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Abstract: Increasing the frame rate of ultrasound imaging while keeping image quality 
is important for following fast movements, especially the heart. There are different 
modalities for B-mode image recording, including line-by-line scanning with linear, 
phased, convex array, synthetic aperture imaging (STA), plane waves (PWI), then the 
combination of plane waves (CPWI), and so on. Researchers have tried to increase the 
frame rate in each case using different methods. Three approaches for this aim are data 
acquisition, post-processing, and beamforming. This article reviews these approaches 
and their solutions for compensating image quality reduction. Ultrafast ultrasound 
imaging, which provides exceptional temporal resolution (high frame rate), is promising 
in diagnosing heart diseases due to its ability to capture rapid heart movements. It can 
record images faster than conventional imaging, usually exceeding 1000 frames per 
second. This can be achieved through plane wave imaging (PWI). However, high frame 
rate data acquisition can lead to a decrease in image quality. Transmitting at different 
angles and then combining plane wave imaging is a popular method to enhance PWI 
quality but reduces the frame rate by the number of angles. As a result, researchers have 
aimed to increase the temporal resolution while compensating for the loss of quality. 

Keywords: ultrasound, conventional imaging, plane wave imaging, neural network, 
frame rate, beamforming. 

 

1  Introduction 

LTRASOUND waves are used in medicine for 
diagnostic purposes, as well as for therapeutic 

applications. Medical imaging through this method is 
performed in a non-invasive and secure manner. Using 
ultrasound to produce medical images is called 
sonography or echography. Sound waves are classified 
according to frequency into infrasonic (infrasound), 
whose frequency is below the limit of human hearing; 
acoustic (auditory), whose frequency falls within the 
range of human hearing; and ultrasonic (ultrasound), 
whose frequency is higher than the range of human 
hearing (more than 20000 Hz) [1]. In diagnostic medical 
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applications, ultrasound waves from 1 MHz to 18 MHz 
are commonly used. Higher frequencies require smaller 
transmitter dimensions, and the shorter wavelength 
enables higher resolution. However, the amount of 
signal attenuation in the propagation environment rises 
with increasing frequency. The speed of sound is varies 
in different tissues, and it is typically considered to be 
1540 m/s for soft tissues. At each emission (from one or 
more probe elements, depending on the imaging 
method), the reflections are received as a data vector by 
all the active elements of the transducer (probe). Then, 
by applying processing, radio frequency (RF) lines are 
created to generate the image. RF lines are positioned 
next to each other and displayed as a single image or 
consecutive frames. There exist several types of 
ultrasound transducers including linear, convex, and 
phased array. These transducers differ in their crystal 
arrangement, size, and footprint, which decide their 
suitability for various imaging applications. B-mode 
ultrasound imaging can be performed using various 
techniques, including traditional line-by-line scanning 
with linear, phased, and convex arrays, as well as more 
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advanced methods such as synthetic aperture imaging 
(STA) and plane wave imaging (PWI). A further 
enhancement of PWI is coherent plane wave 
compounding (CPWI), which improves image quality by 
integrating frames into multiple angles. Despite these 
advancements, achieving high frame rates while 
maintaining image quality remains a key challenge in 
ultrasound imaging. To address this, researchers have 
explored different strategies, which can be broadly 
categorized into three main areas: optimizing data 
acquisition protocols, applying advanced post-
processing techniques, and improving beamforming 
algorithms. Each of these approaches contributes to 
enhancing temporal resolution and overall imaging 
performance, making them essential for real-time 
applications such as echocardiography. 

