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Abstract: In this paper, five conditions that have been proposed by Cobb and Shenoy are
studied for nine different mappings from the Dempster-Shafer theory to the probability
theory. After comparing these mappings, one of the considerable results indicates that none
of the mappings satisfies the condition of invariance with respect to the marginalization
process. In more details, the main reason for this defect is that the classic projection process
in DST loses some probabilistic information. For solving this problem, the modified
pignistic probability and the modified normalized plausibility transformation which are
invariance under marginalization are proposed. The two modified mappings are utilized in
two ambiguity measures in Dempster-Shafer theory. Then, similar to the mutual
information in the probability theory, these measures are used for computing the
dependency of the variables of a social bliss problem on the person's happiness value.
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1 Introduction

The Dempster-Shafer Theory (DST) and the Probability
Theory (PT) are two theories that have been used for
modeling uncertain data. In each theory, the
combination and the marginalization rules are utilized
for various applications. The main different of these two
theories is that the Dempster-Shafer theory includes
probability theory as well as set theory. In other words,
in the Dempster-Shafer theory, the Basic Probability
Assignment (BPA) is applied to assign masses to a
subset of the frame of discernments while in the
probability theory, the Probability Density Function
(PDF) assigns values to the singleton members. The
problems arise when we want to make a decision in
DST. Therefore, the BPA in DST should be transformed
to the probability density function in PT.

Some of these mappings are PrPl,,, PlP,,, PrBel,,
PraPl,,, and PrHyb,, that proposed by Sudeno [1],
CuzzP,, as defined by Cuzzolin [2], the pignistic
probability (BetP,,) as defined by Philippe Smets [3-6],
and DSmP. as proposed by Smarandache et al. [7].
Besides the issue of decision making, these mappings
are utilized in the aggregate uncertainty measures for
computing the amounts of information in DST.
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Smarandache et al used the Probabilistic
Information Content (PIC) as a measure of uncertainty
for several probabilistic mappings from the DST to the
PT. After comparing the mappings, they concluded that
some mappings have conceptual problems and cannot
produce acceptable results [7]. Klir ef al. proposed AU
as an aggregate uncertainty measure to compute the
amounts of ambiguity in DST [8]. AU was defined
based on another DST to PT mapping is denoted by Py 4
as it is defined by the optimization process of the
algorithm 6.1 [9-12].

Jousselme et al. used the pignistic probability to
measure ambiguity (AM) in Dempster-Shafer theory
[13]. But, AM dose not satisfy the subadditivity
condition which is one of the necessary properties of an
aggregate uncertainty measure. The cause of this defect
which was found by Klir in [14] was the dependency of
the pignistic probability on the marginalization process.

Another application of these mappings is
transforming a Dempster-Shafer network into a
Bayesian network. In several articles, Cobb and Shenoy
have compared two mappings, the pignistic probability
and the normalized plausibility transformation [15-18].
They proposed five conditions should be satisfied by a
DST to PT transformation. These conditions are:
Invariance with respect to marginalization, Invariance
with respect to combination, Idempotency, Unique most
probable state, and Non-Unique most probable state.
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The aim of this paper is to study the conditions
mentioned by Cobb and Shenoy for nine mappings
namely, PrPl,, PlP,, PrBel,,, PraPl,, PrHyb,,
CuzzP,,, BetP,, DSmP,, and P ;. Furthermore, some
considerable results are obtained. Another important
matter which was addressed here is the invariance with
respect to marginalization property of two mappings,
the pignistic probability and the normalized plausibility
transformation. The key of the Invariance with respect
to marginalization problem of BetP,, and PIP,, is in the
projection and marginalization processes in DST. It can
be shown that in the projection procedure, some
probabilistic information is lost. If this data can be
retained, the problem will be overcome. Based on this, a
new set is presented which can store the probabilistic
information lost in the projection process, and
subsequently, the marginalization formula is slightly
changed. Then, the modified pignistic probability and
the modified normalized plausibility transformation are
proposed that are invariant under the marginalization
process.

The outline of this paper is as followings: In Section
2, we describe some necessary theoretical concepts. In
Section 3, the nine mappings from DST to PT are
represented and the Cobb and Shenoy’s requirements
are investigated for these mappings. In Section 4, the
invariance with respect to the marginalization property
is descripted and the modified pignistic probability and
the modified normalized plausibility transformation are
proposed that are invariant under the marginalization
process. In Section 5, these modified mapping are
utilized in two new ambiguity measures and are used to
compute the dependency of the variables of a social
bliss problem to the person's happiness value. Finally, in
Section 6, some concluding remarks are made.

2 Theoretical Background

In the probability theory, a PDF p:2y — [0,1]
assigns values to 2y = {xq, x5, ..., X, } (the state space of
variable X), where p(x;) = 0, and }};_;., p(x;) = 1.

Definition 1. If Ny and 2, are the state spaces of
variables X and Y, then the joint state space is denoted
by Qxy =0x X0y and pyy:Qxy - [0,1] is the
corresponding joint PDF.

Marginalization in the probability theory involves
addition over the state space of the variables being
eliminated. Suppose pyxy is a joint PDF for Qyy, the
marginal PDF for 2y is px(x) =Yy pxy (X, y).
Combination in PT with Bayes’ rule involves “point
wise” multiplication of probability density functions.
Suppose py is a PDF for £y and py is a PDF for (2.
Then, pyxy is a PDF for y, and defined as follows:
Pxy(2) = (0x®py)(2) = K px (X)py () for each
z € (lyy, where K is the normalization constant.

Dempster-Shafer theory is an imprecise probability
theory in which a basic probability assignment (BPA)
assigns values to the subsets of the state space [19, 20].

The function m: 2%x - [0,1] is a BPA on the power set
of 1y = {x1,x5,...,x,}, where m(@) =0, m(4) =0,
and Y 4,00 m(4) = 1. Any element in 22X with a non-
zero BPA is called a focal element. Two other functions
defined in DST are the belief function (Bel(A) =
Yecam(B)) and the plausibility function (PI(4) =
Yang=p M(B)).

