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Abstract: This paper addresses the experimental identification of a servo actuator which is
used in many industrial applications. Because the system consisted of electrical and
mechanical components, the behavior of the system was nonlinear. In addition, the under
load behavior of this servo was different. The load torque was considered as the input and a
two input-one output model was presented for this servo actuator. Special was given in
order to present a simple and applicable model for this servo actuator. For identification of
this servo actuator, classic and intelligent methods have been used. ARMAX model as a
classic model and MLP and LOLIMOT networks as intelligent models were selected for
this purpose and their results have been discussed. The comparisons between these methods
show that the intelligent methods have a better accuracy than classical method, but they
have more complexity in the implementation. These models can be applied as references

for characterizing different designs and future control strategies.
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1 Introduction

Models of real systems are of fundamental importance
in all disciplines. They can be useful in system analysis,
i.e., for gaining a better understanding of the system,
and make it possible to predict or simulate a system's
behavior. In engineering, models are required for
designing new processes and for the analyzing an
existing process. Advanced techniques for the design of
controllers, optimization, supervision and fault detection
are also based on the model of processes [1].

Actuators are one of the important parts in the
control loop of a system [2, 3]. Servo actuators have
many applications in industry, because of specifications
like high accuracy and easy application [4, 5].

An exact plant model should produce output
responses similar to those of the actual plant. The
complexity of most physical plants, however, makes the
development of an exact model infeasible. Therefore, in
order to design controllers which are reliable and easy
to understand, simplified plant models are obtained by
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the linearization around operating points and/or
reduction in model order [6, 7].

Mathematical models can be developed in two
routes (or a combination of them). One route is to split
up the system into subsystems whose properties are well
understood from previous experience. These subsystems
are then joined mathematically and a model of whole
system is obtained. Another route to mathematical as
well as graphical models is directly based on the open-
loop experimentation. Input and output signals from the
system are recorded and subjected to data analysis in
order to infer a model. When an open-loop experiment
is not viable, a close-loop experiment can be done to
obtain the plant model [1, 8]. Numerous studies have
been reported on model identification using modern
tools such as MATLAB System Identification Toolbox
and LabVIEW System Identification Toolkit [9, 10].

Because the under load behavior of this servo was
different, the load torque was considered as the input
and a two input-one output model was presented for this
actuator. Thus, inputs of this actuator were input voltage
and load torque and its output was a voltage
proportional to the shaft position.

For identification of this servo actuator, classic and
intelligent methods have been used. ARMAX model as
a classic model and MLP and LOLIMOT networks as
intelligent models were selected for this purpose and
their results have been discussed. The comparison
between simulation and experimental results showed the
effectiveness of the propose models. These models can
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be applied as references for characterizing different
designs and future control strategies.

ARMAX is an important linear dynamic model
which was used as a classic model for this purpose. The
multilayer perceptron (MLP) is the most widely known
and used neural network architecture. In many
publications the MLP is even used as a synonym for
neural network. The local linear model tree
(LOLIMOT) approach is based on a divide-and
conquers strategy. A complex modeling problem is
divided into a number of smaller and thus simpler sub
problems, which are solved (almost) independently by
identifying simple, e.g., linear models. After the discrete
model is identified, the continuous model can be
obtained.

The paper is organized as follows. Section 2 presents
an overview of the servo actuator under study. Section 3
is dedicated to an overview of the ARMAX
identification method. The experimental setup is
discussed in Section 4. Model parameter identification
and the proposed method are discussed in Section 5.
Some conclusive remarks are stated in Section 6.

2 The Servo Actuator

Today, servo actuators are used in manifold
applications, including toys, home equipment,
computers, automobiles, ships, aircrafts, missiles, etc.
The servo actuator in this study is shown in Fig. 1. The
schematic of actuator is depicted in Fig. 2.

Fig. 1 Photos of the servo actuator.
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Fig. 2 Block diagram of the servo actuator.

This system consists of amplifier, DC motor,
Gearbox, Potentiometer, etc. The Potentiometer type
position sensor is used for detecting the deflection of the
shaft, the scale factor of which is 0.357 volt/deg. The
range of the input voltage of this actuator is between -10
volt and +10 volt.

