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On the Achievable Rate-Regions for the Gaussian Two-Way 
Diamond Channel 
 
 
F. Askarian*, S. M. Razavizadeh*(C.A.) and F. Haddadi* 
 
 
 

Abstract: In this paper, we study rate region of a Gaussian two-way diamond channel 
which operates in half- duplex mode. In the channel that we consider in this paper, Two 
Transceiver (TR) nodes exchange their messages with the cooperation of two relay nodes. 
We consider a special case of the Gaussian two-way diamond channels which is called 
Compute-and-Forward Multiple Access Channel (CF-MAC). In the CF-MAC, the TR 
nodes transmit their messages to the relay nodes which are followed by a simultaneous 
communication from the relay nodes to the TRs. Adopting rate splitting method in the 
terminal encoders and then using Compute-and-Forward (CF) relaying and decoding the 
sum of messages at the relay nodes, an achievable rate region for this channel is obtained. 
To this end, we use a superposition coding based on lattice codes. Using numerical results, 
we show that our proposed scheme outperforms the other similar methods and achieves a 
tighter gap to the outer bound. 
 
Keywords: Diamond Channel, Lattice Codes, Superposition, Two Way Relay. 

 
 
 
1 Introduction1 
Lattice structures are able to achieve the same rate 
which are achievable by independent identically 
distributed (i.i.d.) Gaussian random codes for 
some AWGN networks such as point to point 
channels [1], Multiple Access Channels (MAC) 
[2], Broadcast Channels (BC) [3] and relay 
networks [2]. Furthermore, lattice codes may also 
be used in achieving the capacity of Gaussian 
channels with interference or state known at the 
transmitter [4]. Noticeably, in some scenarios, it 
can be shown that lattice codes have a better 
performance than random codes. In relay 
networks, due to linearity of the lattice structures, 
by using lattice codes it's possible to achieve 
higher rate regions than i.i.d. random codes [2]. 
One of such relay networks that takes advantage 
of this linearity is the Gaussian Two-Way Relay 
Channel where two MSs communicate with each 
other through a Relay Station (RS) [5]. 

The Gaussian Two-Way Relay Channel 
consists of two phases: MAC phase and BC phase. 
In the MAC phase, instead of decoding the 
codewords separately, relays can use nested lattice 
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codes to decode the linear combination of them. 
Afterward, in BC phase the sum of codewords can 
be sent to obtain the desired message in each MS 
since they can decode the received data using their 
own messages as side information [5]. 

Based on the fact that lattice codes have the 
best performance in order to achieve the sum of 
messages, the best rate region for the Gaussian 
two-way relay channel is established in [6]. In [7], 
it is shown that bursty amplify-and-forward can 
achieve the capacity region of the Gaussian N-
relay diamond channel within a constant gap 
which is independent of channel gain. In [8], a 
diamond network with conferencing links between 
the relay nodes is considered and it is shown that a 
scheme based on the amplify-and-forward 
achieves rates which are closer to capacity region. 
In [9], the capacity regions of two-way diamond 
channels is studied. It is shown that for a linear 
deterministic model [10], the capacity of the 
diamond channel in each direction can be 
simultaneously achieved for all values of channel 
parameters. The Gaussian two-way diamond 
channel has been studied in [11] and using lattice 
codes some achievable rate-regions for different 
protocols such as CF-MAC and CF-BC are 
obtained. Based on rate-splitting and decoding the 
sum of messages in the relay nodes, a rate-region 
for the CF-MAC protocol is also obtained in [11]. 
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By considering G as generator matrix of lattice nΛ , 
it can be constructed by: 

{ . : }n nz zλΛ = = ∈G ]                                          (11) 

where ]  is the set of integer numbers. Nearest 
neighbor quantizer QΛ  maps each point in the space to 
the nearest lattice point. 

( ) ( ) arg min || || .nQ x x
λ

λ
Λ ∈Λ

= −                                  (12) 

Fundamental voronoi region of lattice nΛ  is all 
points in the space that quantize to zero point of lattice 

nΛ . Zero point belongs to all lattices and fundamental 
voronoi region is given by: 

( )0 ( ) {x : ( ) 0}n
n n Q xυ

Λ
Λ = ∈ =\                             (13) 

Second moment of the lattice nΛ  is defined as: 
2

( )2 ( )

( )

|| ||1( )n
x dx

n dx
υ

υ

σ Λ

Λ

Λ =
∫
∫

                                      (14) 

and the normalized second moment of lattice nΛ  can 
be presented as: 

2 ( ) 2 ( )

2 2

( )

( ) ( )( )
[ ]

n n
n

n n

G
dx V

υ

σ σ

Λ

Λ Λ
Λ = =

∫
                              (15) 

where V is the volume of the voronoi region of lattice 
nΛ . Lattice nΛ  is good for quantization or Rogers-

good if: 

