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Bilateral Weighted Fuzzy C-Means Clustering 
 
 
A. H. Hadjahmadi*, M. M. Homayounpour** and S. M. Ahadi*** 
 
 
 

Abstract: Nowadays, the Fuzzy C-Means method has become one of the most popular 
clustering methods based on minimization of a criterion function. However, the 
performance of this clustering algorithm may be significantly degraded in the presence of 
noise. This paper presents a robust clustering algorithm called Bilateral Weighted Fuzzy C-
Means (BWFCM). We used a new objective function that uses some kinds of weights for 
reducing the effect of noises in clustering. Experimental results using, two artificial 
datasets, five real datasets, viz., Iris, Cancer, Wine, Glass and a speech corpus used in a 
GMM-based speaker identification task show that compared to three well-known clustering 
algorithms, namely, the Fuzzy Possibilistic C-Means, Credibilistic Fuzzy C-Means and 
Density Weighted Fuzzy C-Means, our approach is less sensitive to outliers and noises and 
has an acceptable computational complexity. 
 
Keywords: Fuzzy Clustering, Fuzzy Possibilistic C-Means, Credibilistic Fuzzy C-Means, 
Density Weighted Fuzzy C-Means. 

 
 
 
1 Introduction1 
Clustering can be considered as the most important 
unsupervised learning problem. Clustering algorithms 
try to partition a set of unlabeled input data into a 
number of clusters such that data in the same cluster are 
more similar to each other than to data in the other 
clusters [1]. Clustering has been applied in a wide 
variety of fields ranging from engineering (machine 
learning, artificial intelligence, pattern recognition, 
mechanical engineering, electrical engineering) [2-4], 
computer sciences (web mining, spatial database, 
analysis, textual document collection, image 
segmentation) [5,6], life and medical sciences (genetics, 
biology, microbiology, paleontology, psychiatry, clinic, 
pathology) [7-9], to earth sciences (geography, geology, 
remote sensing) [7], social sciences (sociology, 
psychology, archeology, education) and economics 
(marketing, business) [2, 10]. A large number of 
clustering algorithms have been proposed for various 
applications. These may be roughly categorized into two 

                                                 
Iranian Journal of Electrical & Electronic Engineering, 2012. 
Paper first received 24 July 2011 and in revised form 24 April 2012. 
* The Author is with the Department of Computer Engineering, Vali-
e-Asr University of Rafsanjan, Rafsanjan, Iran. 
E-mail: hadjahmadi@vru.ac.ir 
** The Author is with the Department of Computer Engineering and 
Information Technology, Amirkabir University of Technology, 
Tehran, Iran. 
E-mail: homayoun@aut.ac.ir 
*** The Author is with the Department of Electrical Engineering and 
Information Technology, Amirkabir University of Technology, 
Tehran, Iran. 
E-mail: sma@aut.ac.ir 

classes: hard and fuzzy (soft) clustering [1]. In fuzzy 
clustering, a given pattern does not necessarily belong 
to only one cluster but can have varying degrees of 
memberships to several clusters [11]. 

Among soft clustering algorithms, Fuzzy C-Means 
(FCM) is the most famous clustering algorithm. 
However, one of the greatest disadvantages of this 
method is its sensitivity to noises and outliers in the data 
[12-14]. Since the membership values of FCM for an 
outlier data is the same as real data, outliers have a great 
effect on the centers of the clusters [14]. 

There exist different methods to overcome this 
problem. Among them, three well-known robust 
clustering algorithms, namely, the Fuzzy Possibilistic C-
Means (FPCM) [15, 16], Credibilistic Fuzzy C-Means 
(CFCM) [12, 13] and Density Weighted Fuzzy C-Means 
(DWFCM) [13] have attracted more attention. 

In this paper we attempt to decrease the noise 
sensitivity in fuzzy clustering by using different kinds of 
weights in objective function, in order to decrease the 
effect of noisy samples and outliers on centroids. For 
the purpose of comparing different methods for 
computation of clustering weights and in order to 
compare our proposed and conventional clustering 
methods, two artificial datasets, their noisy versions and 
five real datasets were produced. Experimental results 
confirm the robustness of the proposed method. 

This paper is organized as follows: Section 2 
presents the mentioned Fuzzy C-Means motivated 
algorithms and their disadvantages. Our proposed 
Bilateral Weighted Clustering algorithm is described in 
Section 3. Section 4 describes experimental datasets and 
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Section 5 presents experimental results for clustering of 
datasets including outliers. Finally, conclusions are 
drawn in Section 6. 
 
2 Some Fuzzy C-Means Motivated Algorithms 

In this section, classical Fuzzy C-Means and three 
robust Fuzzy C-Means motivated algorithms will be 
studied and their performance and possible advantages 
and disadvantages discussed. 

