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Harmonic Modeling of Inrush Current in Core Type Power 
Transformers using Hartley Transform 
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Abstract: This paper presents a new method for evaluation and simulation of inrush 
current in various transformers using operational matrices and Hartley transform. Unlike 
most of the previous works, time and frequency domain calculations are conducted 
simultaneously. Mathematical equations are first represented to compute the inrush current 
based on reiteration and then Hartley transform is used to study harmonic effects in the 
frequency domain. Being a real valued function and accordingly giving results with the 
higher speed of calculations are the main features of Hartley transform. The inrush problem 
is initially solved for single-phase transformers for switching at different angles of the 
voltage waveform using this method and then the results of harmonic domain are compared 
with that of Fourier transform. The methodology is also applied to three-phase three-limb 
transformers since the analysis of their transient behavior is significant owing to the flux 
coupling interactions in multi-leg core structures. The feasibility and efficacy of the method 
is illustrated with appropriate circuits and MATLAB code is developed to get the time and 
frequency domain waveforms with high accuracy. The results are helpful to identify and 
evaluate inrush current harmonic effects in various transformers and hence the efficiency of 
the method is verified. 
 
Keywords: Harmonic Domain, Hartley Transform, Operational Matrices, Transformer 
Inrush Current. 

 
 
 
1 Introduction1 
Power transformers are sensitive components in power 
distribution and transmission systems. When a 
transformer is energized, it will often draw a 
nonsymmetrical magnetizing current, referred to as 
inrush current which has particularly undesirable effects 
on the windings and may gradually ruin the transformer. 
Large inrush current will be created when the 
transformer operates on no-load energizing condition. It 
involves a large and long lasting dc component, which 
is rich in harmonics, assumes large peak values at the 
beginning about 6 to 30 times of the rated value. The 
magnitude of the inrush current drawn by a transformer 
depends on the source strength, the leakage impedance 
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and design of the transformer, the residual flux stored in 
the transformer’s core, and the angle of the applied 
voltage at the time of energization [1-3]. 

Inrush phenomenon is of nonlinear nature and can 
only be reproduced by actual tests and computer 
simulations. Due to the non-linear nature of inrush 
phenomenon it must be solved by iteration [4]. The 
authors of [5] used a Newton-type algorithm to solve 
the inrush problem and a single evaluation of the 
Jacobian matrix was shown to be most efficient. The 
method can represent the coupling effects between 
different harmonic frequencies and the full inrush 
solution is obtained in a single one harmonic domain 
iterative solution, i.e., 4-5 Newton iterations. The effects 
of various parameters such as switching angle and 
residual flux on the inrush current of a single-phase 
transformer are investigated in [6] and the second 
harmonic content of the inrush current is also evaluated. 
Different Fourier techniques were proposed in [7, 8] to 
obtain the magnitude and phase angles of the inrush 
current harmonic component at different voltage angles. 
The methods are helpful to estimate harmonic effects 
for inrush current but as the Fourier transform is a 
complex tool, it requires numerous complex quantities 
and multiplications. An effective and full frequency 
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domain solution technique which solves the inrush 
phenomenon using operational matrices has been 
developed, assuming that the overall transient is part of 
a periodic train of transients [4]. This is shown in Fig. 1 
where the transient inrush has a period of 2l in the time 
domain. The methodology uses operational matrices and 
a given orthogonal set, e.g., Hartley series but it takes 
considerable computation time using large matrices and 
consequently reduces memory efficiency. Actually, 
Hartley series are frequently used for periodic signals 
which are infinite, but the Hartley transform can be 
applied to approximate the continuous transform of a 
non-periodic signal of finite duration. It also appears to 
be a good method of transforming data into the 
frequency domain, accordingly it is an ideal tool to 
solve inrush current problem. 

A MATLAB code is developed in this paper to get 
the time and frequency domain waveforms of single-
phase and three-phase three-limb transformers inrush 
currents and their hysteresis loops using operational 
matrices and Hartley transform. Requiring less number 
of computations and performing simultaneous 
calculations in the time and frequency domain are the 
main features of this technique. 

The paper is organized as follows: Section 2 is 
dedicated to description of operational matrices and 
explanation of its applications. Relevant equations for 
Hartley transform and series are given in section 3. The 
method is applied to the investigation of single phase 
transformers and three-phase three-limb transformers 
respectively in section 4 and the simulation results are 
presented. Section 5 concludes the paper lastly. 
 