Topics such as joint state space, projection, and
marginalization in DST are defined as follows:

Definition 2. If 2% and 2?Y are the state spaces of
variables X and Y with cardinalities 2/*%| and 2!9¥!, then
the joint state space is denoted by 22X¥ and defined by
Qyy = 02y X Oy. Tts cardinality is 21%xv!,

Example 1. If Qx = {x1, x5} and Oy = {y1, V2, V5}
are the state spaces of X and Y, then the joint state space
in DST will be
29%Y (yy = Dy X 0y =
{Cer, y1), Gy, ¥2), (x4, ¥3), (32, 1), (%2, ¥2), (2, ¥3)3),
and have 2/xvl = 26 = 64 members. To put it simply,
we introduce the following notation: Qyy = 0y X 0y =
{211, 212,213,251, 252, L33}

If 2y and (2, are the state spaces of two variables
and Qyy, = 0y Xy is the corresponding joint state
space, then the projection of any subset A € f)yy on 2y
is denoted by A'%x. This projection is shown in Fig. 1.

Definition 3. If myy: 2?xY - [0,1] is a joint BPA on
fxy, then the marginal of my, on {2y is denoted by
oy . .
my,”, and given by:
my(B) = m;l(?zx(B) = Y acoyy alax=8Mxy (A) VE 2y (1)
We will show that the number of marginal
singletons in the joint state space is a major factor in the
current study, as emphasized by the following
definitions.

Definition 4. If myy: 2?%Y - [0,1] is a joint BPA on
Nyy, then the marginal singletons of subset A € 22xY
will be the all members of 2x and (2y that exist in 4.

Definition 5. If myy: 2?%Y - [0,1] is a joint BPA on
Ny, and if x; € Ny is a marginal singleton of A € 2xY,
then the number of marginal singletons x; is denoted by
# (x; € 4).

To illustrate the point, the marginal singletons
number has been calculated for the subset A =
{Z12,Z43,7,3}, which is a member of the joint state
space in Example 1. The marginal singletons are x4, X;,

Y2, and y3.

Fig. 1 Projection of subset A € Qxy on Ny.

88 Iranian Journal of Electrical & Electronic Engineering, Vol. 11, No. 2, June 2015



There are two x;, one X,, one y,, and two y3 in
subset A and we can write # (x; € A) =2, # (x, €A) =
1, #(y, €A4)=1, and # (y; € A) = 2. Note that the
number of marginal singletons of any member of a joint
state space in PT is 1 (for instance, (xq,V;) € Qxy has
one x; and one y,). However, the marginal singletons
number of any subset of the joint state space in DST is
not necessarily one.

Definition 6. Let my: 29X — [0,1] and my: 2% -
[0,1] be two equally reliable and independence BPAs,
the combination is calculated by Dempster’s rule of
combination in the following manner [21]:

myy(Z) = (mx®my)(Z) = ZXnY=sz1(<X>-my(v> @
VXC0,& YCO

where, K = Yxny—¢gMx(X).my(Y) represents the
conflict.

3 DST to PT Transformations and Their
Requirements

Several mappings have been proposed to extract
probability distributions from a BPA. The mappings that
are studied in the current paper, are defined as follows:

Definition 7. If m:2% — [0,1] is a BPA on £y,
then BetP,, denotes the corresponding probability
function obtained using the pignistic probability, which
is defined for each singleton x € Qy as follows [3, 22]:

BetPn () = Sacax "D ®

Definition 8. If m: 2% — [0,1] is a BPA on {2 and
P, denotes the probability function used in the AU
proposed by Klir, then, Pg; is obtained by the
optimization process of the algorithm 6.1 [8].

Definition 9. If m: 29X — [0,1] is a BPA on 2y and
PlP,, denotes the corresponding probability function
obtained  using the normalized  plausibility
transformation, then PlP,is defined for each singleton
x € Qx as follows [1]:

PIP,({x}) = 1 Yacoym(4) =1 PI({x}) )
xX€EA

where A is the normalization factor in which:

Yixeny PlPn({x}) =1 (5)

Definition 10. If m: 2% — [0,1] is a BPA on £y,
then PrPl,, and PrBel,, are mathematically defined as
follows for each singleton x € 0y [1]:

PrPlL, = PL({x}). 3 ycpox ———m(A 6
Pn(6) = PUGD syt @) ©)

PrBely,((x}) = Bel((x)). Lucrx oy mA) (1)
X€EA

where the denominators involved in the formulas are
given by the compound to sum of singletons CS[.]
operator defined in [23]:

CS[PI(A)] = ZAiez.QX PI(A;) ®)
|4;l=1
Ui4di=A
CS[Bel(A)] = ZAiean Bel(4;) ©)
l4i1=1
UjA;=A
Definition 11. If m: 2%% — [0,1] is a BPA on £y,
The mapping proportional to all plausibilities is defined
as follows [1]:

PraPl,({x}) = Bel,,,({x}) + €. Pl,,({x}) (10)
and

o 173505 Bel(B)
€= TY,ax PUE) (in

Definition 12. If m: 2%% — [0,1] is a BPA on £y,
The hybrid pignistic probability is defined as follows

[1]:

PrHyb,({x}) = )
PTale({X})ZAiéZX mm(ﬁl) (12)
CS[PraPl,(A)] = Y ae29x PraPl,,(4;) (13)
l4il=1
UjAi=A

Definition 13. If m: 2% — [0,1] is a BPA on £y,
CuzzP,, is defined on any x; € Qy = {xy, x5, ..., X} as
follows [2]:

_ A(xy)
CuzzPy, (x;) = m(x;) + SN
where A(x;) £ Pl(x;) — m(x;) and TNSM is Total Non
Specific Mass, and compute by:
n

TNSM =1 —Zm(xj) = Z m(A) (15)
j=1 Ae29X |A|>1
Definition 14. If m: 2%%x — [0,1] is a BPA on £y,
the generalized pignistic probability denoted DSmP; is
defined by Smarandache et al. as follows [7]:
ZzéfmlB m(Z) + e.|ANB|

4 Y zeg m(Z) + €.|B|
Be2¥Xx 1Z|=1

X TNSM (14)

DSmP.(A) =

m(B)  (16)

and € is a tuning parameter.

Five necessary requirements of a probability
transformation have been investigated for PrPl, and
BetP,, by Cobb and Shennoy [15]. These properties are:
Invariance with respect to marginalization, Invariance
with respect to combination, Idempotency, Unique most
probable state, and Non-Unique most probable state.
Now, we study these conditions for all above mappings
with some examples.

Definition 15 (P. 1). If myy:29Y > [0,1] is an
arbitrary joint BPA on (2xy, my is the marginal BPA on
fx, and T, and T,, are the probabilistic
transformations of myy and my respectively, then T, is
invariant with respect to marginalization if and only if:

me = (Tme)lﬂX (17)
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This means that marginal probability distribution
obtained from the joint probability transformation is
equal to the probability distribution obtained from the
marginal BPAs. This concept is shown in Fig. 2. Now
we want to know which mapping satisfies this property.
For this purpose the Klir’s example has been presented
for the pignistic probability in [14], is used.