Given a set of input patterns 1 2{ , , , }NX x x x= K , 

where 1 2( , , , )T n
i i i inx x x x= ∈ℜK . C-Means 

motivated clustering algorithms attempt to seek 
C cluster centroid vectors 1 2{ , , , | }n

C iv v v v ∈ℜK , such 
that the similarity between patterns within a cluster is 
larger than the similarity between patterns belonging to 
different clusters. 

 
2.1  The Fuzzy C-Means Clustering (FCM) 

Fuzzy C-Means clustering (FCM) is the most 
popular fuzzy clustering algorithm. It assumes that the 
number of clusters, is known a priori, and minimizes 
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Here, 1m >  is known as the fuzzifier parameter and 
any norm, , can be used (we use the Euclidean norm) 
[2,16]. The algorithm provides the fuzzy membership 
matrix U and the fuzzy cluster center matrix V. 
Using the Lagrange multiplier method, the problem is 
equivalent to minimizing the following equation with 
constraints [2, 16]: 
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From Eq. (3), we readily obtain the following update 
equation: 
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Then, we can assume that iku  is a fixed number and 

plug it into Eq. (1) to obtain: 
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Thus, we observe two main deficiencies associated 
with FCM [12]: 

1. Inability to distinguish outliers from non-outliers 
by weighting the memberships. 

2. Attraction of the centroids towards the outliers. 
A noise-robust clustering technique should have the 

following properties [12]: 

1. Should assign the outliers with low memberships 
to all the C clusters. 

2. Centroids on a noisy set should not deviate 
significantly from those generated for the 
corresponding noiseless set, obtained by removing 
the outliers. 

 
2.2  The Fuzzy Possibilistic C-Means Clustering 

(FPCM) 
FPCM is a mixed C-Means technique which generates 
both probabilistic membership and typicality for each 
vector in the data set [12, 15, 16, 17]. FPCM [12, 15, 
16, 17] minimizes the objective function 
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where η  is a parameter for controlling the effect of 
typicality on clustering and with constraints similar to 
Eq. (2), and also 
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must be satisfied [12, 15, 17]. 
Using the Lagrange multiplier method, the algorithm 

provides the fuzzy membership matrix U , the fuzzy 
typicality matrix T and the fuzzy cluster center matrix 
V respectively by equations Eq. (4) [12,15] 
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Due to the constraint Eq. (7), if the number of input 
samples ( N ) in a dataset is large, the typicality of 
samples will degrade and then the FPCM will not be 
insensitive to outliers. Therefore, a modified version of 
FPCM, called MFPCM is used [18]. In MFPCM the 
sum of typicality values of a cluster i , for all the input 
samples, is equal to the number of data that belongs to 
this cluster [19]. 
 

2.3 The Credibilistic Fuzzy C-Means Clustering 
(CFCM) 

The idea of CFCM is to decrease the noise 
sensitivity in fuzzy clustering by modifying the 
probabilistic constraint Eq. (2) so that the algorithm 
generates low memberships for outliers [15]. To 
distinguish an outlier from a non-outlier, in [15], 
Chintalapudi and Kam introduced a new variable, 
credibility. Credibility of a vector represents its 
typicality to the data set, not to any particular cluster. If 
a vector has a low value of credibility, it is atypical to 
the data set and is considered as an outlier [15]. Thus, 
the credibility kψ , of a vector kx  is defined as: 
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1
1 (1 ) max ( ) ,0 1k k jj N

θ α α θ
=

Ψ = − − ≤ ≤
K (10)

where ( )maxk ikdα =  for 1, ,i C= K . Here, kα  is the 
distance of vector kx  from its nearest centroid. The 
parameter θ  controls the minimum value of kv so that 
the noisiest vector gets credibility equal to θ  [15]. 
Hence, CFCM partitions X by minimizing Eq. (1) (the 
FCM objective function) subject to the constraint 
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Likewise, the Lagrange multiplier method is used to 
derive the update Eq. (12) and Eq. (5) for CFCM. 
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We note that since the original update equation for 
prototype (see [15]) in CFCM is host identical to that of 
FCM, we simply use Eq. (5) here. Also, it has been 
mentioned in [15] that using Eq. (5) may result in 
oscillations for noise-free data and for overlapped 
clusters, but the original update equation will not. 

Although CFCM usually converges rapidly, it has 
some drawbacks. The major drawback of CFCM is that 
this method uses Eq. (10) for computing the credibility 
of an input vector. When there is at least one far outlier, 
the credibility values of weak outliers will be near to 
clean data by Eq. (10). Fig. 1 shows this phenomenon 
by a simple example. There are 8 clean samples and 2 
outliers in this Figure, where 1v  is the cluster centroid 
vector, 1x  is a clean sample, 2x  is a weak outlier, 3x  
is a far outlier and , 1,2,3id i =  are the distances 
between i 'th sample and 1v . Assume that 1d , 2d  and 

3d  are respectively equal to 1, 3 and 20. Then according 
to Eq. (10), the credibility values of them equals to 0.95, 
0.85 and 0 respectively. Therefore, equation Eq. (11) is 
faint to distinguish between weak outliers and clean data 
in the presence of at least one far outlier. 
 

