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Abstract: Automatic signal type identification (ASTI) is an important topic for both the 
civilian and military domains. Most of the proposed identifiers can only recognize a few 
types of digital signal and usually need high levels of SNRs. This paper presents a new high 
efficient technique that includes a variety of digital signal types. In this technique, a 
combination of higher order moments and higher order cumulants (up to eighth) are 
proposed as the effective features.  A hierarchical support vector machine based structure is 
proposed as the classifier. In order to improve the performance of identifier, a genetic 
algorithm is used for parameters selection of the classifier. Simulation results show that the 
proposed technique is able to identify the different types of digital signal (e.g. QAM128, 
ASK8, and V29) with high accuracy even at low SNRs.  
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1 Introduction1 
ASTI plays an important role in various applications. 
For example, in military applications, it can be 
employed for electronic surveillance, monitoring; in 
civil applications, it can be used for spectrum 
management, network traffic administration, signal 
confirmation, software radios, multidrop networks, and 
intelligent modems. The early researches were 
concentrated on analogue signals, the recent 
contributions in the subject focus more on digital types 
of signals. Primarily, this is due to the increasing usage 
of such types of signal in novel communication 
applications. 
Generally, ASTI techniques can be categorized in two 
main principles: the decision theoretic (DT) and the 
pattern recognition (PR). DT techniques use 
probabilistic and hypothesis testing arguments to 
formulate the recognition problem [1-4]. The major 
drawbacks of DT techniques are their too high 
computational complexity, lack of robustness to the 
model mismatch, the difficulties of forming the right 
hypothesis as well as careful analysis that are 
required to set the correct threshold values. However, 
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PR techniques don’t need such careful treatment. They 
are simply implemented. PR techniques can be further 
divided into two main subsystems: the feature extraction 
and the classifier [5-18]. The former extracts the 
features and the latter determines the membership of 
signal. 
Mobasseri [5], proposed an identifier that is based on 
the constellation shape. He used a Fuzzy-C means 
clustering method for classification of the PSK4, PSK8  
and QAM16. The accuracy rate of the identification 
exceeded 90% for SNR>5dB. This method is sensitive 
to the initialization of clustering method. In [9], the 
authors proposed a technique for identification ASK2, 
ASK4, PSK2, PSK4, FSK2 and FSK4 signals. The 
classifier is based on a decision flow. These digital 
signal types have been identified with success rate about 
90% at an SNR of 10 dB. In [10], the authors proposed 
a digital signal type identification technique based on 
elementary fourth-order cumulant. The authors were 
claimed that these features can separate a lot of digital 
signals. When it is used for identification of the BPSK, 
PAM4, QAM16 and PSK8, the success rate was about 
96% at SNR=10 dB. In [11], the authors proposed a 
technique to discriminate among ASK, 4DPSK, 
16QAM and FSK digital signals. The chosen features 
are: the kurtosis of the signal, the number of peaks in 
the phase probability density function (PDF) and the 
mean of the absolute value signal frequency. It is used a 
fuzzy classifier. For SNR> 5dB, the identifier worked 
properly. When SNR is less than 5dB, the performance 
was worse. In [12], for the first time, Ghani and 
Lamontagne proposed using a multi-layer perceptron 
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(MLP) neural network with back-propagation (BP) 
learning algorithm for automatic signal type 
identification. They showed that neural network 
classifier outperforms other classifiers such as K-
Nearest Neighbor (KNN). In [14], Nandi and Azzouz 
introduced two classifiers: neural network classifier and 
fixed threshold classifier, for analog and digital 
modulation recognition. They showed that the neural 
network classifier has better performance than the 
threshold classifier. The overall success rate is over 96% 
at the SNR of 15 dB. In [15], the authors proposed an 
identifier for recognition of PSK2 and PSK4. In this 
identifier a wavelet packet analysis (WPA) as a feature 
extractor and a multiplayer perceptron (MLP) neural 
network that applies back-propagation (BP) with 
momentum and adaptive learning rate. This identifier 
showed a success rate higher than 92% at SNR>5dB. In 
[16], the authors proposed an identifier for identification 
of PSK2, PSK4, PSK8, OQPSK, MSK, QAM16, 
QAM64, FSK2 and FSK4 signal types. The features 
chosen to characterize the signal types are the mean and 
the next three moments of the instantaneous 
characteristics. They used different classifiers and 
showed that the artificial neural network has better 
performance than K-Nearest Neighbor (KNN) classifier 
and the well known binary decision trees. They reported 
a success rate of 90% with SNR ranges 15-25 dB. 
However, the performances for lower SNRs are reported 
to be less than 80%. In [17], the authors proposed an 
identifier based on cyclic spectral features for 
identification of AM, USB, LSB, FM, ASK, FSK, 
BPSK, QPSK and SQPSK. It was claimed that cyclic 
spectrum posses more advantage than power spectrum 
in signal type recognition. A full-connected 
backpropagation neural network is used for 
classification in this research. The success rate of this 
identifier is reported around 90% with SNR ranges 5-25 
dB. 
It can be found from the mentioned explanations that 
those techniques that use artificial neural networks 
(ANNs) as the classifier have better performance than 
others. However, with regard to effectiveness of ANNs, 
there are some problems. For example ANNs have 
limitations on generalization ability in low SNRs. In 
recent years, support vector machines (SVMs), based on 
statistical learning theory are gaining applications in 
area of pattern recognition because of excellent 
generalization capability. In [18], we have proposed an 
identifier that uses a binary SVM as the classifier. The 
accuracy of the proposed identifier is exceeded 98% for 
SNR>4dB.In this paper we propose a new and simple 
multiclass SVM-based classifier. It has a hierarchical 
structure. 
From the published works it can be found that those 
identifiers, which use the statistical features, are able to 
include the digital signal types such as QAM. However, 
the features that are yet used didn’t enable the identifiers 
to include the types of digital signals like QAM 32, 