3 System ldentification Methods

System identification is a technique that allows find
mathematical models of a dynamical system using
input-output. The input-output data can be organized in
a vector form, as follow.

ZF = w1, y(D),u(2),y(2), ..., u(k), y(k)} ()
where

u(k) Isthe input to dynamic system in instant k.
y(k) Isthe output to dynamic system in instant k.

The model of the dynamical system can be seen as
mapping from a subset of the past data € Z*~! into the
next output y (k).

The input signal of the process plays an important
role in system identification. Clearly, the input signal is
the only possibility for influencing the process in order
to gather information about its behavior. For identifying
this servo actuator, a pulse signal with different width
and height were used.

3.1 ARMAX

The ARMAX model is a widely applied linear
dynamic model. Some controller designs such as
minimum variance control are based on the ARMAX
model and exploit the information in the noise model.
The ARMAX model is depicted in Fig. 3, and can be
written in a compact way using the following notation
A(Qy(k) = B(q)u(k) + C(q)v(k) )
where
A@Q=1+a;q '+ ap,q "
B(q) = by + byq™" + -+ by, g7 *! €))
C@=1+cq "+ cpq

In above equation a;, b; and c; are the parameters to
be estimated. n, is the number of poles of the system.

n, — 1 is the number of zeros of the system. n, is the
number of c coefficients.

v(t) l White noise disturbance

1
& TS s 0

Fig. 3 ARMAX: standard structure.
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There are some methods for estimation of
parameters of ARMAX model, such as less square
optimization [1, 8].

3.2 MLP

One of the most common neural network
architecture is MLP. The main feature of the MLP is
their propriety as universal approximation [11]. This
propriety ensures that is possible to use a MLP to
approximate any function from an input space of
dimension N to an output space of dimension M. In Fig.
4 is showed the MLP structure.

The MLP can be written as Eq. (4)

. M P (4)
i=0 j=0

with ®,(.)=1landuy=1
where

y(k)  Estimate output produce by the MLP.
w; Weights from the output layer.
w;; Weights from hidden layer.
M Number of neuron in the hidden layer.
p Number of the input.

In our work we used MLP structure with nonlinear
activation functions in the hidden layer.

3.3 Local Linear Model Tree (LOLIMOT)

LOLIMOT is an incremental tree-construction
algorithm that partitions the input space by axis-
orthogonal splits. In each iteration a new rule or local
linear model (LLM) is added to the model [1]. To do
that, validity functions are calculated and the local
linear models are adapted with the least squares method.
The LOLIMOT algorithm consists of an external loop in
which the structure of the model is determined and an
inner loop in which the parameters of the model are
estimated by local least squares.

Input layer

Hidden layer

Output layer

Fig. 4 A multilayer perceptron network.

Short description of the algorithm:
1. Start with an initial model.
Construct the validity functions for the beginning
input space portioning and estimate the LLM
parameters by local least squares.
2. Find the worst LLM.
Calculate the loss function for each of the I =
1,...,M local linear models. Find the worst LLM,
where Max;(1;) . i defines the index of the worst
LLM.
3. Check all possible divisions.
The worst LLM i will be considered for further
optimizations. Each hyper rectangle of the local
linear. Models will be divided orthogonally along
the axes in two pieces. Divisions in every of p
dimensions are carried out.
4. Find the best division.
The best among p alternatives of step 3 is chosen.
The optimized local linear models, will be added to
the model. The number of LLM are incremented to
M+ 1.
5. Check for convergence.
If the final criteria is met, then stop the algorithm,
otherwise return to step 2.
Fig. 5 illustrates the operation of the LOLIMOT
algorithm in the first four iterations for a two-
dimensional input space.

U,
1. Iteration
U;
Uiy U
2. lteration
3. Iteration
> U:
Ui, Uy
4. Iteration [ ]
» U U,

RN

Fig. 5 Operation of the LOLIMOT structure search algorithm.
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4. The Experimental Test Rig
4.1 Test Bed

Because the system consists of electrical and
mechanical component, the behavior of the system is
nonlinear. These nonlinearities arise from several
sources; however, the important part of that is the
external load applied to the shaft.