2.4 The Density Weighted Fuzzy C-Means 
Clustering (DWFCM) 

In the DWFCM algorithm [10], Chen and Wang aim 
to identify the less important data point by using the 
potential measurement before clustering process, not 
during the convergence process of clustering. To 
achieve this goal, they modify Eq. (1) into 
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where kw is a density measurement, 
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Fig. 1 A simple dataset with one cluster and 2 outliers.  1X : A 
clean data sample.  2X : A weak outlier.  3X : A far outlier. 
 
for which h  is a resolution parameter and σ  is the 
standard deviation of input data. Likewise, in [10] the 
Lagrange multiplier method is used to derive the 
following update equations for U  and V  for DWFCM. 
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Although DWFCM also usually converges rapidly, it 

has its own drawbacks. The major drawback of 
DWFCM is that this method uses density motivated 
weights as clustering weights. According to Eq. (14), 
density weights can reduce the effect of the whole 
dataset outliers, not the outliers from a particular cluster. 
In other words, when the ratio of inter-cluster deviations 
to the whole data deviation is small, DWFCM works 
deplorably. Fig. 2 shows this drawback by a simple 
example. 

There are two main clusters named 1C  and 2C  in 
Fig. 2. Cluster 1C  contains 1000 and cluster 2C  
contains 100 samples. 1x  is a sample data from 1C , 2x  
is a sample data from 2C  and 3x  is an outlier. The 
normalized distance between k 'th and y 'th data 
sample is defined as follows: 

k y
ky

h x x
h

STD

× −
=

 
(16)

 
If we assume that the ratio of inter-cluster deviations 

to the whole data deviation is small, then we can use 
12h  as the normalized distance between all data samples 

of 1C  and 2C , 13h  as the normalized distance between 
all data samples of 1C  and 3x , and 23h  as the 
normalized distance between all data samples of 2C  
and 3x . In Fig. 2, three suppositional values for kyh , 
where {12,13, 23}ky ∈ , are shown. The density weights 

X1

V1X2 

X3
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according to Eq. (14) for these kyh  are depicted in 
Table 1. 
 
Table 1 The density weights according to (14) for 
suppositional values of kyh  depicted in Fig. 1 

k 1 2 3 

kw  1.0915e+003 1.0057e+003 1.0708e+003 

 
From Table 1, we can observe that density weight of 

3x is greater than density weight of 2x . In other words, 
density weights increase the effect of outliers on the 
centroid of 2C , leading to poor performance of 
DWFCM, when the ratio of inter-cluster deviations to 
the whole data deviation is small. 
 
3 Robust Weighted Fuzzy C-Means Clustering 
(RWFCM) 

We attempt to decrease the noise sensitivity in fuzzy 
clustering by using different kinds of weights in 
objective function, so that the noisy samples and 
outliers have less effect on centroids. The basic idea of 
this approach is similar to DWFCM and RWFCM [20]. 
Two general kinds of weights can be used for achieving 
this aim; Cluster-independent weights (weights that are 
independent of a particular cluster) and cluster-
dependent weights (those that depend on a particular 
cluster). Here we combine both kinds of weights and 
proposed a new robust weighted clustering. 
 

3.1  The Cluster-Independent Weights 
This clustering method minimizes the objective 

function Eq. (13) with the constraint of Eq. (2). Similar 
to DWFCM, the weights ( kw ) are independent of a 
particular cluster, but contrary to DWFCM, whose 
weights were constant during the clustering, in this 
approach, the weights can change and be updated during 
the clustering process. 

Using the Lagrange multiplier method, the problem 
is equivalent to minimizing the following equation 
satisfying the constraint Eq. (2): 
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For the sake of simplicity in computations, we use 

an assumption that / 0k kw v∂ ∂ ≈ . Therefore by 
setting / 0ikL u∂ ∂ = , the following equation will be 
obtained. 
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And replacing iku , found in Eq. (18), in Eq. (2), 
would lead to 
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Combining Eq. (18) and Eq. (19), iku  can be 
rewritten as 
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Also, by letting 0iL v∂ ∂ = , updating of the 
equation for centroids can be carried out as 
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Calculation of weights were carried out in our 
experiments using density weights presented in Eq. (14) 
and credibility weights presented in Eq. (10). Using 
weights presented in Eq. (14), the proposed method is 
the same as DWFCM. 
 

3.2  The Cluster-Dependent Weights 
This type of clustering minimizes the objective 

function 
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with the constraint of Eq. (2). Contrary to the weights 
kw  in Section 3.1, the weights ikw  in Eq. (22) depend 

on a particular cluster. These weights can change and be 
updated during the clustering process. 