V29, Star-QAM8, and ASK8 etc. In this paper, we 
propose a combination of higher order moments and 
higher order cumulants (up to eighth) as the features. 
Suitable parameters of SVMs can improve the 
performance of identifier. We have proposed a genetic 
algorithm (GA) in order to selection the parameters of 
SVMs. 
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Fig. 1 General scheme of the proposed identifier 
 
Fig.1 shows the general scheme of the proposed 
identifier. The preprocessing module performs: the 
rejection of noise outside of signal bandwidth, carrier 
frequency estimation, recovery of complex envelope, 
etc. This module is a common stage and we don’t more 
explain. Section 2 presents the feature extraction 
module as well as the digital signal types that are 
considered in this paper. Section 3 describes the 
classifier module. Optimization problem using GA is 
presented in Section 4. Section 5 shows some 
simulation results. Finally, Section 6 concludes the 
paper. 
 
2 Digital Signal Types and Features Extraction  
In digital communications, according to the changes in 
the message parameters, we have four main digital 
signal types, FSK, ASK, PSK and QAM that most of 
them are used in M-ary form [19]. Different types of 
digital signal have different characteristics. Therefore 
finding the proper features for identification of them, 
particularly in case of higher order and/or non-square 
types, is a serious problem. Choosing 'bad' features may 
make it impossible even for an advanced classifier to 
perform a simple task, while choosing 'good' features 
may make it possible for simple classifier to solve 
complex problems [20]. 
In this paper the considered digital signal types (CDST) 
are: ASK2, ASK4, ASK8, PSK2, PSK4, PSK8,  Star-
QAM8, V29, QAM8, QAM64, QAM128,  that for 
simplifying the indication, we substitute them with P1, 
P2, P3, P4, P5, P6, P7, P8, P9, P10, and P11 respectively. 
Among the different features that we have computed 
and experimented, the combination of higher order 
moments and higher order cumulants (up to eighth) 
achieve the highest identification performances for 
CDST. These features can provide a good way to 
describe the shape of the probability density function. 
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Following subsections, briefly describe these features 
and computing method of them. 
 

