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Abstract: In this paper, we study rate region of a Gaussian two-way diamond channel
which operates in half- duplex mode. In the channel that we consider in this paper, Two
Transceiver (TR) nodes exchange their messages with the cooperation of two relay nodes.
We consider a special case of the Gaussian two-way diamond channels which is called
Compute-and-Forward Multiple Access Channel (CF-MAC). In the CF-MAC, the TR
nodes transmit their messages to the relay nodes which are followed by a simultaneous
communication from the relay nodes to the TRs. Adopting rate splitting method in the
terminal encoders and then using Compute-and-Forward (CF) relaying and decoding the
sum of messages at the relay nodes, an achievable rate region for this channel is obtained.
To this end, we use a superposition coding based on lattice codes. Using numerical results,
we show that our proposed scheme outperforms the other similar methods and achieves a

tighter gap to the outer bound.
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1 Introduction

Lattice structures are able to achieve the same rate
which are achievable by independent identically
distributed (i.i.d.) Gaussian random codes for
some AWGN networks such as point to point
channels [1], Multiple Access Channels (MAC)
[2], Broadcast Channels (BC) [3] and relay
networks [2]. Furthermore, lattice codes may also
be wused in achieving the capacity of Gaussian
channels with interference or state known atthe
transmitter [4]. Noticeably, in some scenarios, it
can be shown that lattice codes have a better
performance than random codes. In relay
networks, due to linearity of the lattice structures,
by using lattice codes it's possible to achieve
higher rate regions than i.i.d. random codes [2].
One of such relay networks that takesadvantage
of thislinearity is the Gaussian Two-Way Relay
Channel where two MSs communicate with each
other through a Relay Station (RS) [5].

The Gaussian Two-Way Relay  Channel
consists of two phases: MAC phase and BC phase.
Inthe MAC phase, instead of decoding the
codewords separately, relays can use nested lattice
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codesto decode the linear combination of them.
Afterward, in BC phase the sum of codewords can
be sent to obtain the desired message in each MS
since they can decode the received data using their
own messages as side information [5].

Based on the fact that lattice codes have the
best performance in order to achieve the sum of
messages, the best rate region for the Gaussian
two-way relay channel is established in [6]. In[7],
it is shown that bursty amplify-and-forward can
achieve the capacity region of the Gaussian N-
relay diamond channel withina constant gap
which is independent of channel gain. In[8], a
diamond network with conferencing links between
the relay nodes is considered and it is shown that a
scheme based on the amplify-and-forward
achieves rates which are closer to capacity region.
In [9], the capacity regions of two-way diamond
channels is studied. It is shown that fora linear
deterministic model [10], the capacity of the
diamond channel in eachdirection can be
simultaneously achieved for all valuesof channel
parameters. The Gaussian two-way diamond
channel has been studied in [11] and using lattice
codes some achievable rate-regions for different
protocols such as CF-MAC and CF-BC are
obtained. Based on rate-splitting and decoding the
sum of messages in therelay nodes, a rate-region
for the CF-MAC protocol is also obtained in [11].
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In this paper, we study a special case of the
diamond networks which is called the Gaussian
two-way diamond channel. In the channel we
consider in this paper, two TR nodes with the help
of two relay nodes aim to exchange their
messages. We consider the Gaussian two-way
diamond channel which operates in three phases
and is called Compute-and-Forward Multiple
Access Channel (CF-MAC), (as shown in Fig.1).
In this paper a new rate-region for this protocol is
obtained by using superposition coding for nested
lattice codes, although superposition coding has
been used in this channel previously but it was
based onrandom codes. In this type of coding, we
split the message of each node into two parts and
each transceiver sends one ofthem in different
phases.

The remainder of the paper is organized as follows.
System model is presented in Section 2. In Section 3,
we first review the preliminaries of lattice codes and
then analyze superposition coding based on nested
lattices. In Section 4 we present our proposed scheme.
By using numerical examples, achievable rate-regions
of different cooperative protocols are compared in
Section 5.

2 System Model

We consider the Gaussian two-way diamond
channel in which two users (nodes A and B)
exchange their messages with the help of multiple
relay terminals (nodes R; and R,) which operate in
half-duplex mode as shown in Fig. 1. By half-
duplex communication, we mean thateach node
can be in transmit or receive mode. Each TR node
only communicates through relay nodes, that is,
there is no direct link between TRs.