 

 
Fig. 2 A simple dataset with 2 clusters where the ratio of inter-cluster deviation to the whole data deviation is small.  1X : A 
clean data sample from 1C .  2X : A clean data sample from 2C .  3X : An outlier. 
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Using the Lagrange multiplier method, the problem 
is equivalent to minimizing the following equation with 
constraints 
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For simplicity in computations and related 
equations, once again, we use the assumption that 

/ 0ik kw v∂ ∂ ≈ . Therefore, setting / 0ikL u∂ ∂ = , we’ll 
obtain 
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Replacing iku in Eq. (2) with that in Eq. (24), we 
get: 
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Further replacing Eq. (25) in Eq. (24), iku can be 
rewritten as follows: 
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Setting 0iL v∂ ∂ = , the updating equation for the 
centroids will be: 
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For computing weights, we use the typicality given 
by Eq. (8). However, as mentioned before, due to its 
computational complexity, which is 2( )O CN , we 
propose a simplified type of typicality weights, 
computed as follows: 

( )2 ( 1)1ik ikw d η−=  
(28)

where 1η >  is a parameter depending on the variation 
of outliers. 

The order of computational complexity of this kind 
of weights is ( )O CN and seems to be acceptable for 
large datasets such as speech signals or images. 
 

3.3  Robust Bilateral Weighted Fuzzy C-Means 
This clustering method minimizes the following 

objective function 
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with the constraint of Eq. (2). The weights kr  are 
independent of a particular cluster but the weights ikw  
depend on the i 'th cluster. Both kind of weights can 
change and be updated during the clustering process. 
Using the Lagrange multiplier method, the problem is 
equivalent to minimizing the following equation with 
constraints 
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For the sake of simplicity in computations and 
related equations, once again we consider an assumption 
that / 0k kr v∂ ∂ ≈ , / 0ik kw v∂ ∂ ≈  and 

( ) / 0k ik kr w v∂ ∂ ≈ . Therefore, setting / 0ikL u∂ ∂ =  
would lead to 

( )( )

21

1
( 1)2

0 ( ) 0

( )( )

m
ik k ik ik k i

m
ik k ik k i

L u m r w u x v

u m r w x v

λ

λ

−

−

∂ ∂ = ⇒ − − =

⇒ = −
 

(31)
 

Replacing iku  in Eq. (2) by Eq. (31), one would get 
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Therefore, Eq. (31) could be rewritten as 
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Furthermore, by setting 0iL v∂ ∂ = , the updating 
equation for centroids would be: 
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4 Robust Weighted Fuzzy C-Means Clustering 
(RWFCM) 

In order to be able to compare our proposed method 
with other clustering methods, two artificial datasets 
X1500, and X1000, and five real datasets, viz., Iris, 
Cancer, Wine, Glass and an speech corpus named 
TFARSDAT (Persian) were used in this research. 
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X1500: This artificial dataset contained three 
Gaussian clusters. Each cluster had 500 data samples. 
The central vectors of the clusters were [0,-10]T, [0,0]T 
and [0,10]T and all three clusters had an identity 
covariance matrix. In order to generate noisy versions of 
X1500, different noise samples, considered as outliers, 
were added to this dataset. The noisy versions had 50, 
100, 200, 300, 400 and 500 noise samples. Noise 
samples (outliers) had a Gaussian distribution with a 
mean vector [10,0]T and a diagonal covariance matrix 
with diagonal values of [2,21]T. Fig. 3 shows the clean 
X1500 dataset and its noisy version with 400 outliers. 

X1000: The second artificial dataset was named 
X1000 and contained two clusters with Gaussian 
distributions. One of these clusters contained 600 and 
the other one 400 data samples. The central vectors of 
these clusters were [0,6]T and [0,6]T. All clusters had an 
identity covariance matrix. In order to make a noisy 
version of X1000, two kinds of noises were added to 
this dataset. Noise samples had uniform (as background 
noise) and Gaussian distributions. Table 2 shows the 
different versions of X1000 datasets. According to this 
table, outliers with uniform distribution may be 
concentrated or dispersed and their number may be 50 
or 100. Gaussian noise outliers (0, 300 and 600) were 
also added to the 5 datasets mentioned in Table 2. Two 
Gaussian noise distributions with central vectors of [-1, 
10]T and [1, -10]T and diagonal covariance matrices of 
2 I×  were used. Fig. 4(a) shows the clean version of 
X1000 and Fig. 4(b) shows its noisy version with 100 
concentrated uniform and 300 Gaussian noises. Fig. 4(c) 

depicts the noisy version of X1000 with 100 dispersed 
uniform and 300 Gaussian noises. 