A. Moments 
Probability distribution moments are a generalization of 
concept of the expected value. Recall that the general 
expression for the thi  moment of a random variable is 
given by [21]: 
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where µ  is the mean of the random variable. The 
definition for the thi  moment for a finite length discrete 
signal is given by: 
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where N is the data length. In this study signals are 
assumed to be zero mean. Thus: 
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Next, the auto-moment of the random variable may be 
defined as follows: 
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where p  is called the moment order and ∗s  stands for 
complex conjugation of s . 
Assume a zero-mean discrete based-band signal 
sequence of the form kkk jbas += . Using the definition 
of the auto-moments, the expressions for different 
orders may be easily derived. For example: 
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B. Cumulants 

Consider a scalar zero mean random variable s  with 
characteristic function: 

}e{E)t(f̂ jts=  (6) 

Expanding the logarithm of the characteristic function 
as a Taylor series, one obtains: 
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The constants rk  in (7) are called the cumulants (of the 
distribution) of the s . The symbolism for thp order of 
cumulant is similar to that of the thp  order moment. 
More specially: 
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For example: 
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C. Relation between Moments and Cumulants 
The thn order cumulant is a function of the moments of 
orders up to (and including) n. Moments may be 
expressed in terms of cumulants as: 
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where the summation index is over all partitions 
)v,...,v(v q1=  for the set of indices )n,...,2,1( , and q  is 

the number of elements in a given partition. Cumulants 
may be also be derived in terms of moments: 
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where the summation is being performed on all 
partitions )v,...,v(v q1=  for the set of indices )n,...,2,1( . 
For example, assume 3n = . In such a case, the available 
set of indexes is )3,2,1( , and four different types of 
partitioning may be obtained for that set: {(1,2,3)} 
leading to q=1, {(1), (2,3)} leading to q=2, {2, (1,3)} 
leading to q=2, {3, (1,2)} leading to q=2, {(1), (2), (3) 
}leading to q=3. Therefore: 
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In the same manner cumulants expressions up to eighth 
order can be computed. For example: 
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We have computed all of the features for CDST. Table1 
shows some of these features for a number of 
considered digital signal types. These values are 
computed under the constraint of unit variance in noise 
free. 
 

Table1 Some of the features for a number of digital 
signal types 

 P1 P4 P5 P7 P10 
M41 2 1 0 0 0 
M61 4 1 -1 2.92 -1.3 
C63 4 16 4 .160 1.79 
C80 78 -244 34 -88.9 -11.5 
C82 78 -244 -46 63.31 -27.1 

 
3 Classifier 
We have proposed a multiclass SVM based classifier 
(MCSVMC) that has a hierarchical structure. SVM is a 
supervised machine learning method that was originally 
developed for binary classification problems, but it can 
be used for multiclass classification [22]. SVM uses 
structural risk minimization (SRM) principle whereas in 
ANN, empirical risk minimization (ERM) is used [23]. 
The difference in risk minimization leads to better 
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generalization performance for SVMs than ANNs. 
Following subsections describe the binary SVM 
classifier and multiclass SVM classifier.  
 

A. Binary SVM 
SVM performs classification tasks by constructing 
optimal separating hyperplanes (OSH). OSH maximizes 
the margin between the two nearest data points 
belonging to two separate classes.  
Suppose the training set, 

}1,1{y,Rx,l,....,2,1i),y,x( d
ii +−∈∈=  can be separated by 
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 is weight vector 
and b is bias. If this hyperplane maximizes the margin, 
then the following inequality is valid for all input data: 
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The margin of the hyper-plane is w/2
 . Thus, the 

problem is the maximizing of the margin by minimizing 
of 2w  subject to (14). This is a convex quadratic 
programming (QP) problem and Lagrange multipliers 
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After minimizing PL with respect to w and b , the 
optimal weights are given by: 
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The dual of the problem is given by [22]: 
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points, for which the equality in (14) holds, are called 
support vectors (SV) that can satisfy 0iα . The optimal 
bias is given by: 
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for any support vector ix . The optimal decision function 
(ODF) is then given by: 
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where *
iα ’s are optimal Lagrange multipliers. 

