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Abstract: One of the important problems in OCR systems is discrimination of fonts in 
machine printed document images. This task improves performance of OCR systems by 
providing some information about document logical structure or increasing recognition 
rates. Proposed methods for font discrimination in this paper are based on various fractal 
dimensions. First, some predefined fractal dimensions were combined with directional 
methods to enhance font differentiation. Then, a novel fractal dimension (FTCPH) was 
introduced in this paper which considers font recognition as texture identification. This new 
descriptor is independent of document content and can be used for font discrimination in 
different languages. Experimental results on different pages, written by several types of 
fonts, show that fractal geometry can overcome the complexities of font recognition 
problem. 
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1 Introduction1 
Image processing and computer vision play a vital role 
in our daily life. They have found a wide range of 
application from information security [1] and processing 
[2] to video surveillance [3]. Optical Character 
Recognition (OCR) was one of the very first 
applications of computer vision industry with tangible 
benefits. 

Converting historical books, newspapers, and other 
types of documents into electronic scripts through 
scanners is an essential task in digital libraries. 
Nowadays, OCR systems have been utilized by many 
individuals to change these scanned text images into 
machine-encoded forms [4]. 

Typical OCR systems have been made of several 
modules such as preprocess, layout analysis, character 
recognition and etc. Since character shapes in different 
fonts have different appearance, Optical Font 
Recognition (OFR) is a new module recently added to 
OCR systems. 

Previous font recognition methods can be classified 
into two groups [5]: typographical and textural features. 
Typographical features include features such as 
character skews, height and width, projections in upper, 
centre and lower zones of the line and etc. Nowadays 
typographical based algorithms are not so popular 
because of some disadvantages such as being sensitive 
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to noise and requiring high resolution scanned images. 
Some typographical features are proposed in [6-8]. 

Wavelet transform, Gabor filter, Sobel-Robert 
gradients, and Fractal dimensions are the most famous 
textural features used for OFR [5, 9-11]. Previous 
efforts demonstrated that textural features are more 
applicable than typographical. 

Although font recognition has been performed in 
many languages, unfortunately it is still in the beginning 
steps in Farsi/Arabic languages. Lack of OFR module in 
Farsi/Arabic OCR systems is partly due to the 
morphological complexities of these languages scripts. 
Some of the most important challenges are connection 
among characters in words, overlap among characters of 
words, variety of different shapes of characters in 
beginning, middle and end of words. According to Fig. 
1, there are more than 100 character shapes in 
Farsi/Arabic scripts. 

As mentioned before, font recognition is a 
complicated task especially in Farsi/Arabic languages. 
Since fractal geometry overcomes complexities in other 
fields, we decided to utilize it for font discrimination 
purpose. 

In 1983, Mandelbrot established fractal geometry to 
describe complex phenomenons that Euclidean 
geometry had been failed. Because Euclidean geometry 
only deals with integer dimension objects but fractal 
geometry deals with fractional objects. 

Over the last years, fractal geometry has been 
applied frequently in many applications such as pattern 
recognition, texture analysis, segmentation and etc. 
Various methods were proposed to estimate Fractal 
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Dimension (FD) of an object. In this article some of 
them will be utilized for font recognition. 

All the fractal objects have these three properties 
[12]: being self-similar, being complicated in tiny 
scales, having fractured dimension. Self-similarity (the 
first property) in fractal objects can be categorized into 
three categories: perfect self-similar objects such as 
Broccoli cabbage, imperfect self-similar objects such as 
mountains, statistical self-similar objects. 

Researches show that a huge number of environs 
objects are located in statistical self-similar objects 
category. The obtained experiments in [11] 
demonstrated that there are fractal properties in text 
images. 
 
2 Related Works 

In this section a review of some textural algorithms 
for font recognition will be presented. 