2 Operational Matrices 

Algebraic methods can be applied to calculate steady 
state solutions of linear, time-varying and nonlinear 
systems. They have been established for the solution of 
problems described by linear differential equations, 
such as analysis, model reduction, optimal control and 
system identification. These methods provide identical 
solutions but they have different numerical properties 
[4, 9]. In the last four decades, Numerical methods 
based on operational matrices (especially for orthogonal 
polynomials and functions) have received considerable 
attention for dealing with a huge size of applied 
mathematics problems. 
 
 

 
Fig. 1 Transient response seen as a periodic function. 

The aim of these techniques is to simplify the 
solution process of the problem and obtain effective 
algorithms that are suitable for digital computers [10]. 
Operational matrices can be applied to various problems 
such as time and frequency domain analysis. Using 
algebraic integration of differential equations based on 
orthogonal calculations of functions simplifies the 
solution process of the problem in this paper. 
 
3 Hartley Transform and Series 

The Hartley transform is an alternate means of 
analyzing a given function in terms of its sinusoids. This 
transform is its own inverse and an efficient 
computational tool where the data are purely real [11]. 
The Hartley transform of a function is a spectral 
transform and can be obtained from the Fourier 
transform by replacing the exponential kernel exp(-jωt) 
by cas(νt). Fourier transform for g(t) is: 

{ }
- jωt

F g(t) = G(ω)

1
G(ω) = g(t) e dt

2π

+∞

−∞
∫

                                          (1) 

Hartley transform for g(t) is: 

{ }H g(t) = G( )

1
G( ) = g(t) cas( t) dt

2π

v

v v
+∞

−∞
∫

                                      (2) 

The Hartley transform of the derivative of g(t) is:  

{ }dg(t)H = -  G(- )dt v v                                                 (3) 

This transform doesn’t convert input signals into 
their complex exponential and works basically on the 
principal of even and odd part of signal. A periodic 
function f(t) of period 2l can be approximated by 
Hartley functions as, 

n 0
n =

f(t) = C cas(n t)v
∞

−∞
∑                                                (4) 

where 

0 0 0cas(n t) = cos(n t) + sin(n t)v v v                                (5) 

0 0 = 2πfv                                                                       (6) 

[ ]0

1
f  = Hz

2l
 is the frequency in hertz and: 

2l

n 0
0

1
C  = f(t) cas(n t) dt

2
v

l
∫                                         (7) 

 
4 Inrush Current Calculation 

The methods been used for simulation of 
transformer inrush current have been almost done for 
the first peak and most of these procedures have been 
also performed in the time domain, but due to the nature 
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of inrush current and existence of harmonics with 
different orders, it is necessary to consider the inrush 
current harmonic components. Equations are first 
represented in the time domain and then the Hartley 
transform is applied to the equations in this method. The 
problem should be solved by iteration due to the 
nonlinear nature of inrush phenomenon and this 
procedure continues until an acceptable solution is 
achieved. When the winding is energized at a point 
different from the voltage peak, a flux equivalent to the 
remanent flux will appear. Considering this principle, 
inrush current is calculated for single-phase and three-
phase three-limb transformers in this paper. 
 

4.1  Single-Phase Transformers 
The unloaded single-phase transformer equivalent 

circuit used to calculate inrush current is shown in Fig. 
2. The inrush current (iinr) may flow in the primary 
circuit under no load condition. The inrush current 
transient during the energization of a transformer is a 
nonlinear phenomenon and the nonlinear characteristic 
is represented by the following polynomial [4], 

7 19
ψi (t) = 0.7576 ψ(t) +1.03×10 ψ (t)                            (8) 

Equations below describe the circuit in Fig. 2. 

inr
s 1 inr 1

di (t)
v (t) = r  i (t) + l + v(t)

dt
                               (9) 

inr ψ
mag

v(t)
i (t) = + i (t)

r
                                                   (10) 

In the nonlinear element, 

dψ(t)
v(t) = 

dt
                                                             (11) 

where v(t) is the instantaneous voltage applied to the 
transformer primary and ψ(t) is the instantaneous core 
flux of the winding. Discretization of the above 
equations in the time domain under no-load condition 
gives: 

inr inr
s 1 inr 1

i (t +Δt) - i (t)
v (t) = r  i (t +Δt) + l  + 

Δt
ψ(t +Δt) - ψ(t)