The m-th time slot is denoted by t, and the
symmetric CF-MAC protocol is modeled as:

Phaset: Y, =h, X0 +h, X + 20 o
Phase2: Y, =h, X +h, X +Z.7 )
Phase3: Y, =h, X&f‘) +h,, xSa) n ZS’) 3

Y, =h, X+, X+ Z ()

where x(jm) is the transmitted signal from node j in
phase m and is the received signal in node |j
(j efab,r,r,}). Also, zm is a zero-mean
Gaussian noise with unit variance, i.e.,
Z; ~N (0,2) inphase m and node j. All noise variables
are independent of each other and also independent of
the channel inputs. Besides, h, ,i e{ab},n e{1,2}
are the channel gains. Average power constraint applies

on the transmitted signals at node j and in the phase m
as:

~ ~ 8\
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Fig. 1 The Gaussian Two-way Diamond Channel Model.
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A code (2™,2"™ n) for the Gaussian diamond
channel consists of two sets of integers
W, ={2,..,2"™} for ie{ab}, four encoding
functions f; for j e{a,b,r,r,} and two decoding

functions g, and g,
Two sets of encoding function at the users A and B
are defined as:

X™ =1, (W, ©
Where the message of each user node i, can be splitted
into two parts, w, and W, -

Two sets of encoding relay functions at relay nodes
R; and R, are represented by:

XM =f,(Y,),Vj=i @)
Decoding functions at user nodes are given by:

Wang(wvab) (8)

\ivb :ga(Wa’Ya) (9)

The average probability of error for this system is
defined as:

Per| :Zie{a,b}Pr{VVi 7&vvl} (10)

Note that the condition P'—0 implies that
individual average error probabilities also go to zero.
We assume that the messages W, are chosen
independently and uniformly from the message sets W;.
A rate pair (R, Rp) is said to be achievable for the
Gaussian diamond channel if there exists a sequence of
codes (2™:,2"™ n) such that p" 0 as n—oo. The

corresponding capacity region is the convex closure of
all achievable rate pairs.

3 A Review of Nested Lattice Codes
3.1 Definitions
First, we give some definitions briefly [1, 2]. An n-

dimensional lattice A" is a set of points in the space
which are closed on the subtraction and addition
operations.
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By considering G as generator matrix of lattice A",
it can be constructed by:

A"={1=G.z:z2eZ"} (11)
where 7 is the set of integer numbers. Nearest
neighbor quantizer QA maps each point in the space to
the nearest lattice point.

Q,m (x)=argmin [|x —2{|. (12)

Fundamental voronoi region of lattice A" is all
points in the space that quantize to zero point of lattice

A" . Zero point belongs to all lattices and fundamental
voronoi region is given by:

Uy (A")={xeR": QA(n) (x) =0} (13)
Second moment of the lattice A" is defined as:

2
1 LS (14)

n I dx
v(A)

and the normalized second moment of lattice A" can
be presented as:

a?(A™)
2

cH(AM) =

_ot(") (15)
mwmﬁ Vo

where V is the volume of the voronoi region of lattice

A" . Lattice A" is good for quantization or Rogers-
good if:

G(A") =

limG (A™)=— o (16)

n—owo

Suppose that Z ~N (0,571, ), then the lattice A"
is good for AWGN coding or Poltyrev-good if:

’U(A’E)ZM>1 @an

2rec?

z

A Nested lattice consists of a coarse lattice and a
fine lattice. A coarse lattice A" is said to be nested in
fine lattice A™ if A™ cA™. v shows the

fundamental Voronoi region of lattice A" and a nested
lattice code can be defined as

C ={A,nv} (18)
The rate of a nested lattice code is given by
n n “Vol(y)

In [12], Erez, Litsyn and Zamir show that there
exists a sequence of lattices that are simultane- ously
good for packing, covering, source coding (Rogers-
good) and channel coding (Poltyrev-good). Before

presenting our scheme, we review the concept of
superposition coding based on lattice codes.

3.2 Superposition Coding for Lattice Codes
Consider the following nested lattices:
AJ S AG S AD AP (20)
The fine lattice A" provides the codewords, while

the coarse lattices A" and A{ satisfy the power

constraint. Based on this chain lattice, we define the
following codebook:

C ={AD A}, (21)
where their rates are given by
()
R, =log|C” -~ log o 2] (22)
n V ol (™)’

The meso-lattice [13] AS:) partitions the set of

codewords for node i into two parts. To clear this, we
define two additional codebooks as follows:

CM ={Al" N}, (23)
Ca ={Ay Nu}, (24)
where the associated coding rates are
Q)
R, = Liog(Lon )y (25)
n ol (v (”’)
Q)
R, = R/ol (o ) (26)
ol (u(”))

Now we can decompose each lattice codeword
V, ec™ by A into two points, V; and V,; such

that

Vi = [Vli + V2i ]mOd Agin); (27)
and

V, =V, modA? eCc”, (28)
Vy =[V, =V, Imod AP eC {7 (29)

4 The Proposed Scheme
In our proposed scheme, we use superposition
coding scheme based on lattice codes. That means node

i using meso-lattice AE:) partitions its lattice codeword,

V;, into two part: Vy; and Vy. In phase 1 and 2, each
node sends one of those parts. Then the relays by using
CF idea finds a linear combination of lattice codewords.
Finally, in phase 3, the relay nodes send those linear
combinations to TR nodes. Each TR node using its own
message as side information, recovers the desired
message. In the following, we explain encoding and
decoding at nodes in more details.