Multi-channel Gabor filtering technique has been 
shown to be particularly useful for analyzing text 
images and it was proposed by Zhu et al to identify 
different English fonts [10]. The spatial frequency and 

orientation contents represent the features of each 
texture. They used pairs of isotropic Gabor filters with 
quadrature phase relationship. From an isotropic 
Gaussian function, even and odd symmetric Gabor 
filters hୣሺx, yሻ, h୭ሺx, yሻ are obtained. For a given input 
image, the outputs of Hୣሺu, vሻ and H୭ሺu, vሻ are 
combined to provide a single channel output. 

Yang et al in [13] proposed a font recognition 
method based on Empirical Mode Decomposition 
(EMD) method in which any complicated dataset can be 
decomposed into finite (often smaller) number of 
intrinsic mode functions. They applied Hilbert-Huang 
transform on document image and performed font 
recognition. Hilbert-Huang Transform (HHT) is an 
analysis method used for nonlinear and non-stationary 
data. By analyzing and comparing a great number of 
Chinese characters, five basic strokes had been selected 
to characterize stroke features of Chinese fonts. Based 
on them, stroke feature sequence of a given text block 
are calculated. 

Ding et al in [9], employed a 3-level wavelet 
transform for Chinese font identification. They applied a 
wavelet transform on character images and extracted 
wavelet features from the transformed images. After a 
Box-Cox transformation and LDA (Linear Discriminant 
Analysis) process, the discriminating features for font 
recognition were obtained. 

Khosravi and et al [5] proposed a new feature 
extraction method for Farsi font recognition in line 
level. The proposed feature was based on image 
gradients in 16 directions using Sobel and Roberts 
operators. Since Sobel is a horizontal/vertical filter and 
Roberts is diagonal, combination of these two operators 
improves font recognition performance. They claimed 
that their proposed algorithm requires much less 
computation time. 

Sami Ben Moussa et al [11] used two FD methods 
namely Box Counting Dimension (BCD) and Dilation 
Counting Dimension (DCD) for ten Arabic font 
recognition. Box Counting is widely used due to 
relatively simple mathematical calculation and 
estimation. The binary image is divided into a grid of 
boxes of size ‘r’ and number of boxes which are not 
empty is counted as ܰሺݎሻ. These steps are repeated for 
different amounts of ‘r’. The slope of the linear 
regression of the graph log  Nሺrሻ versus logሺ1/ݎሻ is 
BCD FD as Eq. (1). 

BCDሺrሻ ൌ lim
୰՜଴

log Nሺrሻ
logሺ1/rሻ  (1) 

In DCD, each occupied point is surrounded by a 
square of size d. The size of these squares is then 
gradually enlarged and then the total surface V(d) 
covered at each stage is measured. By dividing this total 
surface by the surface of a test square (d), we get an 
approximation of the number of elements V(d) 
necessary to cover the whole. DCD FD can be 
calculated through Eq. (2). 

 

Fig. 1 Farsi characters in different situations. 
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ቐ
ߠ ൌ tanିଵሺ

ܾ
ܽሻ

ܴ ൌ ඥܽଶ ൅ ܾଶ
 (13) 

2. Quantize the whole area into n beans (see Fig. 9). 
3. Quantize each bean into k radius 0 ൏ ܴ ൏ R୫ୟ୶. 
4. Build a polar histogram for the radiuses and angles 

obtained from step 1. The process is shown in Eq. 
(14) for the radius ܴ ൌ ܴ௡. 

Area Scale  ՜  ߠ
(number of bean) ݄݅݉ܽݎ݃݋ݐݏ

(14) 
ଵߠ ൏ ߠ ൏  ଶ 1 ݄௡ଵߠ
ଶߠ ൏ ߠ ൏  ଷ 2 ݄௡ଶߠ
ଷߠ ൏ ߠ ൏  ସ 3 ݄௡ଷߠ

 ڭ  ڭ ڭ
௠ߠ ൏ ߠ ൏  ௠ାଵ ݉ ݄௡௠ߠ

In the other words, for each radius located between 
two quantized values ܴ௡ ൏ ܴ ൏ ܴ௡ାଵ and each phase 
located between two quantized values ߠ௠ ൏ ߠ ൏  , ௠ାଵߠ
the nth  row and mth column is increased one unit. 
5. FTCPH FD is obtained through Eq. (15). 