Example 2 [14]. Let m:2%Y — [0,1] be the joint
BPA for 2y = {x;,x,} and 2y = {y1, 2} (Qxy = 2y X
Qy = {(x1, ¥1), (x1,¥2), (2, 1), (02, ¥2)} = {Z11, Z1o,
Z31, Z5,}). Which mapping is invariant with respect to
the marginalization process?

{ Mm{Z11,Z12,221}) = a
(18)

m({Z,,)=1—a ,0<a<1.

The results are listed in the fifth column of the Table
1. In the first column of the table, the probability
transformations are listed. The joint probability
transformations are listed in the second column, and the
probability distributions obtained from the marginal
BPA’s are listed in the columns 3 and 4. The results
illustrate that none of the mappings satisfy this
condition.

Table 1 Invariance with respect to marginalization of the mappings.

Marginalization

in DST
Myy On Qyy —p| my on fly
Tongy » Ty = (mey)mx

Marginalization
inPT

Fig. 2 Invariance with respect to the marginalization of a
mapping.

Definition 16 (P. 2). Suppose my, m,, ..., m: 29X -

[0,1] be K independent BPAs on %, and
Ty Tmy» -+ Ty, be the corresponding  probability

functions. If m = m;®@m,® ... ®m,, is the joint BPA,
then,

Ton,emy®..0mp) = Tm, ®Tm,® ... ®Tp, (19)

It means that the probability transformation of a
BPA obtained from the combination of K independent

T Ty T, T, P
P4 [a/3 a/3] [13 ]: ifa<1/2 {[a 1—al; ifa<1/2 No
a/3 1-a a [1/2 1/2]; ifa=1/2
[2]: ez
12} Ye=1/
BetP,, [a/3 a/3] a/2 ] [a/2 1—-a/2] No
a/3 1—a 1—a/2
PLP, a a a [ a 1 ] No
1+2a 1+2a 1+a 1+a 1+a
a 1—-a 1
1+2a 1+ 2a l1+a
PrPl, [a/3 a/3 a? [ a? 1—a2+a] No
a/3 1—a 1+a 1+a 1+a
1-a’+a
l1+a
PrBel,, NaN NaN [O] [0 1] No
NaN 1-—a 1
PraPl,, a? a? a? [ a? 1—a2+a] No
1+ 2a 1+ 2a 1+a 1+a 1+a
a? 1+ 2a — 3a? 1-a’+a
1+ 2a 1+2a 1+ta
PrHyb,, [a/3 a/3] a? [a3 1—a3+a] No
a/3 1-a 1+a 1+a 1+a
1-a’+a
l1+a
CuzzP,, [a/3 a/3] a/2 ] [a/2 1—-a/2] No
a/3 1—a 1—a/2
DSmP, [a/3 a/3 ] €a [ ea l1—a+2e- Ea] No
a/3 1-a 1-a+t2e 1—a+2e 1—a+2e
l—-a+2e—e€a
1—a+2e

90
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Dempster’s rule combination in DST

mq,my, ..., My » m=m®m,®..em,
v
v
R Tim,0m,@...0m)
Ty Ty s T P =T, ®T,,®..0T,,

Baves’ rule combination in PT

Fig. 3 Independency from Dempster’s rule of combination of
a mapping.

Table 2 Independency from Dempster’s rule of combination
of the mappings.

T m, m, ;"fnl om P2
P.. 1005025025 |[05050] |[[0.5050] | No
BetP,, |[0.5025025] |[0.5050] |[05050] | No
PIP, |[0.330.33033] |[05050] |[0.5050] | Yes
PrPl, |[0.50.25025] |[05050] |[05050] | No
PrBely, |[1 0 0] [050.50] |[05050] | No
PraPl,, |[0.660.167 0.1671[[0.50.50] |[050.50] | No
PrHyb,y, [[0.660.167 0.167]][0.50.50] [[0.5050] | No
CuzzP,, [[05025025] |[050.50] [[0.50.50] | No
DSmP. [[050.250.25]  [[0.50.50] [[050.50] | No

Table 3 Idempotency property of the mappings.

T X1 X X3 P.3
Pg 1 0.5 0.25 0.25 No
BetP,, 0.5 0.25 0.25 No

PIP, 1/3 1/3 1/3 Yes
PrPl,, 0.5 0.25 0.25 No
PrBel,, 0.5 NaN NaN No
PraPl,, 4/6 1/6 1/6 No
PrHyb,, 0.5 0.25 0.25 No
CuzzP, 0.5 0.25 0.25 No
DSmP, 0.5 0.25 0.25 No

BPAs with the Dempster’s rule of combination is equal
to the combination of K probability transformations of K
BPAs with Bayes’ rule in PT. This concept is shown in
Fig. 3. Similar to Example 2, this condition is
investigated for the above mappings by another
example.

Example 3. Suppose m,;&m,: 2 — [0,1] are two
BPAs on 0y ={x;,x5,x3} , m({x}) =0.5,
my({x,,x3}) = 0.5 and m,({x;,x,}) = 1. Then the
combination of this BPAs is: m,({x;}) = 0.5, and
my,({x,}) = 0.5. The independency from combination
property is shown in the Table 2. The results show that
just the normalized plausibility transformation satisfies
this condition. The proof of this claim follows directly
from the proof of the Proposition 2 in [23].

Definition 17 (P. 3). Suppose m: 2 — [0,1] be the
BPA on 0y, and T,, be the corresponding probability
function. If m is idempotent with respect to the
Dempster’s rule, i.e., = m@®m , then T,, is idempotent
with respect to the Bayes’ rule, i.e., T,,, = T, ®T,,.

This is a corollary of P. 2. In Example 4, the
idempotency property of the above mappings is
illustrated.

Example 4. Let m:2% —[0,1] be a BPA on
02y = {x1, %, x3} and m({x;}) = 0.5 and m({x, x3}) =
0.5 .Check the idempotency property for the above
probability transformations. The result is shown in
Table 3. It is understood that just the normalized
plausibility transformation satisfies this condition.

Definition 18 (P. 4). Suppose m: 2% — [0,1] be the
BPA on g, m" =m,®@m,®..®m, be the n times
combination of m, and lim, ,m"(x) =1. Let T,
denotes the probability transformation corresponding to
the m, (Tp)" = T, ®T,® ... Ty, be the n times
combination of T,,, and T,,,” denotes lim,_(T,,)".
Then, T,,,”(x) = 1, and T,,,”(y) = 0 for all y € Qx\{x}.