Δt

          (12) 

ψ inr
mag

1 ψ(t +Δt) - ψ(t)
i (t) = i (t +Δt) - 

r Δt
                     (13) 

s 1 inr1 1
inr

ψ
mag mag

v (t)Δt + l  i (t) + ψ(t)rΔt +l 1
i (t +Δt)-1  = ψ(t)1 i (t) - ψ (t +Δt)r Δt r Δt

⎡ ⎤⎡ ⎤
⎡ ⎤ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

(14) 

Representation of these equations in the frequency 
domain and assuming that iinr(0) = 0, gives: 

 
Fig. 2 Single-phase transformer equivalent circuit. 
 
 

 
Fig. 3 Flowchart for simulation of inrush current. 
 
 

s1 1
inr

ψ
mag mag

v (t) (cos( t) + sin( t)) dt + ψ(0)r  + l
I ( )

ψ(0)1 - i (t) (cos( t) + sin( t)) dt -( )r r

v vv v
vv

v vv

∫

=
∫Ψ

⎡ ⎤⎡ ⎤
⎡ ⎤ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

(15) 

The flowchart of the proposed algorithm is 
illustrated in Fig. 3. Both of time and harmonic domain 
procedures using the above equations are depicted in 
this flowchart. 

The nonlinear characteristic is considered perfectly 
in the unloaded single-phase transformer model and 
core losses can also be evaluated. MATLAB code is 
used to perform simulations. For this study the 
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following parameters are selected [4], tmax = 0.25Sec,  
S = 1500 VA, f = 60 Hz, Vs = 110cos(ω0t-α), 
r1 = 0.192 Ω, l1 = 0.9 mH, rmag = 612.86 Ω. 

Fig. 4 shows inrush current in the time domain at 
different voltage angles under zero residual flux 
condition. 

When the switching takes place at zero of the 
voltage waveform (α = 90°), the inrush current of the 
transformer’s primary winding is at the maximum value. 

Switching at the voltage peak (α = 0°) causes no 
saturation in the transformer, and thus, we don’t detect 
the inrush current. Only rated magnetizing current exists 
in this case. The inrush currents obtained for 42.97° 
using the method presented in [4] and the proposed 
method are also shown in Fig. 5 and so the efficacy of 
the proposed method can be observed. When the angle 
is 270°, results are the same as 90° but the inrush 
current possesses the maximum negative value as the 
switching takes place in the next half cycle. Due to the 
deep saturation of transformer in these two angles, 
considerable asymmetries in their hysteresis loops are 
observed and shown in Fig. 6. The second curve in this 
figure shows the hysteresis loop for 0°, where the loop 
is perfectly symmetrical. This method is also compared 
with the result of inrush current versus time in Matlab 
Simulink for 90° (which is the worst angle for inrush 
current) in Fig. 7. It can be observed that both results 
are exactly the same but simulating via Matlab code 
gives results with much higher speed. 
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Fig. 6 Hysteresis loops for switching at α =90°, 0°, 42.97° and 
270°. 
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Fig. 7 Comparison between inrush currents obtained at 90° 
using Matlab code and Simulink. 
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Fig. 4 Inrush current in the time domain at different switching 
angles. 
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Fig. 5 Inrush current at α = 42.97° using (a) method presented 
in [4], (b) proposed method. 
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The harmonic spectrums obtained using operational 
matrices and Hartley transform are shown in Fig. 8. The 
fundamental harmonic content of inrush current is the 
only term which can be observed in this figure for 0°. A 
significant point about transformer inrush current is the 
presence of harmonics with various components such as 
second harmonic. 
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(d) 

Fig. 8 Inrush current magnitude in the frequency domain for 
α equal to (a) 90°, (b) 0°, (c) 42.97°, (d) 270°. 
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Fig. 9 Inrush current magnitude comparison at 90° between 
(a) Hartley and Fourier transforms results via Matlab code and 
(b) FFT result in Simulink. 
 
 
Table 1 Maximum inrush current magnitudes obtained using 
Hartley and Fourier transforms. 