Hence, in order to simulate a real situation, a test
bed, which can apply external load to the shaft, is
needed. To produce a suitable torque in a fix level, an
electrical motor was used and to control the amplitude
of the torque, during the test, the S type load cell (STC-
A-30kg) was used. One end of the load cell was jointed
to the base plate and another end, was linked to the shaft
of the motor with a fixed arm. A good alignment is
necessary between the ends of the shaft; hence, flexible
coupling was used for connecting the shaft of the
electrical motor to the shaft of the servo actuator.

4.2 Data Acquisition Software

The servo link monitoring and diagnosis software
was developed for the online monitoring of servo
actuator and it was used here to acquire experimental
data from the real-time HIL (Hardware in the Loop)
test. The software is based on simulink® and Real-time
work shop with the sampling rate of 100 Hz. The
software communicates with the servo actuator
thorough an analog input card (Advantech 818 HG) and
analog output card (Advantech PCL 726). The
performance of the servo actuator is illustrated by nature
of Volt-Time curve, resulting from a PE input
command.

In addition to plotting the system response curve, the
software specified the amplitude of external load which
must be applied to the shaft of the actuator. This
actuator can support the external load up to 15 N.m.

5. Model Parameter Identification

The identification of this system, was considered
with two inputs (v;,, Tourqe) and one output (v,,,;), as
shown in Fig. 6.

V_in
V_out
Torque

Act_Servo
Fig. 6 Input/output model of the servo actuator.

A special case is a single-input single-output (SISO)
system where u, = 0 or u, = cte. The SISO model is
well-established  model  structures having an
input/output behavior like:

y(s) = G($)U(s) (®)
where
G(s) = bps™ + byyq s™H 4+ by
St + ap_q ST+ 4 ag (€)
n>m>0

which is transfer function of the system, i.e.
mathematical representation of servo actuator. Because
of the researchers’ knowledge about the servo actuator,
the second order ARMAX model was selected to
estimate the actuator dynamic. Moreover, order of the
system can be found using system identification
methods with the test data, which is shown in Fig. 7.
Using MATLAB System Identification Toolbox,
three different models were obtained with the second
and third orders (ARMAX3221, ARMAX2221 and
ARMAX2121). Table 1 shows the result of three
different models. Based on the Best Fit criteria, we see
that the performance don’t change very much. So, it
seems that second order is enough for our purpose.

Table 1 Comparison between models.

Model Best Fit
ARMAX3221 96.01%
ARMAX2221 95.93%
ARMAX2121 95.91%

10

=

Amplitudefvolt)
=]
o—

i
i

1 S o
Test il 1 Train
10 i i i i |
50 100 160 200 250
Time(sec)

Fig. 7 Input data for exciting the system in different
operating condition.
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5.1 Linear SISO Model

In this part, a linear model is identified using
measurement v,,, and v;,. The method used for
identification was described in Section Ill. To identify a
second order SISO linear model, a different torque was
applied to the shaft of actuator.

The actuator response in different operating
conditions is depicted in Fig. 8. By increasing the
external load to the shaft, overshoot decreased; however
the DC gain of the system was almost fixed.

While Real-Time Workshop was used for
experiments and data acquisition, the identification and
modeling procedures were performed on MATLAB.
The models obtained in the transfer function form, are
represented in Table 2.

5.2 Linear MISO Model
Here we use a result of pervious section to extract a

second order MISO model, that is depend on amplitude
of the Torque. All transfer function demonstrated in
Table 2, can be represented with three parameters:

DC gain (K)

Damping ratio (§)

Undamped natural frequency (w,,)

This parameters for each transfer function of Table 2, is
tabulated in Table 3. It can be seen, by increasing the
amplitude of external load to the shaft of actuator, DC
gain is nearly fixed, ¢ was increased and w, was
decreased. Using classical curve fitting, the
relationships between the K, &, w, and external load 7
was found to correspond to the following functions.