ܦ ൌ
݃݋݈  ሺ݈݃݋ሺ݄௡௠ሻሻ

 ሺ݉ሻ  (15)݃݋݈

where h୬୫ is polar histogram of nth radius and m is 
number of beans. We examined various amounts of ݊ 
and ݇  and the best results obtained for  ݊ ൌ 32 and 
݇ ൌ 6. 

Using described algorithm for each ܴ௡(row) there 
are 32 numbers (columns) which will be utilized for FD 
calculations. For example, ܦଵ is estimated through the 
slop of a linear regression between ݈݃݋ሾ݈݃݋ ሺ݄ଵ௜ሻሿ 
and ݈݃݋ሾ݅ሿ as shown in Eq. (16). 
 
Area Scale  ՜  ݉ܽݎ݃݋ݐݏ݄݅ ߠ 

(16) 

ଵߠ ൏ ߠ ൏  ଶ 1 ݄ଵ,ଵߠ
ଶߠ ൏ ߠ ൏  ଷ 2 ݄ଵ,ଶߠ
ଷߠ ൏ ߠ ൏  ସ 3 ݄ଵ,ଷߠ

 ڭ ڭ ڭ   
ଷଶߠ ൏ ߠ ൏  ଵ 32  ݄ଵ,ଷଶߠ

 
,ଶܦ ,ଷܦ ڮ ,  ௡ can be estimated with the sameܦ

algorithm. The FTCPH feature vector is 6D. 
 
5 Data Sets and Data Reconstruction 

Most of the previous OFR algorithms recognize font 
type in a text block, consisting several text lines. Based 
to our knowledge, the only line level OFR algorithm 
and also the only existent Farsi OFR dataset was created 
by H. Khosravi et al [5]. Since our proposed algorithms 
also deal with font recognition in text blocks, 
Khosravi’s dataset cannot be used directly in this paper. 
Since Farsi and Arabic languages have common 
alphabets, we utilized ALPH-REGIM dataset which S. 

B. Moussa et al utilized in their paper [11]. Moreover, 
Latin ALPH-REGIM dataset was used to compare the 
results with previous Latin OFR algorithms. 

Since size of primary text blocks in these two 
datasets were different, for achieving better results, we 
build 512×512 text blocks from them. The utilized 
reconstruction algorithm is similar to that described by 
H. Khosravi et al in [5]. 

These steps are as follows: 
- Find all lines in the input text image and separate 

them. 
- Align separated lines in a straight arrangement. 
- Segment the obtained lines into 512 pixel width. 
- Concatenate the segmented lines vertically to 

construct 512ൈ512 image blocks. 
Due to lack of enough space, some samples with the 

size of 128ൈ128 text block obtained from Fig. 10 and 
Fig. 12 are respectively shown in Fig. 11 and Fig. 13. 
 
6 Experimental Results 

In this section the performance of some recent 
published font recognition systems, [5, 10, 11], are 
compared with the proposed methods. The comparison 
includes length of feature vector, speed, robustness, 
recognition rate and etc. 

We used fractal dimension feature extraction 
methods, and RBF and KNN classifiers for font 
recognition. All experiments are performed on ALPH-
REGIM Arabic and English datasets. After 
reconstructing database (as explained in section 5) we 
used ଶ

ଷ
 samples for training and the rest for testing. 

 
6.1  Feature Vector Length 

High-dimensional feature set is one of the problems that 
many pattern recognition algorithms suffer from it. Such 
redundant feature vectors make the identification 
 
 

 
Fig. 9 The polar histogram diagram. 
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Table 3 Recognition rates of different Methods for English 
fonts recognition. 