( ) 1lim ( )
2

n

n
G

eπ→∞
Λ =                                                     (16) 

Suppose that 2(0, )z nZ N σ I∼ , then the lattice nΛ  
is good for AWGN coding or Poltyrev-good if: 

2

2

( ( ))( , ) 1
2

n

z

Vol
e
υμ ε

π σ
Λ = >                                                (17) 

A Nested lattice consists of a coarse lattice and a 
fine lattice. A coarse lattice nΛ  is said to be nested in 
fine lattice ( )

1
nΛ  if ( ) ( )

1
n nΛ ⊆ Λ . υ  shows the 

fundamental Voronoi region of lattice nΛ  and a nested 
lattice code can be defined as 

1{ }C υ= Λ ∩                                                             (18) 

The rate of a nested lattice code is given by 

1

1 1 ( )log | C | log
( )

V olR
n n V ol

υ
υ

= =                                  (19) 

In [12], Erez, Litsyn and Zamir show that there 
exists a sequence of lattices that are simultane- ously 
good for packing, covering, source coding (Rogers-
good) and channel coding (Poltyrev-good). Before 

presenting our scheme, we review the concept of 
superposition coding based on lattice codes. 
 

3.2  Superposition Coding for Lattice Codes 
Consider the following nested lattices: 

(n) (n) (n) (n)
sa sb m cΛ ⊆ Λ ⊆ Λ ⊆ Λ                                      (20) 

The fine lattice (n)
cΛ  provides the codewords, while 

the coarse lattices (n)
saΛ  and (n)

sbΛ  satisfy the power 
constraint. Based on this chain lattice, we define the 
following codebook: 

( ) ( ) ( ){ },n n n
i c siC υ= Λ ∩                                               (21) 

where their rates are given by 
( )

( )
( )

( )1 1log | C | log .
( )

n
n si

i i n
c

VolR
n n Vol

υ
υ

= =                              (22) 

The meso-lattice [13] (n)
mΛ  partitions the set of 

codewords for node i into two parts. To clear this, we 
define two additional codebooks as follows: 

( ) ( ) ( )
1 { },n n n

c mC υ= Λ ∩                                               (23) 
( ) ( ) ( )
2 { },n n n

i m siC υ= Λ ∩                                               (24) 
where the associated coding rates are 

( )

1 ( )

( )1 log( ),
( )

n
m

n
c

VolR
n Vol

υ
υ

=                                                (25) 

( )

2 1 ( )

( )1 log( ).
( )

n
m

i i n
c

VolR R R
n Vol

υ
υ

= − =                             (26) 

Now we can decompose each lattice codeword 
( )n

i iC∈V  by (n)
mΛ  into two points, 1iV  and 2iV  such 

that 
(n)

1 2[ ]mod ;i i i si= + ΛV V V                                           (27) 

and 
(n) ( )

1 1mod ,n
i i m C= Λ ∈V V                                            (28) 

(n) ( )
2 1 2,[ ]mod .n

i i i si iC= − Λ ∈V V V                                (29) 

 
4 The Proposed Scheme 

In our proposed scheme, we use superposition 
coding scheme based on lattice codes. That means node 
i using meso-lattice (n)

mΛ  partitions its lattice codeword, 
Vi, into two part: V1i and V2i. In phase 1 and 2, each 
node sends one of those parts. Then the relays by using 
CF idea finds a linear combination of lattice codewords. 
Finally, in phase 3, the relay nodes send those linear 
combinations to TR nodes. Each TR node using its own 
message as side information, recovers the desired 
message. In the following, we explain encoding and 
decoding at nodes in more details. 

By calculating the optimum time slot durations, t1, t2 
and t3, we can determine the codeword length in each 
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phase as n1 = t1 / Ts, n2 = t2 / Ts and n3 = t3 / Ts, where Ts 
is the sampling interval. In the following, without loss 
of generality, we assume that 

a bh h≥ . In order to apply 
the rate splitting, we choose a chain of lattices as Eq. 
(20), such that (n)

saΛ , (n)
sbΛ  and (n)

mΛ  are Rogers-good and 
Poltyrev-good while (n)

cΛ  is Poltyrev-good. The 
generation of these lattices is fully explained in [12]. 
 

4.1  Phase 1 
4.1.1  Encoding in Phase 1 

In order to node i sends its message, first splits it 
such as, 1 2 , { , }.i i iW W W i a b= + ∈  Then, using a one to 
one mapping, it maps message W1i to lattice point V1i 
and message W2i to lattice point V2i. We suppose that h1i 
= h2i = hi. Now, in this phase, node i communicates the 
following signal over the channel: 

1(n )(1)
1 1

1 [ ]mod ,i i i si
ih

= + ΛX V D                                         (30) 

where D1i is a dither that is uniformly distributed over 
the Voronoi region of 1(n )

siΛ , i.e., 
1 ( )i siUnif υD ∼ . 