It means that if a unique most probable state x exists
in the BPA m, then the corresponding probability
function should have x as its most probable state. From
Example 5, it can be found that this property is satisfied
just by the normalized plausibility transformation.

Example 5. If m:2%% - [0,1] be a BPA on
0y = {x1, %3, %3, %4, x5}, m({x;}) = 045, m({x;}) =
0.15, m({x3}) = 0.05, and m({x,, x3, x4, x5}) = 0.35.
Then we have, m*({x,}) = 1. After the computation of
the mappings, we have: Pl_Pm*({x,}) =1,
PrBel”({x:}) = 1, PrHyb*({x,}) = 1, P6.1°({x,}) =
1, BetPm®({x,}) =1, PrPI”*({x,;}) =1,
PraPl*({x,}) = 1, CuuzP*({x,}) =1,
DSmP*({x,}) = 1. So the normalized plausibility
transformation has maximum unique state.

Definition 19 (P. 5). Suppose m: 2% — [0,1] is the
BPA on Q2 such that lim,,_,,, m™ (x) = lim,_,, m" (y)
for all x,y € A € 0y and lim,_,m" (z) =0 for all
z€NOg\A. Let T, denotes the probability
transformation of m, and T,,” denotes lim,_,.(Tyn)™.

Then T,”(x) =T," () = ﬁ for all x,y €A, and

T,,*(z) = 0 for all z € Ox\A.

Example 6. If m:2% - [0,1] is a BPA on 0y =

{x1, %2, %3, x4, x5}, m({x;}) = 0.4, m({x,;}) = 0.15,
m({x3}) = 0.15, and m({x,, x3, x4, x5}) = 0.3. Then
we have, m®({x,}) = m®({x3}) = 0.5. The non-
unique  states are computed as  follows:
Pl_Pm®({x,}) = PI_Pm®({x3}) = 0.5,
PrBel®({x,}) =1, PrHyb®({x;}) =1,
P6.1*({x,}) =1, BetPm®({x,}) = 1,
PrPI*({x,}) =1, PraPl®({x,}) =1,
CuuzP®({x;}) =1 and DSmP*({x,;}) = 1. So only
the normalized plausibility transformation satisfies this
condition.
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Table 4 Survey of the mappings and their properties.

T pP.1| P2 P.3 P. 4 PS5

Po1 NO | NO| NO | NO | NO

BetP, | NO| NO | NO | NO | NO

PIP, YES | YES| YES| YES NO

PrPl,, NO NO NO NO NO

PrBel,, | NO NO NO NO NO

PraPl,, | NO NO NO NO NO

PrHyb,,| NO NO NO NO NO

CuzzP,| NO | NO | NO | NO | NO

DSmP.| NO | NO | NO | NO | NO

The results are summarized in Table 4. As a
consequence two important results are extracted from
the Table 4.

1. The independency from the Dempster’s rule of
combination of a probability transformation will
also involve the last three conditions. So two
main requirements for a conversion from the DST
to the PT are invariance with respect to the
marginalization and invariance with respect to
the Dempster’s rule of combination.

2. According to the Table 4, it can be seen that only
the normalized plausibility transformation
satisfies four of the five conditions. In other
words, if we want to choose the most justifiable
mapping through the mentioned transformations,
the normalized plausibility transformation is the
best choice. Also the invariance with respect to
marginalization problem of this mapping will be
remained. This issue will be proven in the next
sections.

4 Solving the Problem of the Invariance with
Respect to the Marginalization Process

Invariance with respect to the marginalization
process means that the marginal probability distribution
of the joint probability transformation is equal to the
probability distribution of the marginal BPAs. In this
subsection, we will examine the reasons for the
dependency of the pignistic probability and the
normalized plausibility transformation on the
marginalization process. To this end, we need to focus
on the projection method in DST. The classic projection
process in DST loses some probabilistic information, as
shown in Example 7.

Example 7. If my,m,, my,m,: 2% - [0,1] are
four different joint BPAs with 02y = {x;,x,} and
Qy = {1, y2y3}.

{m1 (Z11, 242,213,221, 232, 233) = a
my(Z3) =1-a '
{mz (Z11,221, 213, Z23) = a
my(Z3) =1—a
{m3(Z12'Zzz) =a {m4(Z11, 212,743, Z23) = a
mg(Zyz) =1—a’ my(Z3) =1—a

Then, there are different BPAs with different focal

elements and we have,
{le' ZlZ' Zl3' Zth ZZZ! 223}MZX
={Z11,Z31, Ly3, 223}lﬂx = {Z2, Zzz}mx (21
={Z11,212, Z13, 223}lﬂx = {x1, %5}

Therefore, the projections of different subsets with
different numbers of marginal singletons (three x; and
three x, for the first subset, two x; and two x, for the
second subset, one x; and one x, for the third subset,
and three x; and one x, for the fourth subset) are equal.
The four marginal BPAs on {2y are thus equal and can
be given by:
my (X)) = myy* ((x,)) =

me(A)=1—a

(20)

(22)
ASOxy AlOx={x,}
my ({1, %,3) = mgnX ({x, ,3)

= z myy (A) = a (23)

ACOyxy AlQx={x1,x,}

In this example, there are four joint BPAs with
different BetB,,,s, although their marginal pignistic
probabilities computed from the marginal BPAs are
equal. Additionally, there are four joint BPAs with
different PIP,s, although their marginal normalized
plausibility transformations computed from the
marginal BPAs are equal.