α (deg.) Hartley Transform Fourier Transform
0 0.1338 0.0949 

42.97 0.2325 0.2992 
45 0.2609 0.3271 
90 0.7463 0.6830 
135 0.3854 0.3024 
180 0.1338 0.0949 
225 0.2609 0.3271 
270 0.7463 0.6830 

 
 

The results for 90° using Hartley transform is 
compared with Fourier transform via Matlab code and 
also with FFT in Simulink as shown in Fig. 9. We can 
conclude that Harley transform gives the best curve with 
high accuracy and the highest speed of calculation as 
the time of simulation for this transform is about 6 
seconds less than Fourier transform. Table 1 shows the 
maximum magnitude of inrush current at different 
voltage angles for both of transforms. The results show 
negligible difference in the two magnitudes obtained for 
each angle. 
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4.2  Three-Phase Three-Limb Transformers 
The method is now applied to the analysis of three-

phase three-limb transformers, where the magnetic 
circuits shown in Figs. 10 and 11 are used. The majority 
of three phase transformers are mostly in the form of 
core-type construction. Three-limb core-type 
transformer consists of a single three-phase transformer 
which is wound on a common magnetic core and uses 
the least amount of core material in comparison with 
transformer banks. Under balanced conditions, the three 
phases have their three respective currents which are 
displaced 120° from each other. Accordingly, the flux 
vectors in three phases are displaced 120° apart and 
summed to zero in the yoke. There is no need for a 
return path for the flux. This condition is true when the 
supply voltage is balanced and hence residual flux (i.e. 
the sum all the three phases) is zero. The 
electromagnetic behavior of three-phase multi-limb 
transformers relies on the magnetic interactions and 
nonlinearities in the ferromagnetic iron-core structure 
[12–16]. Fig. 12 shows one phase of transformer with 
open circuited secondary. Calculations are complicated 
owing to the mutual coupling between the different 
limbs. Considering the mutual induction of fluxes in 
three-limb transformer, the equation, vectors and 
matrices can be written as: 

s

dI(t) dΨ(t)
V (t) = RI(t) + L  +

dt dt
                                  (16) 

where: 

[ ]
[ ]
[ ]

T

s s1 s2 s3

T

inr1 inr2 inr3

 T

1 2 3

V (t) = v (t) v (t) v (t)

I(t) = i (t) i (t) i (t)

Ψ(t) = ψ (t) ψ (t) ψ (t)

                               (17) 

represent the vectors of input voltages, currents and 
fluxes, respectively, of the transformer. 

Matrices of the winding resistances and inductances 
are defined as: 

 1 11 12 13

 2 21 22 23

 3 31 32 33

      ,     

r 0 0 L m m
R = 0 r 0 L = m L m

0 0 r m m L

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

    (18) 

The inductance matrix for a three-limb transformer 
is derived here with the help of its reluctance model in 
Fig. 11, so the relationship between the fluxes ({φ}) and 
the resultant mmfs ({F}) should be explicitly derived in 
terms of the legs reluctances ({Rel}). Air flux paths and 
corresponding inductances are not considered for 
simplicity while deriving the reluctance model. The 
equations for the reluctance model are: 

1 1 1 2 2 2-F + Rel φ + F - Rel φ = 0                                           (19) 

2 2 2 3 3 3-F + Rel φ + F - Rel φ = 0                                          (20) 

1 2 3φ + φ + φ = 0                                                                (21) 

 
Fig. 10 Three-phase three-limb transformer. 
 
 

 
Fig. 11 Representation of three-limb transformer using 
reluctance network. 
 
 

 
Fig. 12 Per-phase of three-limb transformer. 
 
 
where 1 1 1F  = N I ,  2 2 2F  = N I ,  3 3 3F  = N I  and N1, N2, and 
N3 are the turns. Solving Eqs. (19), (20), (21) and 
assuming that, 

1 1 1 2 2 2 3 3 3  ,    ,  ψ  = N φ ψ  = N φ ψ  = N φ                      (22) 

yields: 

1

2N (Rel + Rel )I  - N N Rel I  - N N Rel I2 3 1 1 2 3 2 1 3 2 31
Rel Rel  + Rel Rel  + Rel Rel1 2 1 3 2 3

ψ =   (23) 

