t(mdee

0II1tp

0I01t0010

−−−−+=

−−−−+=

LxCKBAee�

�
 (11) 

 

After replacing 
t
y  and 

I
y  by their expression, we 

get: 

 

0I01p

00010010

e))t(mde()t(m

el))t(mde(k)t(mdee

LKBAee −+−+=

−+−+=

�

�
 (12) 

 

After simplification, we obtain: 

 

( ) ( )
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0010000
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We now choose the gains as follows: 
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We then obtain: 
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The main idea here is to make the error dynamic less 

dependent on the message as much as possible. 

However, one could not choose 1k
0
=  this is because 

the first equation of augmented system Eq. (9) will be 

independent from the remaining equations; hence 

making it impossible to choose 
I

L  in order to stabilise 

the overall augmented system. 

The Eq. (13) can be written in the matrix form as 

follows: 
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where [ ]0010C �= . 
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Fig. 4 A block diagram of PI-observer based scheme. 

 

 

We can now choose 
I

L  such that the matrix F is 

stable. Also, we can choose ε  and 
0
d  to be small in 

order to diminish the effect of m(t) on the error 

dynamics. As before, when the convergence is achieved, 

the message is retrieved by calculating the following 

difference equation: 

 

).t()t(md)t(ŷ)t(y)t(ŷ)t(y
0t

ξ=+−=−  

 

Again, since 0)t(ŷ)t(ylim
t

→−
+∞→

, we can have: 

0 r
m(t) (t) d m (t)ξ≈ =≈ =≈ =≈ =  (17) 

 

We can see that the PI-observer scheme offers more 

flexibility on the choice of gains in order to deal with 

the effect of m(t) on the error dynamics. This will be 

demonstrated with an example using the Duffing 

oscillator in the next section. 

 

3 Application Using the Duffing Oscillator 

In this section, we shall compare both P and PI-

observer-based synchronization schemes described in 

Fig. 4 when using the Duffing oscillator as the drive 

system, which is described by [4]: 

 

1 2

3

2 1 1

x x

x x 4 x 11cos t

====
 = − − += − − += − − += − − +

����

����
 (18) 

We assume that the state variable 
1
x  is measured, 

i.e. the output equation is 
1
xy =  so that the system can 

be written in a matrix form as: 

 

f (y) (t)

y

= + += + += + += + +
 ====

x Ax B h
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����
 (19) 

where 
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A B C
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 (20) 

Therefore, this system is in the form described by 

Eq. (2). 

Here the masked system is given by:  

 

1 2

3t

2 t

t 1 0

x x

y
x y 11cos t m(t)

4

y x d m(t)

====
 = − − + += − − + += − − + += − − + +


= += += += +

����

����  (21) 

 

Note that m(t) is present in the derivative of the 

second state variable 
2

x  and the output of the system 

)t(y
t

. The masked system can be written in matrix 

form as: 

 





=

+

)t(mdy

)t(m)t()y(f
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t

++++

++++++++====

Cx

BhBAxx�
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3.1  P Observer-Based Scheme 

Using the methodology described above, a classical 

Luenberger type observer for the masked system Eq. 

(22) is given by: 

 

)ˆy()t()y(fˆˆ
tpt

.

xCKhBxAx −+++++++++====  (23) 

 

where the gain ( )T
21p

kk====K  is chosen such that the 

matrix ( )CKA
p

−  is stable. More precisely, we have: 

.

1 2 1 t 1

.
3

2 t t 2 t 1

ˆ ˆ ˆx x k (y x )

ˆ ˆx y 4 y 11cos t k (y x )

 = + −= + −= + −= + −

 = − − + + −= − − + + −= − − + + −= − − + + −

 (24) 

 

3.1.1 Results 

A simulation of the above observer and the message 

recovery method was carried out using Matlab and 

Simulink. The poles of the observer were set as 

21
p1.0p =−=  so that 2.0k

1
=  and .01.0k

2
=  

Therefore, 100kd 1

20
−=−= −  In addition, we have used 

the following numerical values: 0)0(x)0(x
21

== , 

0)0(x̂
1

=  and 1.0)0(x̂
2

= . The message consisted of a 
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set of a sinusoidal signal of amplitude and frequency of 