In other words, in the standard projection process,
the number of marginal singletons (x; and x,) that
exists in the joint state space is not taken into account.
This point explains why BetP, and PIP, are not
invariant under the marginalization process. To solve
this problem, we need to consider the number of
marginal singletons in the projection process. Therefore,
we try to retain this information by defining the
Projection Set and rewriting the marginalization formula
as follows:

Definition 20. If myy: 22X - [0,1] is the joint BPA
on flxy, then the Projection Set of f2xy on B € Ny , is
shown by PrSt,z, which is the set of all joint state space
members such that A'*?X = B and is given by:

PT'StlB = {AlA c .Qxy,A ~l/ 'QX e B} (24)

Definition 21. If myy:2%xv - [0,1] is the joint
BPA defined on Qxy, then the marginal of myy over 2y
based on PrSt is denoted by rhgx, and is computed as
follows:
méxme(B) = Myy (C) VB C 'QX (25)

CePTSt|g
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It should be noted that the results of the new
marginalization procedure are almost identical with the
classical method of the marginalization in Dempster-
Shafer theory, only the formula has been little changed.
Based on these changes, the pignistic probability and
the normalized plausibility transformation could be
modified as follows:

Definition 22. If myy:2?xY - [0,1] is a joint BPA
defined over (lyy, then the modified pignistic
probability is defined for each singleton Z; € (y, and
x; € Qy as follows:

mv (A). 4 (x; € 4)

BetP,, (x;) = ]
BCQx,X,EB AEPTSt
Vx; € Oy (26)
; m(A)

BetPy,, ((Xi; yj)) = Z 1]

ASTxy

(xi,yj)eA
V(xi, y]) € .Qxy (27)

where # (x; € A) is the number of x; in the subset A
and |A| denotes the cardinality of A.

Definition 23. If myy: 2?xY - [0,1] is a joint BPA
on (yy., then the modified normalized plausibility
transformation is defined for each singleton Z; € Qyy
and x; € Qy as follows:

. 1
PP, (x) =% mr(A). 4 (x; € A)
BCS0yx,x;€EB AEPTStp

Vx; € 0y (28)
. 1
Plexy ((xi' YJ)) = Z z mnXY(A )
ACDyy
(xi,yj)EA
V(x1, %)) € Qxy (29)

where, A is the normalization factor.
Corollary 1 In one-dimensional state space,

1- The modified pignistic probability is reduced to
the pignistic probability, i.e., BéthX =
BetPy,,.

2- The normalized plausibility transformation and
the modified normalized plausibility
transformation are equal (PZPmX = PlPy,).

Proof: In one-dimensional space we have,
m2r(A) =my(4d) = VACQy: # (x; €4) =

1 and PrStijz =B (30)
Then,
. m*v(A). # (x; € A)
BétP,, (x;) = o
BS(x,x€B AEPTSt g
mx(B) (31)
= IB] = BetB,, (x;)
BS{xx€B
Vx,- € ‘QX
and,

PPy, (x;) = mx(A). # (x; € A)

C0x,X{€EB AEPTSt B

1

1

A
B

(32)

my(B)
BCSQx,x;EB
= PPy, (x;) Vx; €

Here, the invariance with respect to marginalization
of the modified pignistic probability is expressed in the
following proposition and its proof is given in Appendix
A.

Proposition 1. Let myy:2%XY - [0,1] be a joint
BPA over Qyy, BéthXy be the joint modified pignistic
probability and BéthX be the modified pignistic
probability of marginal my, then we have:

BetP,,, = (Beth,,, )" (33)

Proof: See Appendix A.

Now, invariance with respect to marginalization of
PZPmX is expressed with the following proposition:

Proposition 2. Let myy:2?%Y - [0,1] be a joint
BPA on Qyy, PIP,,.., be the joint modified normalized

mxy
plausibility transformation and PZPmX be the modified
normalized plausibility transformation of marginal my,
then we have:

PIB,, = (PP, )" (34)

Proof: See Appendix B.

To clarify the point, the modified pignistic
probability and the modified normalized plausibility
transformation are computed for the BPAs of Example
2.

First, the joint probabilities are computed as follows:

3 a/3 a/3
BethXy = BethXY = [a/3 1-a (35)
a a
PleX"(X' r)= Pszxv X, Y) = ! -l;lza 11+—2aa (36)
1+2a 1+2a

As it can be seen in the Table 5, both the modified
pignistic probability and the modified normalized
plausibility transformation are invariant under the
marginalization  process (BéthX = (Be'thXY)mX ,
BetP,,, = (BetPy,, )", PlP,, = (PP, )" ¥  and
PiB,, = (PIPy,, )" ™).

Example 8. If m:2%v - [0,1] is a joint BPA on
0y = {x1,%5,x3} and 2y = {y;,y,}, then we need to
check the invariance with respect to marginalization
concept for BetP,,, BetP,,, PIP,, and PIP,,.

The joint state space is: gy =0y X0y =
{211,212, 221, 232, 731, L35}
( M({Z11,Z12, 221,231, Z32}) = %

m({Zsq,2Z3,}) = %

{ m({Z11, 212,221, 231}) = % 37
l m({Zy,}) = %
m({Z,1,231,Z23,)) =1—a ,0<a<1
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Table 5 Projection Sets of X and Y, corresponding modified pignistic probabilities and modified normalized plausibility
transformation.

20 Prst,, BetPy, PIP,,, 2% PrSty(y Betp,, PP,
X1 {0} 2a/3 2a V1 {0} 2a/3 2a
1+ 2a 1+2a
Xz ({2223} 1-2a/3 1 Vs ({2223} 1-2a/3 1
1+2a 1+2a
X1%2 {{Z11, 212, Z21}} Y2 | {{Z11, 212, 2213}
First, we compute the joint probabilities as follows:
P Jolo-p 270 BetP,,, (Y) # z BetB,(X,Y) (41)
240 240 ] But X
BétP,(X,Y) = BetP,(X,Y) = 802_433‘1 E?Tg (38) o )
80— 23a 80— 38a Bethy, (X) = ZBeth(X' r) (42)
240 240 Y
2a 2a ; — ;
4 “a BetB,,, (Y) = ZBetP XY
[ 12 12 ] my( ) m( ) (43)
. 4 —2a a X
PiP,,,(X,Y) = PIP,,,(X,Y) = 5 o (39) and,
4-a 4-2a PleX(X) * ZPleXY(X, Y) (44)
12 12 -
Then, ma’rgmal BPAs of X, BetP,,, Beth,,, Pl Pmy ) # Z Pl mey X,Y) (45
PP, and PlP,, are calculated (Table 6). In the next ~
step, the marginal BPA of Y, Bethy,Béthy,PleY, but,
and Pley are computed (Table 7). Finally, a PmeX x) = Z PZPmXY X, V) (46)
comparison will be made between the results of Table 6 Y
and Table 7, suggesting that: } |
BetP,,, (X) # Z BetP, (X, Y) o) PiPn, (Y) = Z PiPryy (X, 1) (47)

Table 6 Marginal X,the Projection Set of X, Beth,,,, BéthX, PlB,,, and PZPmX.