Technique Classifier Recognition Rates 
[%] 

Gabor [10] WED 99.1 
Directional Filter 

Bank-BCD 
RBF 98.49 
KNN 98.03 

DLA RBF 88.97 
KNN 89.14 

Radon-Higuchi RBF 99.68 
KNN 99.52 

Variogram RBF 98.21 
KNN 99.6 

Wavelet-Variogram RBF 100 
KNN 100 

FTCPH RBF 99.75 
KNN 99.46 

 
 

6.3  Computational Time 
Speed of OFR is in the secondary importance because a 
time consuming OFR decreases the overall speed of 
OCR system. Except H. Khosravi et al who reported 
speed issue [5], others neglected this important topic. 
There is a comparative study for the average 
computational time in each OFR algorithm in Table 4. 
These computational times are for feature extraction 
from 512×512 text images. SRF [5] is the fastest OFR 
algorithm and among our proposed methods, Variogram 
and Wavelet-Variogram have the least computational 
time. Our experimental results show that SRF algorithm 
is about 2 times faster than the mentioned algorithms. 

DLA and BCD-DCD are the most time consuming 
algorithms mainly due to applying an adaptive 
binarization algorithms during their process. 
 

6.4  Robustness Test 
Generally, recognition rate degrades with 

unavoidable distortions which are prevalent in real 
applications. In this section robustness of the proposed 
algorithms against skew and noise are studied and 
compared with [5] and [11]. 
 

6.4.1  Skew 
Document skew is a distortion that every OCR 

system may encounter. Lack of robustness against skew 
may severely influences the system’s performance. 
Nowadays skew correction algorithms become an 
integral part in OCR systems. 

Most of the FD algorithms are robust against skew. 
Rotating objects does not influence their Euclidean 
dimension. This rule is true in most of the FD methods 
except directional FDs. All utilized FDs except 
Variogram are skew independent. 

Similar to [11], the font recognition system is tested 
with five rotations presented in Fig. 14. 

Results in Table 5 confirm that among proposed 
approaches DLA and FTCPH are more robust against 
skew. The average errors in these cases are 0.19 % and 

1.51% respectively. BCD-DCD algorithm is also robust 
against skew and the average error rate is about 0.86% 
[11]. So, DLA is the most robust algorithm agains skew 
distortion. 

According to previous definitions, DLA, BCD, DCD 
and FTCPH algorithms are related to some counting 
information which are relatively independent of object 
direction. 

Fig. 15 shows some comparative study among the 
average recognition rates before and after applying 
skew. High errors are due to combination of FDs with 
directional algorithms. Although SRF [5] and Gabor 
[10] features are not robust against skew, the skew 
effect was ignored in them. 
 

6.4.2  Noise 
Performance of every recognition system degrades 

in the presence of environmental noise. 
To verify the performance of the proposed 

algorithms, a range of noise from SNR = 20 to SNR = 
50 was added to all data set (Fig. 16). According to our 
experimental results, most of the proposed methods are 
robust to noise when noise intensity is low. According 
to Fig. 17, Directional Filter Bank and Radon-Higuchi 
are the most robust algorithms against noise. In fact 
directional decomposing algorithms works as a filter 
and decrease the propagation of noise to the next stages. 
Table 6 shows the skew robustness of different 
algorithms. 
 
 
Table 4 Time of different feature extraction methods. 

Technique Time [Sec] 
SRF [5] 0.06 

BCD-DCD [11] 40.47 
Gabor [10] 2.848 

Directional Filter Bank-BCD 7.196 
DLA 45.638 

Radon-Higuchi 0.538 
Variogram 0.159 

Wavelet-Variogram 0.138 
FTCPH 4.706 

 
 
Table 5 Recognition error for skewed images. 

Methods 
Average 

Recognition 
Error 

Skew 
Robustness 

BCD-DCD [11] % 0.86 Yes 
Directional Filter 

Bank-BCD % 60.43 No 

DLA % 0.19 Yes 
Radon-Higuchi % 73.71 No 

Variogram % 77.1 No 
Wavelet-Variogram % 85.62 No 

FTCPH % 1.51 Yes 
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