0.1 V and 10 Hz, respectively. Using equations (21) and 

(24) the proposed scheme was simulated using Matlab 

Simulink as shown in Fig. 5. Fig. 6 depicts the profile of 

the output )t(y
t

 of the oscillator. We can readily see 

that with the inclusion of the message within the 

oscillator, there is no longer a chaotic regime. Fig. 7 

shows the attractor after including the message signal 

and it can be seen that the attractor of the Duffing 

oscillator has been totally modified and is no longer 

operating on a chaotic mode. Fig. 8 illustrates the 

original and the recovered (dotted lines) message 

signals. The effect of )t(mE  given in Eq. (6) on error 

dynamics can readily be seen on the message recovery. 

This is because the term )t(mE  is still non-zero having 

a real value. The best scenario would be to make 

)t(mE equal to zero, however by doing so the degree of 

freedom will be lost and the whole point of designing 

the observer will make no sense. Also, if )t(mE  is 

chosen to be zero, then A matrix of the chaotic 

oscillator should itself be stable for error dynamics 

converging to 0. However, the effect can be minimized 

by choosing high value of d0. 

 

 

 
 
Fig. 5 A schematic Simulink block diagram of P-observer based system. 

 

 

 

 
Fig. 6 Transmitter oscillator output yt(t) waveform for P-observer. 
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Fig. 7 Strange attractor of Duffing Oscillator with P-observer. 

 

 
Fig. 8 Input and recovered message signals for P-observer. 

 

 
The other main problem with the P-observer is that 

amplitude of m(t) affect the chaotic behaviour of the 

oscillator which is due to the requirement to choose 

high value of d0 in order to remove the influence on 

error dynamics. To recover back the chaotic behaviour 

of the oscillator, the amplitude of m(t) needs reducing 

significantly; more than 100 times although it is not 

shown here. Hence, the above communication scheme 

cannot operate properly in practice if a proportional 

observer is employed as a receiver since it enforces 

impractical constraint on the message to be transmitted. 

In the next section we show that the PI-observer is the 

more suitable observer for the proposed communication 

scheme. 

3.2  PI-Observer-Based Scheme 

Following the PI-observer methodology described 

above, we set ( )
It

t

00
ydyx =ττ∫= . 

In other words ).t(mdxyx
01t0

+==�  We then have 

the following augmented system:  
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The PI-observer for the above system is given by: 

 

.
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.
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.
3

2 t t 2 0 0 2 t 1
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Using the gains in (14), we have: 

(((( ))))
.
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.
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.
3

2 t t 2 0 0 0 t 1
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 (27) 

And ( )T
210
lll  is chosen such that the overall 

error dynamics is stable. 

 

 

Fig. 9 A block diagram of Simulink implementation of PI-observer based system. 

 

 

 

 
 

Fig. 10 Transmitter oscillator output yt (t). 
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3.2.1 Results 

For simulation purposes we have chosen 

01.0d
0

=ε=  so that 99.0k
0
=  and .100k

2
=  In 

addition 0)0(x)0(x)0(x
210

=== , 0)0(
1
x̂)0(

0
x̂ ==  

and 1.0)0(x̂
2

= . The poles of the observer are all set at 

1.0p =  so that ,3.0l
0
= 7.99l

1
−= and 99.29l

2
−= . As 

before, the message consisted of a set of a sinusoidal 

signal of amplitude and frequency of 0.1 V and 10 Hz, 

respectively. Equations (25) and (26) were adopted for 

Matlab Simulink simulation as shown in Fig. 9. Fig. 10 

shows the transmitter oscillator output )t(y
t

waveform. 

Here we can see that the chaotic regime is maintained 

and the transmitted signal is scrambled and not 

discernible. Fig. 11 depicts the strange attractor of the 

oscillator after the inclusion of message signal 

illustrating how the states evolve over time in a complex 

and and non-repetitive pattern. Both the input and the 

recovered message waveforms with very little delay are 

shown in Fig. 12. Once the observer has completed 

synchronisation it estimates, with very reasonable 

accuracy, the message signal. The synchronization time 

can be predetermined for a set of design parameters and 

the effect of this in message recovery can be removed 

by transmitting the message only after this time period. 