Iris: The iris dataset is one of the most popular 
datasets to examine the performance of novel methods 
in pattern recognition and machine learning [21]. Iris 
represents different categories of Iris plants having four 
feature values. The four feature values represent the 
sepal length, sepal width, petal length and the petal 
width in centimeters. It has three classes Setosa, 
Versicolor and Virginica, with 50 samples per class. It 
is known that two classes Versicolor and Virginica have 
some amount of overlap while the class Setosa is 
linearly separable from the other two [22]. 

Cancer: This breast cancer database was obtained 
from the University of Wisconsin Hospitals, Madison 
from Dr. William and H. Wolberg. It consists of 699 
samples of which 458 are benign and 241 are malignant, 
all in a 9-dimensional real space. These 9 features are: 
Clump Thickness, Size Uniformity, shape Uniformity, 
Marginal Adhesion, cell size, Bare Nuclei, Bland 
Chromatin, Normal Nucleoli and Mitoses [23]. 

Wine: The wine data includes three classes, 13 
features and 178 samples of which 59 are first class, 71 
are second class and 48 are third class [22]. 

Glass: The Glass dataset has two main clusters, 9 
features and 214 samples. Its 9 features are refractive 
index, Sodium, Magnesium, Aluminum, Silicon, 
Potassium, Calcium, Barium and Iron [22]. 

TFARSDAT: This is a speech corpus that is 
collected from 64 male and female adult speakers from 
10 different Iranian accents uttering some Persian 

(a) (b) 
Fig. 3 The X1500 datasets: (a) without any noise samples, (b) with 400 Gaussian noise samples. 
 
Table 2 X1000 clean dataset and its noisy versions with uniform noise distribution. 

Dataset Kind of uniform outliers No. of outliers with uniform distribution 

1 - 0 

2 concentrated 50 

3 concentrated 100 

4 Dispersed 50 

5 Dispersed 100 
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cardinal numbers, days of week, names of months of the 
year, Persian alphabet letters, 50 frequent Persian words 
and 6 Persian sentences [24]. The data was collected in 
normal office conditions with SNRs of 25 dB. 
 
5 Experimental Results 

In this section, initially, we present experimental 
results comparing the performance of different 
clustering weight computation methods. Two artificial 
datasets X1000, X1500 and their noisy versions were 
used for this purpose. In the second part, conventional 
and proposed robust clustering methods are compared. 
To compare the performance of different robust 
clustering methods two artificial and four real datasets 
(Iris, Cancer, Glass and Wine) were used. For the 
evaluation of clustering methods on artificial datasets, 
cluster centers obtained using clustering methods and 
the real cluster centers were compared and their Mean 
Square Error (MSE) was used as the comparison 
criterion. Also, for the evaluation of clustering methods 
on real datasets, different clustering methods were run 
on the mentioned real datasets and the number of 
misclassified samples and the average cluster purities 
were used for evaluation [25]. Cluster Purity is a unary 
classification criterion. Here, purity denotes the fraction 

of the cluster taken up by its predominant class label. 
The purity of a cluster c can be defined as follows:  

( )2

1
( )

P

cp c
p

c n nρ
=

=∑
 

(35)
 

where {1, , }c C∈ K  is a cluster, C is the total number of 
clusters, { }1, ,p P∈ K  is a class, P  is the number of 
classes, cpn  is the number of samples in cluster c  
belonging to class p  and cn  is the number of samples 
in cluster c . Then average purity can be computed as 
follows: 

1

1 .
C

cp c
c

p n
N

ρ
=

= ∑
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Therefore, bad clustering has an average purity 
value close to 0 and perfect clustering has a purity of 1. 

At the third experimental part, conventional and 
proposed robust clustering methods are used in a real 
Gaussian mixture model (GMM)-based speaker 
identification application. Since the performance of 
Gaussian mixture models are very sensitive to the initial 
mixture mean vectors, using a C-Means motivated 
clustering method for computing the initial mean 

 

(a) (b) 

(c) 
Fig. 4 The X1000 datasets: (a) without any noise  samples, (b) with 100 concentrated uniform noise and 300 Gaussian noise 
samples, (c) with 100 dispersed uniform and 300 Gaussian noise samples. 
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vectors is highly recommended. Therefore, we use 
different mentioned clustering methods for computing 
the initial Gaussian mixtures mean vectors. At the end 
of this section, in the fourth experimental part, the 
conventional and proposed clustering methods are 
compared regarding their computation time and 
convergence rate. 
 
5.1  Comparison of Clustering Weight Computation 

Methods 
Three main categories of clustering weight 

computation methods including cluster-dependent 
weights, cluster-independent weights and bilateral 

weights are compared using BWFCM clustering 
method. Cluster-dependent weights are credibility 
weights Eq. (10) and density weights Eq. (14). Cluster-
independent weights are typicality weights Eq. (8) and 
simplified typicality weights Eq. (28). Bilateral weights 
are joint credibility and simplified typicality weights, 
and joint density and simplified typicality weights. Both 
of the artificial datasets, X1000 and X1500 were used in 
this comparison. The results are depicted in Tables 3 
and 4. 