Ultrasound imaging faces the challenges of image 
quality and imaging speed, especially in moving tissues 
imaging such as the heart. Being able to decrease the 
recording time for each image in a sequence is important 
for accurately tracking rapid cardiac movements, 
especially in the case of pulmonary and aortic valves, to 
diagnose heart problems. Frame rate is important in 
other applications such as blood flow imaging, kidney 
perfusion, and photoacoustic imaging. Medical 
ultrasound scanners are also capable of real-time blood 
flow visualization within the body. Doppler systems 
enable flow assessment at specific locations, providing 
detailed velocity distribution over time. Additionally, 
they generate dynamic color images of velocity at frame 
rates of up to 20–60 frames per second. If the frame rate 
is too low, rapid changes in blood flow velocity such as 
transient reverse flow components, may not be 
accurately detected, so frame rates as high as 100-200 
per second would be needed [2,3]. Kidney perfusion 
refers to the blood flow through the kidneys, and limited 
frame rates can result in undersampling of faster flow 
regions, particularly in the renal cortex. High-frame-rate 
ultrasound enables power Doppler imaging, where the 
temporal incoherence of microbubbles facilitates the 
separation of contrast signal from tissue [4]. 
Photoacoustic tomography (PAT) is a noninvasive 
imaging technique that combines optical and ultrasound 
methods. By irradiating a sample with laser pulses, 
temperature rise results in generating pressure waves, 
which are then detected by ultrasound transducers to 
reconstruct an optical absorption map, providing high 
spatial resolution and soft tissue contrast at greater 
depths than pure optical imaging [5,6]. The ability to 
acquire high frame rate PA images enables applications 
like monitoring heart valve motion, myocardial function, 
and circulating tumor cells in blood vessels, which 
makes real-time Photoacoustic imaging a valuable tool 
for various biomedical applications. 

For such applications, as well as elastography which 
requires many images in the shortest time possible 
(approximately 150 images for the heart and 1000 
images for elastography per second), plane wave 
imaging is used. The images must have a desirable 
quality for proper diagnosis, including resolution and 
contrast. However, plane wave imaging has the lowest 
quality among imaging methods due to its transmission 
and reception from all elements and lack of focus. A 
modified method is the combination of plane waves, 
which are transmitted at different angles. This, however, 
reduces the frame rate according to the number of 
angles.  

In the following sections, we first provide a brief 
discussion on the fundamental principles of conventional 
and STA imaging techniques in Sections 2,3. 
Subsequently in each section, techniques designed to 
enhance the frame rate for the corresponding imaging 
method are introduced. Section 4 covers the PWI 
imaging method, followed by CPWI. Section 5 explores 
the application of neural networks in high frame rate 
imaging. Subsequently, in Section 6, we discuss the 
presented approaches, and finally, in Section 7, we 
conclude the study. 

2 Conventional Imaging  

Linear arrays can generate rectangular images that 
cover a specific region of interest (ROI). In cases where 
the elements are situated on a convex surface, a smaller 
array can be used to extend the scanning area and get an 
image with a polar cross-section. The method of 
transmitting and receiving signals is like a linear array, 
involving the use of a considerable number of elements 
(typically between 128-256). Due to their size, convex 
and linear arrays are not suitable for heart imaging from 
between the ribs. A phased-array system using a smaller 
structure can be used instead, by acquiring an image 
with a polar cross-section using a transducer with a 
small footprint. The signals are electrically delayed for 
steering the direction of the beam [7]. 

In conventional imaging, a focused beam is produced 
to form each line of data, referred to as a scan line, by 
activating a group of transducer elements through 
pulsing. This group of elements is called an aperture, 
and they receive echo signals. The aperture is then 
moved by one or more elements and the pulsing is 
repeated to create another scan line. This process is 
repeated (N - A + 1) times and creates (N - A + 1) scan 
lines, where N is the total number of transducer elements 
and A is the number of elements in the aperture. Echo 
signals enter the beamforming operation to produce an 
RF line. Beamforming differs from one imaging 
technique or application to another. The most well-
known beamforming methods are delay and sum (DAS) 
and minimum variance (MV). The final image is 
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obtained by collecting the RF lines in a single matrix, 
extracting the envelope using the Hilbert transform, and 
logarithmic compression (Fig. 1). This compression is 
necessary for dynamic range reduction of the echo 
signals.  