For input data with a high noise level, SVM uses soft 
margins can be expressed as follows with the 
introduction of the non-negative slack 
variables l,...,1i,i =ξ : 
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2 2/ ξw subject to (20), where C  is the penalty 
parameter, which controls the tradeoff between the 

complexity of the decision function and the number of 
training examples, misclassified. 
In the nonlinearly separable cases, the SVM map the 
training points, nonlinearly, to a highdimensional 
feature space using kernel function ),( ji xxK

 , where linear 
separation may be possible. On of the most famous 
kernel functions is Gaussian radial basis function 
(GRBF) given by (21). 
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where σ  is the width of the RBF kernel. After a kernel 
function is selected, the QP problem is: 
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After training, the following, the decision function, 
becomes: 
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The performance of SVM depends on several free 
parameters like penalty parameter(C) and the kernel 
parameter. These parameters are called hyper-
parameters. In this paper we have used the GRBF, 
because it shows better performance than other kernels. 
Thus hyper-parameters are: C  and σ . 
 

B. Multiclass SVM-based Classifier 
There are two widely used methods to extend binary 
SVMs to multi-class problems [24]. One of them is 
called the one-against-all (OAA) method. Suppose we 
have a P-class pattern recognition problem, P 
independent SVMs are constructed and each of them is 
trained to separate one class of samples from all others. 
When testing the system after all the SVMs are trained, 
a sample is input to all the SVMs. Suppose this sample 
belongs to class P1 ideally only the SVM trained to 
separate class P1 from the others can have a positive 
response. Another method is called one-against-one 
(OAO) method. For a P-class problem, P (P - 1)/2 SVMs 
are constructed and each of them is trained to separate 
one class from another class. Again, the decision of a 
testing sample is based on the voting result of these 
SVMs.  
In this paper we have proposed a novel simple effective 
MCSVM. It has a hierarchical structure. The received 
signal is fed to the first SVM (SVM1). SVM1 
determines the received signal is belongs to what group. 
This process will be continued in the same manner until 
the signal types will be identified by the last SVMs. 
Fig.2 shows the scheme of hierarchal MCSVM. One of 
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the advantages this structure is that the number of SVMs 
is less than in cases of OAO and OAA.  

 

S V M 4  

S V M 8  

S V M 6  

S V M 3  

S V M 7  

S V M 1  P S K 2  

S V M 2  

S tar-Q A M 8  

A S K 4  

P S K 4  

P S K 8  

A S K 2  A S K 8  

V 2 9  S V M 1 0  

Q A M 1 2 8  

S V M 5  

Q A M 6 4  S V M 9  

Q A M 8  

 
Fig. 2 The proposed Classifier with a hierarchical 
structure 
 
4 Parameters Selection using GA 
Finding the optimal value of hyper-parameters improves 
the performance of identifier. GAs with their 
characteristics of high efficiency and global 
optimization are widely applied in many areas. In this 
paper we have used GA for parameters selection of 
SVMs. GA is a stochastic optimization algorithm which 
adopts Darwin’s theory of survival of the fittest [25]. To 
apply Gas, one has to consider the following issues: the 
encoding scheme, the methodology to produce the 
initial population, the fitness function and the genetic 
operators such as reproduction, crossover and mutation.  
How to encode a solution of the problem into a 
chromosome is a key issue for genetic algorithms. 
According the SVM parameters selection is an 
optimization problem with constraint, the real coded 
scheme of variables in a GA and a search operator that 
respects contiguous regions in the search space may be 
able to perform better than binary encoded scheme in 
constrained optimization problems with contiguous 
search space. Hence, real-encoded scheme is selected as 
the representation of the parameters in this paper. The 
research space of these parameters is ]51:5:1[∈C , 