2% my(.) | BetPy, | PlPp, PrSty, BetP,,, | PiP,,
x 0 2 | Za © Sha | da
12 8 240 12
x, a 6—a 4—a ({Z22}} 80 + 7a 4—q
4 12 8 240 12
X3 a 6—a 4—a {{231'232}} 160 —6la | 8 —3a
4 12 8 240 12
X1 X7 0 {9}
X1X3 0 T - {m} - -t
XaX3 1-a - - {{22172311232}} T -
x1x2x3 2_(1 - - {{2111212'221'231v232}} - -t
4 {211,212, 291,231}

Table 7 Marginal Y, the Projection Set of Y, BetPy,, Béthy,Pley, and PiPmY.

2% my(.) BetP,,, | PIP,, PrSt,, BetP,, PIP,,
1 0 4—a 4—a {0} 160 — 49a 8—a
8 8—a 240 12
v, a ita 4 {{z:.}} 80+49%a | 4+a
4 8 8—a 240 12
Y1Y2 1-— ¢ o T {{levzlzrzzlrz3lrz32}r {Z31,Z32}} - T
4 {211!Z12rZZIrZ31}r {ZZDZ31rZ3Z}
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5 Applications of the Proposed Mappings

Computing the amount of uncertainty or information
contained in an event is of crucial importance in many
applications in decision-making systems. To calculate
the amount of uncertainty, we need to define a measure.
Shannon entropy (H(x)) is an uncertainty measure in PT
proposed by Shannon [24]. The different types of
uncertainty proposed in various theories have been
classified by Klir and Yuan in [25]. Dempster-Shafer
Theory is an extension of the probability theory and the
set theory, and as such, it is able to represent two types
of uncertainty, i.e., nonspesifity and discord. Klir
proposed AU as an aggregated uncertainty measure that
computes nonspecificity and discord simultaneously [9].
He posited that any aggregate uncertainty measure such
as AU must satisfy five requirements including
Probability  consistency, Set consistency, Range,
Subadditivity and Additivity. Jousselme et al. proposed
another aggregated uncertainty measure called AM
based on the pignistic probability [13]. They proved that
AM satisfies the five requirements of an aggregate
uncertainty measure. But, Klir and Lewis showed that
the proof of AM subadditivity provided by Jousselme et
al. was wrong [14]. They referred to the dependency of
the pignistic probability on the marginalization process
to support their argument.

Similar to the pignistic probability that is used in
AM, we can exploit the other DST to PT
transformations to measure the amounts of ambiguity in
DST. But the Table 3 indicates that the all mapping are
dependent to the marginalization process and so the
corresponding ambiguity measures are not subadditive.
In Section 4, we proposed BetP,, and PIP,, that are
invariant under the marginalization process and so are
adequate to use in the ambiguity measure. Therefore the
ambiguity measures based on BetP,, and PIP,, will be
subadditive.

Now, similar to the entropy measure in PT, we have
two new aggregate uncertainty measures in DST for
computing the amounts of ambiguity. The question is
where can be used these ambiguity measures. We
attempted to use these measures for computing the
amounts of dependency between two variables. As we
know, mutual information (MI) as a tool for measuring
the dependency between two variables is used in many
applications in probability theory [26]. Similar to the
mutual information in probability theory, the mutual
ambiguity based on BetP,, and PIP,, can be used for
computing the dependency between two variables in
DST.

Shahpari et al. in [27], used the mutual ambiguity
measure based on BetP,, called MAM, in a threat
assessment problem constructed by a Dempster-Shafer
network. In their paper, MAM is used for computing the
influence of the network input variables to the threat
value.

In the similar way, we introduce the ambiguity
measure and the mutual ambiguity measure based on
BetP,, and PIP,, as follows:

Definition 24. If m:2% — [0,1] is a BPA on 0y
and BetP,, and PIP,, are DST to PT transformations,
then the corresponding ambiguity measures are given
by:

MAM(m) = — Z BetP,,(x).log, (BeiPm(x))

XENY (48)
AMPle(m) = —x; PIP,(x).1og, (Ple(x)) (49)

Definition 25. If myy:2?XY - [0,1] is an arbitrary
joint BPA on (2xy, the associated marginal BPAs are my
and my, then mutual ambiguity measures based on
BetP,, and PIP,,, are given by:

MAM(X;Y) = MAM(X) + MAM(Y)
— MAM(X,Y) (50)

AMPPm(X;Y) = AMPPm(X) + AMP'Pm(Y)
— AMPPn(X,Y) D

Example 9. Let us consider the issue of the social
bliss and the factors that affect a person’s happiness.
Suppose that there are five independent parameters such
as social acceptability (SA), hope for the future (HF),
poverty (P), feeling of security (FS), and fulfillment of
emotional needs (FE). The relationships between these
factors and the target variable, social bliss (SB), are
modeled by the expert knowledge expressed by some
rules. Then according to the implication rule in [28-29],
each of the rules can be represented by a BPA.

For example, an expert explains his opinion about
the effect of social acceptability on the social bliss in the
following two rules: 1) if the person has a good level of
acceptability, then with certainty between 0.5 to 0.8 he
feel happiness; and 2) if the person has no social
acceptability, then with certainty between 0.3 to 0.6 he
does not feel happiness. To model these rules, suppose
that the state space of SA is 0, = {sa = 0,sa = 1}
and the state space of SB is f2s5 = {sb = 0,sb = 1}.
Now, These rules are rewritten as: “(SA=1)->(SB=1)
with  confidence between 0.5 to 0.8.” and
“(SA=0)->(SB=0) with confidence between 0.3 to 0.6.”
Then, according to the implication rule in [28] the joint
BPA is computed as follows:

The joint state space will be the power set of
Qsase = 0sa X sp = {(0,0),(0,1),(1,0), (1,1} =
{Zoo, Zo1, Z10, Z411} and we have,

Msas8({Z00, Z10}) = 0.06
Msas5({Zo1,Z10}) = 0.08

Msa.58({Z00s Z01,Z10}) = 0.06
Msase({Zoo, Z11}) = 0.15

(52)
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Msa,s5({Zo1,Z11}) = 0.2
Msas8{Zo0, Zo1,Z11}) = 0.15
Msa,s5({Z00, Z10,Z11}) = 0.09
Msas8({Zo1, Z10,Z11}) = 0.12
Msas8({Z00, Z01) Z10,Z11}) = 0.09

Similar to the above modeling, the state space of HF
is Qur = {hf = 0,hf =1} and the expert rules and the
joint BPAs are given as follows:

(SA=1)->(SB=1) with confidence between 0.5 to
0.8.

(SA=0)>(SB=0) with confidence between 0.3 to
0.6.