The experimental results show that after clustering, 
the MSE degrades when the number of outliers 
increases. Also it can be seen that the cluster-dependent 

 
Table 3 Comparison of different kinds of clustering weight computation methods on X1500 dataset with different number of 
outliers, in terms of MSE. 

  Unilateral weights Bilateral weights 
  Independent of a particular 

cluster 
Dependent on a particular 

cluster 
Credibility and 

Simplified 
typicality 
weights 

Density and 
Simplified 
typicality 
weights 

  Credibility 
weights 

Density 
weights 

Typicality 
weights 

Simplified 
typicality weights 

N
um

be
r 

of
 u

ni
fo

rm
 

ou
tli

er
s 

0 0.06 0.07 0.07 0.10 0.07 0.08 
50 0.14 0.09 0.15 0.12 0.12 0.11 
100 0.27 0.13 0.26 0.20 0.12 0.11 
200 0.44 0.22 0.38 0.23 0.13 0.11 
300 0.72 0.40 0.59 0.35 0.14 0.12 
400 0.83 0.56 0.66 0.32 0.19 0.15 
500 1.25 0.91 0.97 0.59 0.33 0.28 

 

 
Table 4 Comparison of different kinds of clustering weight computation on X1000 dataset and its uniform noisy versions with 
different number of Gaussian outliers in terms of MSE. 

Dataset 
version 

No. of 
Gaussian 
Outliers 

Unilateral weights Bilateral weights 
Independent of a particular 

cluster 
Dependent on a particular 

cluster 
Joint Credibility 

and 
Simplified 
typicality 
weights 

Joint 
Density and 
Simplified 
typicality 
weights 

Credibility 
weights 

Density weights 
(DWFCM) 

Typicality 
weights 

Simplified  
typicality  
weights 

1 
0 0.07 0.10 0.09 0.06 0.083 0.10 

300 0.51 0.81 0.51 0.55 0.12 0.14 
600 1.67 3.62 1.09 1.07 0.53 0.55 

2 
0 0.24 0.20 0.25 0.19 0.08 0.081 

300 1.01 0.85 0.51 0.64 0.25 0.26 
600 2.49 3.37 0.90 1.16 0.40 0.31 

3 
0 0.14 0.15 0.09 0.14 0.12 0.09 

300 0.89 0.76 0.44 0.59 0.27 0.12 
600 3.10 3.46 0.98 1.24 0.51 0.38 

4 
0 0.21 0.09 0.16 0.11 0.12 0.09 

300 1.49 1.02 0.50 0.64 0.40 0.24 
600 6.96 3.45 1.09 1.34 0.91 0.64 

5 
0 0.37 0.12 0.16 0.11 0.12 0.09 

300 1.47 1.31 0.61 0.78 0.66 0.59 
600 7.01 3.46 1.64 1.28 0.73 0.65 
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weights are more robust than the cluster-independent 
weights and the bilateral weights are the most robust 
clustering weights. It also appears that the joint density 
and simplified typicality weights are more robust than 
the other kinds of weights. 
 

5.2  Comparison of Clustering Methods 
In this section the proposed Bilateral Weighted 

Fuzzy C-Means clustering method (BWFCM) is 
compared to the conventional methods including 
classical FCM, MFPCM, CFCM and DWFCM. This is 
carried out by running all of these clustering methods on 
both artificial and real data sets. In BWFCM both joint 
Credibility and simplified typicality weights named 
BWFCM1, and joint Density and simplified typicality 
weights named BWFCM2 are used. 
 

5.2.1  Artificial Datasets Results 
Results of this comparison using X1500, X1000 and 

their noisy versions are presented respectively in Tables 
5 and 6, and also in Fig. 5. It is evident from these 

results that the proposed bilateral weighted clustering 
methods, in general, provide better values of the validity 
indices. Also note that except for the first uniform noisy 
version of X1000, in most of the other cases, the MSE 
values obtained using joint credibility and simplified 
typicality weights are greater than joint Density and 
simplified typicality weights. From Fig. 5, it can be seen 
that among the conventional clustering methods, CFCM 
outperforms FCM, MFPCM and DWFCM except for 
the two cases of uniform noisy versions of the X1000 
where far outliers exist (see results for versions 4 and 5 
of X1000 dataset in Fig. 5). 
 

5.2.2  Real Dataset Results 
Similar to the experiment in the previous section, we 

compared FCM, MFPCM, CFCM, DWFCM and both 
bilateral-weighted FCM methods (BWFCM1 and 
BWFCM2) using four real datasets, namely Iris, Cancer, 
Wine and Glass. Results are presented in Table 7 in 
terms of purity index and in Fig. 6 in terms of 
misclassified data. The number of misclassifications is 

 
Table 5 Comparison of conventional and proposed clustering methods on X1500 dataset with different number of outliers in 
terms of MSE. 