Increasing the aperture size helps improve the lateral 
resolution of the image. This is because both the beam 
width at the focal point and the beam divergence angle 
are inversely proportional to the aperture width [8]. The 
noise level is also related to the aperture size, as a larger 
aperture provides more data for beamforming and helps 
reduce noise. However, the width of the resulting image 
is inversely proportional to the aperture size. Using 
larger apertures reduces the number of scan lines and, as 
a result, the width of the image decreases. Therefore, in 
conventional imaging, a balance between imaging 
quality and image width must be considered. 

The frame rate depends on the maximum imaging 
depth and the number of scan lines and is calculated by 
the (1), Berkov (2011), [9]: 

FRconventional_imaging = 1
NT

 ,T= 2D
𝑐𝑐
→ FR= 𝑐𝑐

2ND
   (1) 

 
Where FR is the frame rate and N is the number of 

scan lines. T or PRP (pulse repetition period) is the time 
interval between two consecutive pulse transmissions. D 
is the maximum imaging depth and c is the speed of 
sound in the imaging medium. 

 
Fig 1. Schematic of line-by-line imaging with a linear array 

[9]. 

2.1 Increasing Frame Rate in Conventional Imaging 
According to Eq.(1), the frame rate can be improved as 

bellow, but has limitations:  

(1) Reducing the depth of penetration, as the pulses 
travel a shorter distance.  

(2) Reducing the number of focal points, as fewer scan 
lines are needed.  

(3) Reducing the number of scan lines.  

Table 1 Shows the required speeds for different 
applications. Typical frame rates for 2D and 3D 
echocardiography systems are approximately 30–60 
frames per second and 10–20 volumes per second, 
respectively [8]. This speed limitation has prompted 
researchers to develop methods for enhancing frame 
rate. 

Table 1. Table 1 Examples of frame rates in various clinical 
applications for both conventional and ultrafast imaging [9]. 

Application 
Typical 
imaging 
depth 

Conventional 
architecture 

Ultrafast 
architecture 

Abdominal 
imaging 20 cm 20 Hz 3800 Hz 

Cardiac 
Imaging 15 cm 150 Hz 5000 Hz 

Breast 
imaging 5 cm 60 Hz 15000 Hz 

There are three approaches for increasing the frame 
rate in ultrasound imaging:  

•The first approach is based on data acquisition.  

•The second approach is based on post-processing 
methods.  

•And the third approach is based on beamforming. 

The fundamental methods in the first approach involve 
reducing the viewing angle or decreasing the number of 
recorded lines in a frame. In the second approach, 
processing occurs after data acquisition, and in 
beamforming methods, efforts have been made, 
particularly for the minimum variance method, to 
increase the frame rate by reducing time/computational 
complexity. 

Multi-line transmission (MLT) and acquisition (MLA) 
are one of the first methods, initially introduced by 
Mallart and Fink (1992) and Shattuck et al. (1984) 
[10,11]. MLA (also known as parallel receive 
beamforming) faces issues of reduced image resolution, 
increased side lobes, reduced penetration, and increased 
hardware complexity. In MLT, ultrasound pulses are 
simultaneously transmitted in multiple directions and 
can be combined with parallel receive beamforming to 
achieve a 12-16x frame rate (approximately 340-450 Hz) 
without significantly compromising the spatial 
resolution and signal to noise ratio. However, the 
limitation of MLT is the occurrence of crosstalk artifacts 
between parallel transmission beams, where the energy 
of the main lobe of a transmitting beam is received by 
the side lobe of another receiving beam, thereby 
decreasing the spatial resolution. These two methods are 
shown in Fig. 2. Research has been conducted to reduce 
the effects of these artifacts using different beamformers 
[12]. 
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Fig 2. The figure shows three different image scan schemes. 
Conventional beam forming (single line acquisition) is shown 

in A. B shows multiline acquisition (e.g., 4 multiline 
acquisition). C shows multiline transmit (e.g., 4 multiline 

transmit). The arrows indicate the direction of the scanning 
process [12]. 