According to the channel power constraints, we choose 
the second moment of lattice 1(n )

siΛ  as the following: 
1(n )2 2( ) h .si i Pσ Λ =                                               (31) 

 
4.1.2  Decoding in Phase 1 

Now, from [5], we know that if 
1 1R R ,i i

∗≤                                                                  (32) 
where 

2
2

1 2 2

1R [ log( h P)] ,
2

i
i i

a b

h
h h

∗ ++
+

�                                 (33) 

and [x] max{0, x}+ = , then we can estimate the 
following linear combination correctly. 

1(n )
1 1 1 1 1[ Q ( )]mod .

sba b b b saΛ= + − + ΛT V V V D                (34) 
 

4.2  Phase 2 
Encoding and decoding in this phase is exactly 

similar to phase 1. In this phase nodes A and B tries to 
send lattice points V2a and V2b to the relay node R2 and 
in the relay node, we decode a linear combination of 
them. To end this, node i, { , },i a b∈  sends the 
following signal over the channel: 

2(n )(2)
2 2

1 [ ]mod ,i i i si
i

X
h

= + ΛV D                                     (35) 

where 2 ( )i siUnif υD ∼ . Now we can decode the 
following linear combination of lattice points V2a and 
V2b correctly. 

2(n )
2 2 2 2 2[ Q ( )]mod ,

sba b b b saΛ= + − + ΛT V V V D          (36) 
If 

2 2R R ,i i
∗≤                                                              (37) 

where 2 1R R .i i
∗=  

4.3  Phase 3 
4.3.1  Encoding in the Relay Nodes 

In this phase, t h e  rela y  nodes R1 and R2 send T1 
and T2 to nodes A and B. To do this, the relay nodes 
communicate the following signals over the channel: 

3

1

(n )(3)
1 1

1 [ ]mod ,r r sa
ah

= + ΛX T D                                     (38) 

3

2

(n )(3)
2 2

1 [ ]mod ,r r sa
ah

= + ΛX T D                                    (39) 

where 
1 1

( )r sUnif υD ∼  and 
2 2

( )r sUnif υD ∼  Note that 
based on the Crypto lemma, the power constraints in the 
relay nodes are satisfied. 
 

4.3.2  Decoding in the Node A 
In the node A, based on the received signal, 

1 2

(3) (3) (3) ,a a r a r ah h= + +Y X X Z                                         (40) 

We perform the following operations in order to 
estimate message W2: 

3

1 2

(n )[ ]modda a r r saα= − − ΛY Y D D  
       

1 2

(3) (3) (3)[ a r a r ah hα α α= + +X X Z  
          3

1 2

(n )]modr r sa− − ΛD D  

       1 2

(3) (3)
1 2[ a r a rh hα α= + + + −T T X X                          (41) 

        3

1 2

(n )(3)
1 2( ) ( ) ]modr r a saα+ − + + ΛT D T D Z  

       
2

(3)
1 2[ ( 1) a rh Xα= + + −T T  

              3(n )(3) ]moda saα+ ΛZ  

       
3(n )

1 2[ ]mod ,eff sa= + + ΛT T Z  
where 

2 2

3

(3) (3)

(n )(3)

[( 1) ( 1)

]mod ,
eff a r a r

a sa

h X h Xα α

α

= − + −

+ Λ

Z

Z
                          (42) 

and Eq. (41) follows from the distributive law for the 
modulo operation and the modulo definition. Now, 
since Va is available in the node 1, and thus V1a and V2b, 
we can cancel the effect of them from Yda. 

3

3 3

1

3

(n )

(n ) (n )
1 2

(n )
1 1 1 1

2 2 2 2

(n )
1 2

[ ]mod

     [[ ]mod ]mod

     [[ ( )]mod

         ( )

         ]mod                          

sb

sb

da da a sb

eff sa a sb

a b b b sa

a b b b eff

a a sb

Q

Q
Λ

Λ

′ = − Λ

= + + Λ − Λ

= + − + Λ

+ + − + + −

− Λ

Y Y V

T T Z V

V V V D

V V V D Z

V V

 (43) 

3(n )
1 2[ ]modb b eff sb= + + ΛV V Z  (44) 

3(n )     [ ]modb eff sb= + ΛV Z  (45) 

where Eqs. (43) and (44) are based on the fact that 
3 3(n ) (n )

sa sbΛ ⊆ Λ  and the distributive law for the modulo 
operation and Eq. (45) follows from the definition 
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3(n )
1 2[ ]modb b b sb= + ΛV V V . Now we use the minimum 

Euclidean distance lattice decoding [1], [14] to estimate 
Vb, correctly. Thus we get 