  Conventional robust clustering methods Bilateral Weighted FCM 

  FCM MFPCM CFCM DWFCM Joint Credibility and 
Simplified  typicality weights 

Joint Density and 
Simplified  typicality weights 

N
um

be
r 

of
 O

ut
lie

rs
 0 0.07 0.08 0.07 0.07 0.07 0.08 

50 0.32 0.34 0.11 0.09 0.12 0.11 
100 0.63 0.63 0.19 0.13 0.14 0.11 
200 1.21 1.30 0.25 0.22 0.13 0.11 
300 1.89 1.76 0.42 0.40 0.12 0.12 
400 2.81 2.16 0.40 0.56 0.19 0.15 
500 8.19 2.25 0.69 0.91 0.33 0.28 

 

 
Table 6 Comparison of conventional and proposed clustering methods on X1000 dataset and its noisy versions (uniform noise) 
with different number of Gaussian outliers in terms of MSE. 

Dataset 
version 

No. of 
Gaussian 
Outliers 

Conventional robust clustering 
methods Bilateral Weighted FCM 

FCM MFPCM CFCM DWFCM 
Joint Credibility and 
Simplified  typicality 

weights 

Joint Density and  
Simplified typicality 

weights 

1 
0 0.05 0.10 0.08 0.10 0.08 0.10 

300 1.70 1.70 0.25 0.81 0.12 0.14 
600 6.89 4.59 0.86 3.62 0.53 0.55 

2 
0 0.28 0.26 0.22 0.20 0.08 0.08 

300 1.58 1.76 0.71 0.85 0.25 0.26 
600 6.48 4.20 1.40 3.37 0.40 0.31 

3 
0 0.18 0.34 0.12 0.15 0.12 0.12 

300 1.40 1.89 0.61 0.76 0.27 0.12 
600 6.59 4.55 1.57 3.46 0.51 0.38 

4 
0 0.38 0.62 0.17 0.09 0.12 0.09 

300 1.54 1.74 1.45 1.02 0.40 0.24 
600 6.65 3.53 6.79 3.45 0.91 0.64 

5 
0 0.94 1.03 0.22 0.12 0.12 0.09 

300 1.25 1.18 1.45 1.31 0.66 0.59 
600 7.13 4.35 6.70 3.46 0.73 0.65 
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called the re-substitution error rate [26]. It is evident 
from Table 7 that the proposed BWFCM approach with 
joint Density and simplified typicality weights 
(BWFCM2), in general, presents better values for the 
purity index. 
 

5.2.3  Real Application 
According to the theoretical considerations above, 

we also present, in this experimental part, the results of 
a GMM-based speaker identification experiment [27]. 
The available TFARSDAT speech data corpus is used to 
compare these algorithms. We use 35 speakers, 
including 12 female and 23 male speakers. The data 

 
(a) 

 

 
(b) 

Fig. 5 Comparison of different kinds of computing clustering weights on (a) X1500 datasets with different number of outliers and 
(b) X1000 with different uniform noisy versions and 600 Gaussian outliers. 

 
 

Table 7 Comparison of conventional and proposed Bilateral weighted clustering methods on real datasets in terms of average 
cluster purity index. 

dataset FCM MFPCM CFCM DWFCM *STWFCM †BWFCM1 ‡BWFCM2 

Iris 0.8272 0.8272 0.8592 0.8695 0.8510 0.8592 0.8715 

Cancer 0.9161 0.9377 0.9268 0.9322 0.9464 0.9464 0.9552 

Wine 0.6022 0.5808 0.6110 0.6226 0.6226 0.6114 0.6225 

Glass 0.8391 0.8159 0.8159 0.8391 0.8575 0.8573 0.8684 

*STWFCM denotes simplified typicality weighted FCM 
†BWFCM1 denotes joint credibility and simplified typicality weighted FCM. 
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were processed in 25 ms frames at a frame rate of 200 
frames per second. Frames were Hamming windowed 
and pre-emphasized with μ = 0.975. For each frame, 24 
Mel-spectral bands were used and 13 Mel-frequency 
cepstral coefficients (MFCC) were extracted. Since the 
performance of Gaussian mixture models are very 
sensitive to the selection of initial mixture mean vectors, 
using a C-Means motivated clustering method for 
computing the initial mean vectors is highly 
recommended. Therefore, we use different mentioned 
clustering methods for computing the initial mean 
vectors of the Gaussian mixtures. 

In the training phase, 40 seconds utterances from 
each speaker were used to train GMMs with 4, 8, 16 and 
32 mixture components. 