Table 2 Model of the system in different Torque.

Torque (N.m) Transfer function
0.8288(s + 162.7
0 G(s) = ( )
s2 4+ 21.70s + 191.5
0.6966(s + 181.4)
3 G(s) =
s2 4 20.77s + 179.6
0.6954(s + 179.6)
5 =
C) = 271055 1 1774
0.7596(s + 157.3)
9 =
G) = 721385 + 169.8
0.7516(s + 154.7
11 G(s) = ( )
s2 4 21.68s + 165.3
0.7414(s + 155.8)
15 =
G() = 722355 1 1644

The transfer function V. /V;,, derived with standard
transfer function model of second order system and the
data is shown in Table 3.

Vout =K a)rzl
Vin 'S2 + 28w, S + w?

®)

This is new representation and new transfer function
model of the servo actuator. The coefficient in this
model is depending on the external load.

The model was simulated and the results were
compared with the data obtained from experiments. The
correspondence between the measured and calculated

K = 0.7036 output voltage was considered for verification
¢ = 0006585 x7+0.7668 Y In Fig. 9, the graphs show the experimentally
w, = —0.06738 x 7 +13.69 obtained curves (in Torque = 7 N.m) with simulated
ones. It can be seen that the results corroborate well
— S S S —— - with the experimental data.
0.8 *i i i NV Table 3 Models of the system in different Torque.
- | ," Torque (N.m) K ¢ w,
S 06F -~ . B I R el L e
= & 1 increases | ——command 0 0.7040 0.7839 13.84
< J ; : —#—T=0N.m
Eo04r--4-—-f---—--- e | e T=3Nm H 3 0.7034 0.7747 13.40
£ | | T=5N.m
< / | | T=7 Nm 5 0.7040 0.7903 13.32
02r =477~ Rl F----- ——T=9Nm ]
j | | T=11 N.m 9 0.7038 0.8204 13.03
! I s T=13N.m
Opaim® ——1-————- oo hoooo- T=15nm 1 11 0.7035 0.8432 12.85
100 100.05 1001 10015 1002  100.25 15 0.7035 0.8717 12.82
Time(sec)

Fig. 8 Actuator response in different torques.
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Linear Simulation Results

— Real Response
— Estimated Response [|

——————— I
I I
| I

Amplitude

| I

| |
0

| |

| |
Ar---tr---rFr-=--\--=-9---94---t+---p---A
1345 135 1355 136 1365 137 1375 138 138t

Time (sec)
Fig. 9 Experimental Values vs. Model Estimated Values

5.3 Intelligent Modeling

The multilayer perceptron (MLP) and Local Linear
Model Tree (LOLIMOT) are the most widely known
and used neural network architecture. Now, we will
obtain the model of the system using MLP and
LOLIMOT method. We used two neurons in hidden
layer of network. We used Levenberg Marqurdt and
gradient descend method for the training the MLP and
LOLIMOT network, respectively.

In this modeling, to estimate the output voltage of
actuator v, (t), we use four signal as a input of the
network. These signal are input voltage v, (t),
amplitude of the tourge t , output voltage in two
previous sample v, (t — 1) and v, (t — 2).

With applying this method to the input data, the
network output, is represented in Fig. 10.

Note, the model obtained using MLP method is the
same obtained using LOLIMOT method and both
methods predict system behaviour, as well.

6. Conclusions

A two input-one output model was developed for an
under-load servo actuator. The load torque was
considered as the input. The unknown parameters
(ARMAX  parameters) were identified from
experimental data. The system was excited using pulses
with different height and width. The proposed method
provided a linear MISO model for the actuator servo.
The transfer function V,,./Vi, was derived with
standard transfer function model of the second order
system. In this model the DC gain was nearly fixed.
Damping ratio (¢§) and undamped natural frequency
(w,,) were linear functions of the external load to the
shaft.
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Fig. 10 Model estimated based on (a) MLP and (b) LOLIMOT
networks.

References

[1] Nelles O, “Nonlinear System Identification: From
Classical Approaches to Neural Network and
Fuzzy Models”, Springer, Berlin, 2001.