2

2N (Rel + Rel )I  - N N Rel I  - N N Rel I1 3 2 1 2 3 1 2 3 1 32
Rel Rel  + Rel Rel  + Rel Rel1 2 1 3 2 3

ψ =    (24) 

3

2N (Rel + Rel )I  - N N Rel I  - N N Rel I1 2 3 1 3 2 1 2 3 1 23
Rel Rel  + Rel Rel  + Rel Rel1 2 1 3 2 3

ψ =    (25) 
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Assuming that, 

1 2 3 1 3N = N = N = N ,  Rel = Rel                                   (26) 
and 

1 11 1 12 2 13 3

2 21 1 22 2 23 3

3 31 1 32 2 33 3

ψ = L I  + m I  + m I

ψ = m I  + L I  + m I

ψ = m I  + m I  + L I

                                           (27) 

gives: 

11 33

2N (Rel + Rel )1 2
2Rel + 2Rel Rel1 21

L = L =                                           (28) 

22

22N Rel1
2Rel + 2Rel Rel1 21

L =                                                     (29) 

12 21 23 32

2- N Rel1
2Rel + 2Rel Rel1 21

m = m = m = m =                     (30) 

13 31

2- N Rel2
2Rel + 2Rel Rel1 21

m = m =                                           (31) 

In the following equations L11, L22 and L33 have 
been written l1, l2 and l3 respectively for simplicity. 
After obtaining the values of inductances and 
discretization of the electrical circuit equations under 
no-load condition we have the following matrix: 

1 1 12 13

21 2 2 23

31 32 3 3

mag

mag

mag

inr1

inr2

inr3

1

2

3

rΔt + l m m 1 0 0
m r Δt + l m 0 1 0
m m r Δt + l 0 0 1

-1
1 0 0 0 0

r Δt

-1
0 1 0 0 0

r Δt

-1
0 0 1 0 0

r Δt

i (t + Δt)
i (t + Δt)
i (t + Δt)
ψ (t + Δt)
ψ (t + Δt)
ψ (t + Δt)

×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢
⎢
⎢
⎢
⎢
⎣ ⎦

s1 1 inr1 12 inr2 13 inr3 1

s2 21 inr1 2 inr2 23 inr3 2

s3 31 inr1 32 inr2 3 inr3 3

1
ψ1

=

v (t) Δt + l  i (t) + m  i (t) + m  i (t) + ψ (t)

v (t) Δt + m  i (t) + l  i (t) + m  i (t) + ψ (t)

v (t) Δt + m  i (t) + m  i (t) + l  i (t) + ψ (t)

ψ (
i (t) -

⎥
⎥
⎥
⎥
⎥

mag

2
ψ2

mag

3
ψ3

mag

t)

r Δt

ψ (t)
i (t) -

r Δt

ψ (t)
i (t) -

r Δt

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Representation of the above matrices in the 
frequency domain, using Hartley transform, gives: 

1 1 12 13

21 2 2 23

inr131 32 3 3

inr2

inr3
mag

1

2
mag

3

mag

s1

r + l m m 0 0
m r + l m 0 0

I ( )m m r + l 0 0
I ( )- 

1 0 0 0 0 I ( )r ×  = 
Ψ ( )- 

0 1 0 0 0 Ψ ( )
r

Ψ ( )
- 

0 0 1 0 0
r

v (t) (cos( t)+sin( t)) 

v v v v
v v v v

vv v v v
vv
v
vv
v
v

v

v v

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

1

s2 2

s3 3

1
ψ1

mag

2
ψ2

mag

ψ3
mag

3

dt + ψ (0)
v (t) (cos( t)+sin( t)) dt + ψ (0)
v (t) (cos( t)+sin( t)) dt + ψ (0)

ψ (0)
i (t) (cos( t)+sin( t)) dt -

r

ψ (0)
i (t) (cos( t)+sin( t)) dt -

r

ψ (0)
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Equations for the fluxes are as follows: 

 a max

 b max

 c max

=  cos (ωt)

2π
=  cos (ωt - )

3
2π

=  cos (ωt + )
3

φ Φ

φ Φ

φ Φ

                                            (34) 

Parameters of the transformer are considered as, 
S = 4.5 kVA, f = 60 Hz, r1 = 0.192 Ω, l1 = l3 = 0.9 mH, 
l2=1.2 mH, m12 = m23 = - 0.6 mH, m13 = - 0.3 mH, rmag = 
612.86 Ω. 