]2:1.0[∈σ .  
In a GA, the selection of individuals to produce 
successive generations plays a vital role. There are 
several ways to select a new intermediate population. In 
this paper, we apply the elitism. Elitism is the name of 
the method that first copies the best chromosome (or 
few best chromosomes) to the new population. The rest 
of the population is constructed in ways described. 
Elitism can rapidly increase the performance of GA, 
because it prevents a loss of the best-found solution. In 
our application, we require that the best two strings are 
always to be included in the new population. This gives 
a chance to reevaluate their capabilities and improves 
GA convergence. 
Genetic operators are the basic search mechanism of the 
GA for creating new solutions based on the existing 
population. The operators are two basic types: mutation 

and crossover. Crossover produces two new individuals 
(offspring) from two existing individuals (parents). 
Crossover occurs with a crossover probability of CP . A 
point is chosen for two strings where their genetic 
information’s are exchanged. In this paper, we use one-
point crossover, and typical value of CP  of 0.75. 
Mutation is intended to prevent falling of all solutions in 
the population into a local optimum of the solved 
problem. Mutation operation randomly changes the 
offspring resulted from crossover. In this paper, 
mutation occurs with typical mutation probability of 
0.1. 
GA will rate its own performance around that of the 
evaluation (fitness) function. The fitness function used 
in the present work returns the number of correct 
identification of the test data. The better identification 
results give rise to higher fitness index. To start the 
solution process, the GA has to be provided with an 
initial population. In this paper the random generation of 
initial solutions for the population is used [26]. The 
solution process continues from one generation to 
another selecting and reproducing parents until a 
termination criterion is satisfied. Convergence of a GA 
can be defined in several ways. In our application, the 
maximum number of generation is used as the 
terminating criterion. 
 
5 Simulation studies 
This section presents some simulation results of the 
proposed technique (identifier). All of the digital signal 
types are simulated in MATLAB environment. The 
simulated signals were also band-limited and Gaussian 
noise was added according to SNRs, –3, 0, 3, 6, 9, 12, 
and 18 dB. For each modulation type has 1320 
realizations of 2048 samples. Among the features that 
we have computed in Section 2, Table2 shows the 
chosen features for each SVM. These features achieve 
the best results for signal type identification.  
 
Table 2 Chosen features for each SVM 

SVM’s Number Chosen features 
SVM 1 C83 
SVM 2 M41 
SVM 3 M41 
SVM 4 C80 
SVM 5 C80 , M61 
SVM 6 C63 
SVM 7 C82 
SVM 8 C63 
SVM 9 C80 , M84 
SVM 10 C80 , C82 

 
A. Performance without Optimization 

Based on some experiments, the values σ =1 and C=10 
are selected for all SVMs. Table 3 shows the correct 
matrix at SNR= 3dB. Table 4 shows the identification 
results at different SNR values. It can be seen that the 
performance is generally very good even at low SNRs. 
Principally, this is due the two facts: chosen novel 
features and novel classifier. The chosen features have 
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effective properties in signal representation. On the 
other hand, the SVM based classifier has high 
generalization ability. 
 
Table 3 Correct matrix of identifier without optimization 
at SNR=3dB 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 
P1 93.1           
P2  94.2          
P3   94.3         
P4    97.5        
P5     96.1       
P6      91.2      
P7       90     
P8        90.2    
P9         90.3   
P10          91.5  
P11           90.2 

 
Table 4 Performances of identifier (without optimization) 
at different SNRs (%) 

SNR Training Testing 
-3 85.92 85.28 
0 92.12 91.78 
3 93.95 93.15 
6 97.28 97.14 
9 97.52 97.45 

18 98.63 98.42 
 
In order to compare the performance of hierarchical 
SVM-based classifier with another classifier, we have 
considered a hierarchical MLP-based classifier that 
SVMs are replaced with MLP neural networks. The 
simulation setups are the same. We name this technique 
as TECH2. Fig. 3 shows the performances f two 
identifiers in different SNR values that term PC means 
the percentage of correct classification. It can be seen 
that our proposed technique (PROTECH) that uses 
SVM in the structure of classifier has a better 
performances than of TECH2, particularly for low SNR 
values. When the SNR is low, TECH2 shows poor 
performance while in higher SNRs the percentage of 
correct classification is high. The construction of neural 
network in low SNRs is not proper, which results in low 
generalization ability. In higher SNRs the features are 
proper and closer to the noiseless state and it is easier to 
construct the neural network and results in high 
identification percentage. 
 