Myr,s8 {Zoo, Z10}) = 0.05

Myr,s8 {Zo1,Z10}) = 0.02

Mur,s5({Z00, Zo1, Z10}) = 0.03

Myr,s5({Z00, Z11}) = 0.4

Myr,sg({Zo1,Z11}) = 0.16 (53)
Myrse{Zoo, Zo1,Z11}) = 0.24

Myr,sg({Zo0, Z10, Z11}) = 0.05

Myr,sg({Zo1, Z10, Z11}) = 0.02
Mur,s5({Z00, Zo1, Z10,Z11}) = 0.03

For FE with the state space 275 = {fe =0, fe = 1}
we have,

(FE=1)>(SB=1) with confidence between 0.6 to
0.7.

(FE=0)->(SB=0) with confidence between 0.2 to
0.5.

Mpg,sg({Z00, Z10}) = 0.02

Mpg,s5({Zo1, Z10}) = 0.03

Mpg s ({Zo0) Zo1, Z10}) = 0.05

Mpg,sg({Z00, Z113) = 0.12

Mpg,s5({Zo1,Z113) = 0.18 (54)
meg,sg ({200, Zo1, Z113) = 0.3

Meg,sp({Zo0) Z10, Z11}) = 0.06

Meg,s8({Zo1, Z10, Z113) = 0.09
Meg,s8({Zoo0) Zo1, 210, Z11}) = 0.15

For FS with the state space 2z = {fs =0, fs = 1},
the expert knowledge and the joint BPA are given by:

Table 8 mutual ambiguity of the paired variables of Example 9.

(FS=1)>(SB=1) with confidence between 0.2 to
0.5.

(FS=0)->(SB=0) with confidence between 0.9 to
0.98.
Mgs,s5({Zoo, Z10}) = 0.27
Mps,s5({Zo1,Z10}) = 0.024
Mgs,s8({Zo0, Zo1, Z10}) = 0.006

mFS,SB({Zoo:Zn}) =0.18
Mps,s5({Zo1,Z11}) = 0.016 (55)
mFs,SB({Zoo'ZopZu}) = 0.004
Mgs,s8 ({Zo0, Z10, Z11}) = 0.45
Mgs,s8({Zo1, 210, Z11}) = 0.04
Mes,s8({Z00, Zo1, Z10,Z11}) = 0.01
Finally, for P with the state space 2p =
{p = 0,p = 1} we have,
(P=0)->(SB=1) with confidence between 0.6 to 0.8.
(P=1)->(SB=0) with confidence between 0.7 to 0.9.
mp sp({Zo0, Z10}) = 0.12
mP,SB({Zopzm}) =042
mp s5({Zo0, Zo1, Z10}) = 0.06
mP,SB({ZOO’le}) =0.04
mp sp({Zo1,Z11}) = 0.14 (56)
mp s5({Zo0, Zo1,Z11}) = 0.02
mP,SB({Zoo»Zlo:Zn}) = 0.04
mp s5({Zo1,Z10,Z11}) = 0.14
mP,SB({Zoo»Zm:Zw»Zn}) = 0.02
Now, we want to identify which variables of the
problem are more influential on the social bliss. To this
end, MAM(X;Y) and AM”P"‘(X; Y) are employed to
compute the dependency of the paired variables
(SA,SB), (HF,SB), (FE,SB), (FS,SB), and (P,SB). From
Table 8 it can be observed that HF has most influence to
the bliss and SA has minimum effect.

6 Conclusion

In this paper, the necessary conditions that were
suggested by Cobb and Shenoy are studied for nine
different mappings from DST to PT. The results
indicate that only the normalized plausibility
transformation can meet four conditions among five and
the rest of mappings satisfy none of the conditions.
Another important point is that the condition of
invariance with respect to the marginalization process
does not exist for any mappings. In this study, we took a
closer look at the projection method in DST, finding

(SA,SB) | (HF,SB) | (FE.SB) | (FS,SB) | (P,SB)
MAM(X;Y) | 0.0060 | 0.1757 | 0.0255 | 0.1218 | 0.1371
AMPPm(x;y) | 0.0044 | 0.1457 | 0.0192 | 0.1210 | 0.1152
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that some probabilistic information is lost in the
marginalization process. This problem solved by
introducing a Projection Set to retain the probabilistic
information. Then, BetP,, and PIP, which are
invariant under the marginalization process was
proposed. Similar to the AM that uses the pignistic
probability, these modified mappings were utilized in
two new ambiguity measures called MAM and
AMP"Pm. MAM and AMP"m  against AM are
subadditive because BetP,, and PIP,, are independent
from the marginalization process. Based on MAM and
AMP¥m_the concept of mutual ambiguity were defined
in DST. As an application, the mutual ambiguity
measures, MAM(X;Y) and AMP th m(X;Y) are
employed in a social bliss problem to compute the
dependency of the variables to the person’s happiness.
According to many applications of the mutual
information in PT, these mutual measures can be used
in the future by researchers in various applications.

Appendix A
Proof of proposition I:

We must prove that Zlyl BethXY((xl,yj)) =
BéthX (x1).We start from the left of term,

Y] Y] Qxy (A )
m
Z Bet me((xliy])) Z Z |A|
j=1 j=1 ASQxy
(x1,¥j)€EA
Y] /
B Z Z mxv(4)
2 /4]
j=1 ASNxy
(x1,75)€A(x1€4)=1
mexy (A
) mor(4)
& |A]
Soxy
(x1.7))EAH(x1€4)=]Y|
(A1)
Y]
Sy
/ /4]
j=1 ACxy
(x1.7j)€Ad(x1€4)=1
Y] 0
N Z Z mXY(A)
/ 4]
j=1 ASOxy
(x1,yj)€A#(x1€4)=|Y]|
B mixy )
|A]

BSNyx,x1EB AEPTStp
#(x1€4)=1

mxv(A)

+2
Al

BSNyx,x1EB AEPTStp
#(x1€4)=2

m2xy(4)

+ Y| ]

BSNyx,x1€EB AEPTSt|p
#(x1€4)=|Y|

m2xy (A). 4 (x, € A)
|A|

BS0x,x1€EB AEPTSt g

= BetP,,, (x;)

In line 3, for the first term we have,

j=1 ASNxy
(xl,yj)eA,#(xleA)=1
mxy(A)
ACS0xy |A|
(x1,y1)€AH(x1€4)=1 (A2)
méxy 9]
+ —_—
ASOxy |A|
(xl,y|Y|)EA,#(x16A)=1
mfxy ( A )
|A]