3(n )ˆ ( )mod
cb da sbQΛ ′= ΛV Y  

     3(n )( ) mod ,
c b eff sbQΛ= + ΛV Z                                     (46) 

From Eq. (46), we can see that the estimation is 
incorrect if 

.eff cυ∉Z                                                                    (47) 

Eq. (47) shows that the estimation of Vb is incorrect 
if the effective noise Zeff leaves the Voronoi region 
surrounding the true codeword, i.e, P Pr( )e eff cυ= ∉Z . It 
can be shown that [1], [14], the error probability 
vanishes as 3n →∞  if 

3

2
(3)(Vol( )) 1,

2 ( )

n
c

effeVar
υμ

π ∗= >
Z

                                           (48) 

where (0, Var( ))eff effN∗Z Z∼ , 2 2 2Var( ) 2( 1)eff ah Pα α= − +Z . 

Since (n)
cΛ  is Poltyrev-good, the condition in Eq. (49) is 

satisfied. To minimize the variance of effective noise 
we choose 2 22 / (2 1)a ah P h Pα = + and we get 

2 2( ) 2 / (2 1)eff a aVar h P h P= +Z . Now, from Eq. (19) for Rib, 
we have: 

3

3

(n )

(n )
3

( )1 log( )
( )

sb
ib

c

VolR
n Vol

υ
υ

=  

3

3 3 3

(n )2
3

2
(n ) (n )

( )      log( )
2

( )(Vol( ))

sb

n
sb c

t

G

σ

υ

Λ
=

Λ

                          (49) 

3

3

(n )2
3

(n )

( )     log( )
2 ( )2 ( )

sb

sb eff

t
G eVar

σ
π ∗

Λ
≤

Λ Z
                       (50) 

3(n )2
3 ( )    log( )
2 ( )

sb

eff

t
Var
σ

∗

Λ
≤

Z
                                              (51) 

2
3     log( )
2 ( )

b

eff

t h P
Var ∗=

Z
 

2
23

2     log( ),
2 2

b
b

a

t h h P
h

= +  

where Eq. (50) follows from Eqs. (49) and (51) is based 
on Rogers goodness of 3(n )

sbΛ  and the fact that 

3(n ) 1( )
2sbG

eπ
Λ ≥ . Thus, in order to find Vb in node A, we 

must have 
2

23
1 2R log( ),

2 2
b

b b
a

t h h P
h

≤ +                                            (52) 

2
23

2 2R log( ),
2 2

b
b b

a

t h h P
h

≤ +                                           (53) 

4.3.3  Decoding in the Node B 
Using a similar decoding with decoding in node A, 

we can find lattice point Va (and thus message Wa) if 
2

23
1 2R log( ),

2 2
a

a a
b

t h h P
h

≤ +                                               (54) 

2
23

2 2R log( ).
2 2

a
a a

b

t h h P
h

≤ +                                             (55) 

Now, from Eqs. (32), (37), (52), (53), (54) and (55) 
and applying Fourier-Motzkin elimination, we can get 
the following rate-region for the Gaussian two-way 
diamond channel: 

2
3

1 1 2 2 2 2 2

2
2 23 3

1 1 2

2 2
2 23

2 2

min(( ), ( log(
2 2

   )), ( log( )), (
2 2 2

    log( ) log( ))),
2 2 2

a
a a a a

b

a
a a a

b

a a
a a

b b

t hR t R t R t R
h

t h th P t R h P
h

h t hh P h P
h h

∗ ∗ ∗

∗

≤ + +

+ + +

+ + +
 

(56) 

3
1 1 2 2 2 2

2 2
2 3

1 12 2

2
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It should be noted that we assume 
3 3 3 3(n ) (n ) (n ) (n )

sa sb m cΛ ⊆ Λ ⊆ Λ ⊆ Λ  and 2 2( ) ( )sb saσ σΛ ≤ Λ  
for this lattice structure. In other case that the channel 
between node B and Relays are better than the channel 
between node A and Relays, lattice chain differs as 

3 3 3 3(n ) (n ) (n ) (n )
sb sa m cΛ ⊆ Λ ⊆ Λ ⊆ Λ  . In this case, Ra and Rb 

constraints have the same equations as our first 
scenario. 
 
5 Numerical Result 

In this section, we evaluate the performance of our 
proposed method by numerical simulations. We 
compare the achievable rate-region by our proposed 
scheme based on lattice superposition coding with that 
of [11] based on random superposition coding in Figs. 2 
and 3. As we can see the achievable rate-region using 
our proposed scheme is better that [11]. This is due to 
the fact that using superposition coding with lattice 
codes, we have significantly reduced the constraints 
over rates and this yields to a better rate region. For two 
cases of channel parameters our achievable rate region 
becomes closer to the outer bound than [11]. 
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