By calculating the optimum time slot durations, ty, t,
and t3, we can determine the codeword length in each
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phaseasn; =t/ T, n, =t,/ Tsand nz = t3 / T, where T
is the sampling interval. In the following, without loss
of generality, we assume that h_>h, . In order to apply

the rate splitting, we choose a chain of lattices as Eq.
(20), such that A®, AY and A are Rogers-good and

Poltyrev-good while A™ is Poltyrev-good. The
generation of these lattices is fully explained in [12].

4.1 Phase 1
4.1.1 Encoding in Phase 1
In order to node i sends its message, first splits it
such as, W, =W +W,,, i e{a,b}. Then, using a one to

one mapping, it maps message Wy; to lattice point Vy;
and message W,; to lattice point V. We suppose that hy;
= hy; = h;. Now, in this phase, node i communicates the
following signal over the channel:

1 n
Xi(l) = hi_[vn + Dli ] mod Agi”’ (30)

where Dy; is a dither that is uniformly distributed over
the Voronoi region of AlY, ie, D, ~Unif (u,)-
According to the channel power constraints, we choose
the second moment of lattice A as the following:

o?(Af)=h?P. (31)

4.1.2 Decoding in Phase 1
Now, from [5], we know that if

Ry <R%;, (32)
where

_2
h?+h?
and [x]" =max{0,x}, then we can estimate the
following linear combination correctly.
1= [Vla +Vy - Ql\sb (Vlb +Dy, )Imod Ag;l)' (34)

+h2P)]", (33)

1
R, £[=lo
1 [2 g(

4.2 Phase 2
Encoding and decoding in this phase is exactly
similar to phase 1. In this phase nodes A and B tries to
send lattice points V,, and Vy, to the relay node R, and
in the relay node, we decode a linear combination of

them. To end this, node i, ie{a,b}, sends the
following signal over the channel:
X i(2) = hi[vzi +D, Jmod ASZ)' (35)

where D, ~Unif (v;). Now we can decode the

following linear combination of lattice points V,, and

V,y, correctly.

T, =[V, +Vy —Q,, (Vy, + Dy, )Imod AZ?, (36)
If

R, <R”

2i — 2i

@37)

where R, =R";.

4.3 Phase 3
4.3.1 Encoding in the Relay Nodes
In this phase, the relay nodes R; and R, send T;
and T, to nodes A and B. To do this, the relay nodes
communicate the following signals over the channel:

X0 = [T, 4D, Jmod AL, (38)
X =hi[T2 +D,,]mod A", (39)

where D, ~Unif (v,) and D, ~Unif (v, ) Note that

based on the Crypto lemma, the power constraints in the
relay nodes are satisfied.

4.3.2 Decoding in the Node A
In the node A, based on the received signal,

Y, =h,X® +h, X + 78, (40)

We perform the following operations in order to
estimate message W,:

Y., =[aY,-D, =D, Imod A%?
= [ahaX(rf) + ahaXS) +azZ?®
-D, -D, Jmod A%Y

=[T+T,+ah, X +ah X -

(41)
(T,+D,)—(T,+D, ) +aZPImod ALY
=[T+T,+(a-)h,X @
+aZPTmod ALY
=[T,+T,+Zy Imod ALY,
where
= _ 3) _ (3)
Zo =l =D, X7 +(@=Dh, X, (42)

+aZ®1mod A1

sa !

and Eq. (41) follows from the distributive law for the
modulo operation and the modulo definition. Now,
since V, is available in the node 1, and thus V4, and V,
we can cancel the effect of them from Y g,.