Speaker identification was carried out by testing 980 
test tokens (35 speakers with 28 utterances each) against 
the GMMs of all 35 speakers in the database. The 
experimental results are shown in Table 8. These results 
also show the superiority of BWFCM against different 
clustering methods for initialization of centroids of 
Gaussian mixtures in tasks such as speaker 
identification. 
 

(a) (b) 

 
(c) (d) 

Fig. 6 Comparison of conventional and proposed Bilateral weighted clustering methods on real datasets in terms of number of 
misclassified samples. 
 
 

 

 
Table 8 GMM-based speaker identification error rates, while centroids of Gaussian mixture are initialized using different clustering 
methods. 

Number of 
Gaussian 
mixtures 

C-Means 
(HCM) 

FCM CFCM DWFCM *BWFCM 

4 5.61 5.41 5.41 5.20 5.00 
8 4.79 4.69 4.69 4.29 3.67 
16 3.67 3.37 3.37 3.269 3.16 
32 2.75 2.75 2.75 2.759 2.35 

Average 4.21 4.06 4.06 3.88 3.55 
*BWFCM denotes joint density and proposed weights, Weighted FCM. 
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5.3  Computational Time and Convergence Rate 
In this section BWFCM and the conventional 

clustering methods are compared regarding their 
computational times and convergence rates. The 
necessary time of one Iteration step of clustering and the 
number of iterations for convergence of the algorithms 
are computed and compared. Our experimental platform 
was a Microsoft Windows-based personal computer 
with a 2 GHz AMD processor and 1 GB of RAM 
memory. Experiments were performed on X1500 
dataset with different number of additional Gaussian 
outliers. The computational complexity of each iteration 
step in FCM, CFCM, DWFCM and both types of 
BWFCM is 2 2( )O C N , and in MFPCM is 2 3( )O C N . 

The computational time of one Iteration step for 
FCM, MFPCM, CFCM, DWFCM, BWFCM1, 
BWFCM2 are presented in Table 9. The numbers of 
convergence iteration steps for these clustering methods 
are also depicted in Fig.7. According to Table 9, the 
necessary time for one iteration step in FCM, DWFCM 

and BWFCM2 is almost the same. This time is nearly 
twice for CFCM and BWFCM1. But this time is 
considerably higher for MFPCM, since this method has 
a computational complexity of 2 3( )O C N . 

Based on Fig. 7, the convergence rates of FCMT, 
DWFCM, BWFM1 and BWFCM2 for different 
amounts of added outlier samples are nearly equal. 
More number of iterations is needed for convergence of 
CFCM compared to FCMT, DWFCM, BWFCM1 and 
BWFCM2. Convergence rate of FCM degrades when 
the number of outliers increases. MFPCM has the worth 
convergence rate among all clustering methods. 

 
6  Conclusion 

In this paper, a new algorithm for robust fuzzy 
clustering named Bilateral Weighted Fuzzy C-Means 
(BWFCM) was proposed. Our main concern in 
presenting this algorithm is to reduce the influence of 
outliers on clustering. In order to achieve this target, 
BWFCM attempts to decrease the noise sensitivity in 

 

 
Fig. 7 Comparison of convergence rates for FCM, MFPCM, CFCM, DWFCM, BWFCM1 and BWFCM2 on X1500 dataset. 

 

Table 9 Computational time of one iteration step in FCM, MFPCM, CFCM, DWFCM, BWFCM1 and BWFCM2 using X1500 (in 
milliseconds). 

dataset FCM MFPCM CFCM DWFCM *BWFCM1 †BWFCM2 

0 5.00 1327.00 7.80 5.16 13.08 5.33 

50 6.20 1368.80 7.80 5.33 13.35 7.00 

100 6.94 2046.90 8.38 7.00 13.42 7.50 

200 7.00 2086.00 9.87 7.09 13.88 7.66 

300 7.42 2116.66 10.07 7.50 14.10 7.83 

400 8.00 2324.25 11.14 7.83 14.33 8.54 

500 8.85 2401.76 17.85 8.45 14.50 8.66 

Average 7.05 1953.10 10.41 6.90 13.80 7.50 

*BWFCM1 denotes joint credibility and simplified typicality weighted FCM. 
†BWFCM2 denotes joint density and simplified typicality weighted FCM. 
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fuzzy clustering by using different kinds of weights in 
its objective function, so that the noisy samples and 
outliers have less effect on centroids. Three main 
categories of weights including cluster-dependent, 
cluster-independent and bilateral weights are also 
investigated theoretically and empirically in this 
research. The proposed method is compared to other 
well-known robust clustering methods such as 
Possibilistic Fuzzy C-Means, Credibilitistic Fuzzy C-
Means and Density Weighted Fuzzy C-Means. 
Experimental results on two artificial and five real 
datasets demonstrate the high performance of the 
proposed method, while its order of computational 
complexity is comparable to many conventional 
clustering methods. Subject of our future work is to use 
the proposed method in applications such as robust 
speaker clustering and robust image segmentation. 
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