B. Performance with Applying the Genetic 
Algorithm 

In this subsection we apply the genetic algorithm for 
model selection of SVMs. Table 5 shows the 
performances of the optimized identifier for various 
SNRs. It can be seen that the optimization improves the 
performances of identifier for all SNRs; especially in 
lower SNRs. Table 6 shows the optimum parameters of 
SVMs that are used in hierarchical structure. Table 7 
indicates the correct matrix of identifier at SNR= 3dB. 
Also, we have evaluated the performance of the 
optimized identifier at a high SNR value. Table 8 

indicates the training performance of identifier at SNR= 
39dB. The classifier can show up to 100% accuracy. 

 
Fig. 3 Performance comparison of PROTECH and 
TECH2 at different SNRs 
 
To indicate the effectiveness of chosen features, we 
have used the features that have been introduced in [12]. 
The structure of the classifier and the simulation setup 
are the same. We name this technique as TECH3. Fig.4 
shows the performances of two identifiers. Results 
imply that our chosen have highly effective properties in 
signal representation. 

 
Fig. 4 Performance comparison of PROTECH and 
TECH3 at different SNRs 
 
Table 5 Performances of identifier with applying the 
genetic algorithm at different SNRs 

SNR (dB) Training Testing 
-3 92.47 91.93 
0 94.56 93.54 
3 97.15 96.55 
6 98.83 98.51 
9 99.02 98.82 

18 99.28 99.18 
 
Table 6 Optimum parameters of SVMs 

SVM’s Number C  σ  
SVM 1 10 1.2 
SVM 2 21 1 
SVM 3 16 0.8 
SVM 4 11 1 
SVM 5 16 0.9 
SVM 6 21 1.5 
SVM 7 16 0.8 
SVM 8 26 1.1 
SVM 9 46 1.4 
SVM 10 6 1.2 
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Table 7 Confusion matrix of optimized identifier at 
SNR=3dB 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 
P1 97.2           
P2  96          
P3   96.8         
P4    100        
P5     98       
P6      96.2      
P7       95     
P8        95.1    
P9         95.6   
P10          95.7  
P11           95 

 
Table 8 Confusion matrix of optimized identifier at 
SNR=39dB 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 
P1 99.8           
P2  100          
P3   100         
P4    99.6        
P5     99.7       
P6      100      
P7       99.8     
P8        99.7    
P9         100   
P10          99.6  
P11           99.5 

 
As mentioned in [6], direct comparison with other 
works is difficult in signal type identification. This is 
mainly because of the fact that there is no single unified 
data set available. Different setup of digital signal types 
will lead to different performance. In comparison with 
other works that we are mentioned, the identifier that we 
introduced in this paper has many advantages. This 
identifier has a simple structure and includes a variety of 
digital signal types and shows great generalization 
ability for identification of ASK2, ASK4, ASK8, PSK2, 
PSK4, PSK8,  Star-QAM8, V29, QAM8, QAM64 and 
QAM128 digital signal types: It has a success rate of 
around 92% at SNR= 0 dB. The performances of the 
identifier is higher than 98% for SNR>6dB. None of the 
previous works have such a performance. The proposed 
identifier is fast in terms of training time. If it were 
known that changes have occurred, for example, the 
identifier can easily be trained. 
 
6 Conclusions 
ASTI has seen increasing demand in different 
applications. Most of techniques can only identify a few 
kinds of digital signal and usually need high SNRs. This 
paper presents a high efficient technique for 
identification of digital signal types. In this technique a 
hierarchical multiclass classifier based on SVMs is 
proposed. The inputs of this classifier are the 
combination of higher order moments and higher order 
cumulants. Each SVM use the features vector and maps 
the input vectors non-linearity into high dimensional 
feature space and constructs the optimum separating 
hyperplane in the space to realize signal recognition. 

This technique avoids the overfitting and local 
minimum. Chosen features of the higher order moments 
and the higher order cumulants have high ability to 
signal representation. Optimization using GA, improves 
the performance of system especially in lower SNRs. 
The proposed identifier includes different kinds of 
digital signal and can separate them with high accuracy 
even at low SNR values.  
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