Transformer voltages for an angle of α degree are: 
A

B

C

V  = 110 cos (ωt - α)

2
V  = 110 cos (ωt - ( + α))

3
4π

V  = 110 cos (ωt - ( + α))
3

π                                      (35) 

Switching at zero of the voltage waveform (α = 90°) 
for one phase, results in voltage magnitudes which are 
0.866 and -0.866 of the maximum voltage for the other 
phases, flux will have the maximum value in one phase 
and half of that for the other phases. If switching occurs 
at the voltage peak (α = 0°), there will be no inrush 
current for that phase. Distribution of the fluxes in 
transformer limbs is significant. The transformer 
secondary is assumed to be open without any load, 
accordingly the transformer inrush currents in the time 
domain under zero residual flux condition for switching 
at α = 90° are exposed in Fig. 13. Low Saturation in the 
phases B and C results in the less current value. 
Hysteresis loops for different phases at α = 90° are 
shown in Fig. 14 and it can be seen that asymmetries in 

(32)

(33) 
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the hysteresis loops of phases B and C considerably 
differs from phase A. 
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Fig. 13 Three-limb transformer inrush currents for switching 
at α = 90° for phases A, B and C. 
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Fig. 14 Hysteresis loops for switching at α = 90° for phases 
A, B and C. 

Fig. 15 shows the transformer inrush current 
magnitude in the frequency domain using Hartley and 
Fourier transforms. It can be observed that the 
magnitude of the inrush current harmonic components 
varies for phases A, B and C and it has the maximum 
value in phase A. The second harmonic component is 
the most dominant one owing to the asymmetrical 
nature of the magnetizing inrush current. The rise of 
inrush current harmonic contents in this transformer is 
more than transformer banks due to the mutual 
induction of fluxes between the different limbs. The 
results derived from the figure can also show slight and 
negligible differences in the inrush current magnitudes 
for Hartley and Fourier methods. Table 2 shows the 
time of simulation via Matlab code for both of the 
transforms which indicates that Harley transform 
possesses less time compared to Fourier transform for 
single and three-phase transformers. 
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Fig. 15 Three-limb transformer inrush current magnitude 
comparison between Hartley and Fourier transforms for 
switching at α = 90 ° for phases (a) A , (b) B and (c) C. 
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Table 2 Simulation time for Hartley and Fourier methods. 

Transformer Type Hartley 
Transform 

Fourier 
Transform 

Single-Phase  

Three-Phase Three-Limb 

9 (sec) 

14 (sec) 

15 (sec) 

21 (sec) 

 
 
5 Conclusion 

Calculation and simulation of inrush current based 
on operational matrices and Hartley transform are 
discussed in this paper, considering the problems of the 
previous methods. The proposed approach simplifies the 
solution process of a complicated technique without 
losing accuracy and solves the inrush transients 
efficiently. It is also appropriate for digital computers 
and the solution is a multi-resolution type. Performing 
simultaneous calculations in the time and frequency 
domain with high efficacy and decreasing the number of 
computations are the other features of this method. 
Proper circuits which can consider the nonlinear 
characteristic and core loss effects are used in this 
paper. To calculate inrush current using this method, 
differential equations are first converted into algebraic 
ones and then Hartley transform which involves no 
complex quantities or calculations is used to represent 
equations in the frequency domain. In order to identify 
the inrush phenomenon owing to switching operation, 
analysis and simulation of the problem in single-phase 
and three-phase three-limb transformers are provided in 
this paper. From the results, it is obvious that the inrush 
current amplitude increases by lessening the angle to 
zero of the voltage waveform (or increasing the 
switching angle α) in single-phase transformers. The 
results obtained using Hartley transform are also 
compared with Fourier transform via Matlab code and 
also with FFT in Matlab Simulink. The method has been 
executed successfully in three-limb transformer 
simulations under no-load condition and the results 
indicate that the inrush current harmonic contents in this 
transformer depend on the mutual induction of fluxes 
between the different limbs. This approach can be 
implemented for computing inrush current in five-limb 
transformers in future works. It can also provide the 
basis for reducing inrush via some strategies such as 
magnetic modifications considering the residual flux. 
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