Y, =[Y,, —V.]mod A§»
=[[T,+T,+Z,1mod A% —V_1mod AL»
=[[Vi + Vi —Q,, (V3 + Dy )] mod AS;) (43)
+Vou + Vo, =Qu (Vo + D) +Z —
Vla - VZa] mod Aglla)
= [Vm + Vzb + Zeff ] mod Agga) (44)
=[V, +Z,Imod A} (45)
where Egs. (43) and (44) are based on the fact that

ALY < ALY and the distributive law for the modulo
operation and Eg. (45) follows from the definition
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V, =[V,, +V,, Imod A§?. Now we use the minimum

Euclidean distance lattice decoding [1], [14] to estimate
Vi, correctly. Thus we get

V, =Q,, (Y;)mod ALY
= QAc (V, +Z, )mod Agt;a)’ (46)
From Eg. (46), we can see that the estimation is

incorrect if

Ly €0;. (47)
Eq. (47) shows that the estimation of V, is incorrect

if the effective noise Zg leaves the Voronoi region
surrounding the true codeword, i.e, P, =Pr(Z,, ¢uv,)- It

can be shown that [1], [14], the error probability
vanishes as n, — oo if

2
_ (Vol@®)™ (48)
2meVar(Z'y)
where z* -~ N (0,Var(Z, )) » Var(Z, ) = 2(a-1)°h?P +a*-
Since Aé”) is Poltyrev-good, the condition in Eq. (49) is

satisfied. To minimize the variance of effective noise
we  choose  g=2h’P/(2h’P+1)and  we  get

Var(Z,, ) =2h’P/(2h?P +1). Now, from Eq. (19) for Ry,
we have:

(n3)
Ry L Ioglt 05"
n3 OI( c : )

(A5

YITACHIY,

) (49)
G (A(na))(V0|(U(n3)))E

o (A(ng))
G (AgES))ZﬂeVar (Z)

=5 og(

) (50)

t
<Z3lo
< log(

(n3)
b gR/a 2(AS ) (51)
2 ar(Z )

_3 hZP

2 g&/ar(z ot )

2
2h?
where Eq. (50) follows from Eqs. (49) and (51) is based
on Rogers goodness of AQYY and the fact that

L Iog( +h?P),

G (At)> L. Thus, in order to find V, in node A, we
¥ 2ne

must have
b0 nzpy, (52)
2 7 2h?
L |og(2hz 2P), (53)

4.3.3 Decoding in the Node B
Using a similar decoding with decoding in node A,
we can find lattice point V, (and thus message W,) if

<Ly h2p), (54)
<5 g(2h2+ .P)

(55)

R < 2 2h2

Now, from Egs. (32), (37), (52), (53), (54) and (55)
and applying Fourier-Motzkin elimination, we can get
the following rate-region for the Gaussian two-way
diamond channel:

2

. . . . h
R, <min(({t,R,, +t,R,,), (t,R, Jr%log(—a

2hb2
+h?P)), t,R,, + ) (56)
23Iog( +h “P))),
R, <min(R; +4,RS ). (LR +t—3log
h2 h2
+h?P)), (R, + 3Io
(2ha2 N (t, 9(2hz
. (57)
+hZP)), (=2
o P)) (2 a
h? )
b
Iog(z—haz+ hy P))),
It should be noted that we assume

AL S AZ S ALY S A and of(A,) <0%(A)
for this lattice structure. In other case that the channel
between node B and Relays are better than the channel
between node A and Relays, lattice chain differs as
Al c ALY c AT < A" L In this case, R, and R,

constraints have the same equations as our first
scenario.

5 Numerical Result

In this section, we evaluate the performance of our
proposed method by numerical simulations. We
compare the achievable rate-region by our proposed
scheme based on lattice superposition coding with that
of [11] based on random superposition coding in Figs. 2
and 3. As we can see the achievable rate-region using
our proposed scheme is better that [11]. This is due to
the fact that using superposition coding with lattice
codes, we have significantly reduced the constraints
over rates and this yields to a better rate region. For two
cases of channel parameters our achievable rate region
becomes closer to the outer bound than [11].
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=== Random superpesition coding |
i === Outer bound i
=== Qur proposad scheme |

Fig. 2 Comparison between the ‘rate regions of our proposed
scheme with that of the proposed scheme in [11] and the outer

bound (Channel parameters are: h’P =15 and hZP =8).

== Random Superposition Coding
e Quter bound
s Quir proposed scheme

5 i i ; i i i i
0 02 0.4 0.6 0.5 1 12 4 16
R

a

Fig. 3 Comparison between the rate regions of our proposed
scheme with that of the proposed scheme in [11] and the outer

bound (Channel parameters are: h’P =8 and h?P =10).

6 Conclusion

In this paper, we studied the Gaussian two-way
diamond channel in half-duplex mode. Specially, we
considered the Gaussian two-way diamond channel
which operates in the CF-MAC protocol. Using lattice
codes, we obtain a new rate-region for this protocol and
as we saw this rate region is better than the obtained rate
region.
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