It is important to note that the improved performance 

offered by this scheme compared to the proportional 

observer is due to the PI-observer that allows choosing 

the proportional and integral gains fairly independently. 

In effect, with the P-observer, the gain has to deal with 

the stability of the error dynamics as well as to reduce 

the effect of the message on the error dynamics. Hence 

there is too much constraints imposed on the sole 

proportional gain. On the other hand, with the PI-

observer the integral gain is used to deal with the 

stability of the error dynamics while the proportional 

gain is used to reduce the effect of the message signal 

on the error dynamics. 

Fig. 13 depicts the power spectral density of the 

recovered message at 10 Hz using P and PI observers. 

The faithful recovery of the signal is evident by a 

low level of harmonic distortion (~50 dB). For PI-

observer the output signal is marginally better than the 

P-observer. 

Next we investigate the performance of the proposed 

hybrid method and PI-observer in a noisy channel. For 

this purpose a message signal m(t) = sin(t) is used. The 

chaotic carrier generated using Eq. (26) is passed 

through the additive white Gaussian noise (AWGN) 

channel having different signal-to-noise ratio (SNR) of 

25, 20 and 15 dB. At the receiver, following 

synchronization using PI-observer given in Eq. (28), an 

8
th
 order low pass Butterworth filter with a cut off 

frequency of 3 rad/sec is employed to reduce the noise 

power. To assess the synchronization behavior of a PI-

observer with AWGN, we plot the state x1h against the 

state of x1, see Fig. 14. The perfect 45
0
 line illustrates 

that full synchronization is still possible. This is because 

the integrator in the PI-observer generally tends to 

suppress the noise to a certain degree. Fig. 15 shows the 

recovered message signal for different values of SNR 

(i.e. 15, 20 and 25 dB). For SNR of 25 dB, there is a 

good match with input signal, whereas for lower values 

of SNR the recovered signal is rather distorted. In [19], 

for a practically viable chaotic cryptography scheme the 

recommended value of the SNR is 40 dB, whereas in 

[20] the value is increased to 70 dB well above what we 

have adopted in this work. Thus, the results presented in 

this paper demonstrate the potential of proposed chaotic 

scheme operating at relatively very low SNR. Further 

work is in progress to fully investigate the system 

performance for both analogue and digital 

communications. 

 

 
Fig. 11 Strange attractor with PI-observer. 
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Fig. 12 Input and recovered message signals using PI-observer. 

 

 

 

 

 
 

Fig. 13 Power spectral density of the recovered message for P and PI-observer. 
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Fig. 14 Plot of states x1h vs. x1 of transmitter and receiver respectively for PI-observer in noisy channel (SNR=25 dB). 

 

 

 

 

 
Fig. 15 Input and recovered message signals using PI-observer at different values of SNR. 
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4 Conclusions 

In this paper we have proposed a new chaos-based 

communication scheme based on the observers. The 

main novelty lies in the masking method employed. It 

uses a combination of the addition and inclusion method 

to mask the message mainly to facilitate the recovery of 

the message signal. We have compared two observers 

employed as a receiver for the proposed communication 

scheme namely: the proportional observer (P-observer) 

and the proportional integral observer (PI-observer). We 

have shown that the P-observer is not suitable for the 

proposed communication scheme since it imposes 

unpractical constraints on the messages to be sent if the 

communication has to be kept secure. On the other 

hand, we have shown that the PI-observer is the best 

solution since it allows greater flexibility in choosing 

the gains of the observer and it does not impose any 

unpractical restriction on the message signal. This is 

mainly due to the fact that, with the PI-observer, the 

integral gain is used to deal with the stability of the 

error dynamics while the proportional gain is used to 

reduce the effect of the message on the error dynamics. 

Finally, it is also shown that the proposed scheme can 

perform with an SNR >= 25 dB, thus demonstrating its 

practically feasibility.  
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