[2] Maboodi M., Ashtari Larki M. H., Aliyari
Shoorehdeli M. and Bolandi H., “An Underload
Servo Actuator Identification”, 18th IFAC world
Congress, Milano, Italy, 2011.

[3] Lacy L. L., Bernstein D. S., “Identification of an
Electromagnetic Actuator”, 41th Int. IEEE Conf.
On Decision and Control, Las Vegas, Nevada
USA, 2002.

[4] Schaab J., Muenchhof M., Vogt M. and Isermann
R., “ldentification of a Hydraulic Servo-Axis
Using Support Vector Machines”, 16th IFAC
World Congress, Prague, Czech Republic, 2005.

[5] Modabberifar M., Hojjat Y., Abdullah A. and
Dadkhah M., “Identification of Three Phase Panel
Type Electrostatic Actuator”, 15th International
Conference on Mechatronics and Machine Vision
in Practice, pp. 447-454, 2008.

[6] Laghrouche S., Ahmed F. S., ElI Baghdouri M.,
Wack M., Gaber J. and Becherif M., “Modelling
and Identification of a Mechatronics Exhaust Gas
Recirculation Actuator of an Internal Combustion

232 Iranian Journal of Electrical & Electronic Engineering, Vol. 8, No. 3, Sep. 2012



Engine”, American Control Conference, pp.
2242-2247, 2010.

[7] Koveos Y. and Tzes A, “Modelling and
Identification of Resonance Fluid Actuator”,
Control Applications, (CCA) & Intelligent
Control, (ISIC), pp. 560-565, 2009.

[8] Ljung L, “System ldentification: Theory for the
user”, (2nd Edition), Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1999.

[91 Jelavic M., Peric N. and Petrovic I.,
“Identification of Wind Turbine Model for
Controller Design”, 12th Int. Conf. On Power
Electronics and Motion Control, pp. 1608-1613,
2006.

[10] Shao J., Wang Z., Lin J. and Han G., “Model
Identification and Control Electro-Hydraulic
Position Servo System”, Int. Conf. on Intelligent
Human-Machine System and Cybernetics, pp.
210-213, 20009.

[11] Mdhlenbein h., “Limitations of multi-layer
perceptron networks-steps towards genetic neural
networks”, Parallel Computing, Vol. 14, Issue 3,
August 1990, pp. 249-260, 2003.

Mohsen Maboodi was born in Karaj,
Iran, in 1984. He received his B.Sc.
from K.N. Toosi University of
Technology, Tehran, Iran in 2007 and
M.Sc in Electrical Engineering from
Sharif  University of Technology,
Tehran, Iran in 2009. He is currently a
Ph.D. candidate in K.N. Toosi
University of Technology. His research
interests include Control Performance
Assessment (CPA), Predictive Control, System ldentification
and Optimization.

M. H. Ashtari Larki was born in
Khuzestan, Iran, in 1984. He received
the B.Sc. and M.Sc. degrees in
Electrical Engineering from Khajeh
Nasir Toosi University of Technology,
Tehran, Iran, in 2006 and 2008,
respectively. He is currently a Ph.D
candidate in Electrical Engineering
Department, Iran University of Science
and Technology, Tehran, Iran. His
doctoral dissertation concerned Satellite orbit determination
Based on Optimization Technique. Ashtari's main research
interests include flight control, optimal control and satellite
orbit determination and orbit control.

Mahdi Aliyari Shoorehdeli received
his B.Sc., M.Sc. and Ph.D. degrees in
electrical engineering from Khajeh
Nasir Toosi University of Technology,
Tehran, Iran, in 2001, 2003 and 2008
respectively. He is currently an assistant
professor at Department of
Mechatronics  Control, Faculty of
Electrical Engineering KIN.T.U
University. His research interest
includes Mechatronics Systems, Fault Diagnosis, Neural
Networks, Fuzzy systems, Nero-Fuzzy control, Identification
and Predication, Pattern Recognition and Swarm Intelligence.

Maboodi et al: An Under Load Servo Actuator Identification and Comparison ... 233