BCSNy,x1€B AEPTSt g
#(x1€4)=1

For the second term we have,

Y|

Mooy e
|A]
j=1 AS0xy
(x1.j)€A#(x1€4)=2
m-QXY(A)
Soxy
(x1,71)EA #(x1€A)=2 (A3)
Oxy
m A
+ mX(4)
Soxy
(x1.Y)v|)EA#(x1€4)=2
2 m®xv(4)
|A]
BCNy,x1€EB AEPTStp

#(x1€4)=2

This equation is explained with following example:

If Oy ={x;,x,} and Qy = {y;,y,} are the state
spaces of X and Y, the joint state space in DST is 2%xy
and has 2* = 16 members. For simplicity we use
another notation as follows: 2y, = 2y X2, =
{Z11,212,751,Z,,}. We have two term in the right side
of above equation as follows (because, |Y| = 2):
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m2xy(4) 1Yl Yl

Agzﬂ;(y |4 ;PZPmXY((xI,y]-)) = Z% Z mexy(A)

(x1,y1)€A #(x1€A4)=2 j=1  ASQxy
Y1 1 m-QXY (A ) (A4) (xl,y]-)eA

+ —_—
z |A| Y| /
ACSOxy

1
(X1,Y2)€A H#(x1€4)=2 = ZZ Z mxY(A) + -
Then, we must compute the summation of j=1 ASfxy

. ¥i)EA#(x1€4)=1
mxY (A) in two subsets a and 8 such that: (ayp)eattaen

a = {AlA c !ZXY’ (xl,yl) € A, # (xl € A) = 2}
_ {{le’ 21234211, 212, 213, {Z11, 213, Zzz}.} (A5)
{211,242, 251, 25}

+ > maxr(A)
ACS0xy
(x1.7j)€A(x1€4)=]Y]

and,
Y]
B ={AlA S Oy, (x1,y,) EA# (x; €A) =2} 1 oxv (A
— {{lei ZIZ}l {211, Zyy, Z21}! {lel Zyy, ZZZ}'} (A6) - Z Z m ( ) to
{211,242, 21, 25} T\ oyt ioncarer
1Yj)€A#(X1€A)=
It is clear that, vl (BI)
@ =B ={A| A€ PrSt,; and # (x; € 4) +z Z maxr(4)
=2and B C .Qx,xl EB } (A7) j=1 AC0xy
(x1.))€EAH(x1€4)=]Y]|
So, this two terms is equal to, 1
J— 2xy (A
maxY (4 A m(A)
2 - - 7 AS BSNyx,x1€EB AEPTStp
sedt s achidis |A] (A8) . #(x1€4)=1
#(x1€4)=2 +2 Z Z Z mﬂxy(A ) + ..
Similar to before for the third term we have, BCQOx,x,€B A€PTSt|p
#(x1€4)=2
1
- mix (4) HYlg Y Y maw)
Z |A| BCSNyx,x1EB AEPTStip
j=1 ASQyxy #(x1€4)=|Y|
Vi )EAM(x1€4)=]Y| 1
(x1y1) X1 — Z Z Z maxy(A ) # (xl c A)
_ mexy(4) BCx,x1EB A€PTSt, g
ASQxy |A| (A9) = Plpmx(xl)
(FrLy)eakxeA)=lY| 0 In line 3, for the first term we have,
N m*xy(A)
ACS0xy |A| Y]
(x1.y|v))EAH#(x1€8)=]Y] z mxr(4)
mixy 4) j=1 ACOxy
= Y| A (x1.7])EAH(x €4)=1
BCNy,x1€EB AEPTSt|p
#(x1€4)=|Y| = Z mﬂxy(A) + .-
So, the modified pignistic probability is invariant AS0xy (B2)
under the marginalization process. (x1,y1)€AH(x1€4)=1
+ Z m2xyY(A4)
Appendix B ASOyy
Proof of proposition 2: (x1.)v))EA#(x1€4)=1
w t that YL PIP,. ((epyp) =
e must prove tha 21_1 mXY(( 1 y])) _ e (4)

PZPmX (x1).We start from left of term,
BCSNy,x1€B AEPTSt g
#(x1€4)=1
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For the second term we have

Sy e

j=1 AC0xy
(x1,yj)€A#(x1€4)=2

= Z mnXY(A ) + .-
AC0xy
(x1,y1)EA#(x1€4)=2 (B3)

AS0xy
(x1.¥)y))EAH#(x1€4)=2

=2 Z mixy (4)

BSNyx,x1EB AEPTStp

#(x1€4)=2

This equation is explained with the similar example
given in the appendix A.

If 2y ={x;,x,} and Qy = {y;,y,} are the state
spaces of X and Y, the joint state space in DST is 29Xy
and has 2* = 16 members. For simplicity we use
another notation as follows: Qyy =0y Xy =
{Z211,Z15,751,7,,}. We have two term in right side of
above equation as follows (because, |Y| = 2):

mixy 4)
AShyy
(x1,y1)€AH#(x1€A4)=2
(B4)
+ maxr (4)
AShyy

(x1,Y2)€EA#(x1€EA)=2

Then, we must compute the summation of
m2xY (4 ) in two subsets a and 8 such that:

a = {A|A S xy, (x1,y1) €A # (x; € A) =2}
— {{le' 212}; {lev ZlZ' ZZl}' {le, Z12' ZZZ}'} (BS)
{lei ZlZ’ ZZI' ZZZ}

And,

B ={A|A S Oy, (x1,¥,) €A # (x, € A) = 2}
_ {{211' 21234211, 212, 213 {Z11, 212, Zzz},} (B6)
{211,212, 251, Z3}

It is clear that,
a=p={A| A€ PrStizgand # (x; € A)
=2and B C Qy,x, € B} (B7)

So, this two terms is equal to,

2 E m2xy(A4)
BSNyx,x1EB AEPTStp
#(x1€4)=2

(B8)

Similar to before we have,

Y|

Sy e

j=1 AC0xy
(xl,yj)EA,#(xleA)=|Y|

= Z mixy (A)+ -
ASOxy
(x1.y1)EAH#(x1€A)=]Y| (B9)
+ Z maxy (4)
ASOxy
(x1.y)v|)EA#(x1€4)=]Y|

=il Y ) mia)
BS0Nx,x1€EB A€EPTSt|g
#(x1€4)=]Y|
So, the modified normalized plausibility
transformation is invariant under the marginalization
process.
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