Retrospective gating was one of the earliest approaches 
[12] used for achieving high-speed imaging while 
preserving spatial resolution and field of view. In this 
approach, a large imaging section is divided into several 
small sub-sections. Each of these sub-sections is imaged 
with a high frame rate, based on its limited field of view, 
during one cardiac cycle. Using retrospective 
electrocardiogram (ECG) gating, sub-segment images 
are then combined to produce images of the entire 
imaging segment. However, the ECG gate may not be 
effective if the heart rate varies during different cardiac 
cycles. In such cases, motion matching serves as an 
alternative method for combining sub-images. In this 
method, both neighboring subdivisions overlap slightly, 
and the local motion patterns extracted from these 
regions coincide temporally. The periodicity of the 
heartbeat is used for the temporal alignment of two 
neighboring subdivisions. In practice, a balance must be 
struck between the number of sub-segments to be 
combined and the resulting frame rate. In this scenario, 
each image line in the overlap region is imaged twice - 
once by the first transmission beam and once by the 
second beam. Unfortunately, this technique is not useful 
in cases of atrial fibrillation (an irregular and often 
abnormally fast heartbeat). 

Wang et al. (2008) [13] developed an automatic 
method for multi-segment ultrasound imaging using 
ECG. This method involves employing seven different 
sectors at various angles, continuously acquiring seven 
ECG signals and seven RF signals for each sector, 
extracting one complete cardiac cycle from the ECG and 
RF frame signals, and combining the corresponding 
frames to create full-view ultrasound images. This 
method achieved a frame rate of 481 Hz at an imaging 
depth of up to 11 cm and a 100% field of view during 
breath-holding. The limitations of this method include 
the need for high accuracy in synchronizing the ECG 
with the recorded frames, and the fact that each section 
of the final frame may not necessarily correspond to a 
cardiac cycle, resulting in incorrect information display 
for those with irregular heartbeat or disease. 
Furthermore, ECG needs long acquisition times and is 

sensitive to any added motion that may occur during 
acquisition. 

In another study conducted by Perrin et al. (2012) [14], 
two-dimensional echocardiographic images of periodic 
frames from several cardiac cycles were arranged to 
reconstruct a sequence with a higher frame rate. The 
order was based on the R wave peak obtained from the 
ECG. They assumed that an R peak would occur in the 
ECG waveform in the Kth frame. Therefore, that frame 
was considered for three heartbeats in the sequence of 
frames. Based on the occurrence time of the R peak, they 
were rearranged and placed in the sequence, and the 
process was repeated (Fig. 3). This method only uses 
repetitive information, and in cases where 
echocardiography is abnormal or patients have irregular 
heartbeats, it may require many intervals to reconstruct a 
higher frame rate movie or could even become 
impossible. This is because R peaks may not necessarily 
appear in the assumed frames. 

 
Fig 3. The schematic figure depicts an example of the 

proposed algorithm, where frames covering the duration of the 
ECG R-wave peak are reorganized according to their start time 

in relation to the peak's occurrence [14]. 

In the studies of Gifani et al. and Shalbaf et al. (2011, 
2010, 2015) [15,16,17], a post-processing approach was 
taken where the manifold learning algorithm was applied 
to two-dimensional echocardiographic images to find the 
relationship between frames of a cardiac cycle. Each 
image is represented by a point in the reconstructed 
manifold (Fig. 4), [15]. There are three dense regions on 
the manifold that correspond to the three phases of the 
cardiac cycle (isovolumetric systole, isovolumetric 
relaxation, and reduced filling), in which there are no 
prominent changes in ventricular volume. Since the end-
systolic and end-diastolic frames are in the same volume 
phases of the cardiac cycle, dense areas can be used to 
find these frames. The minimum correlation between 
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these images leads to the detection of end-systole and 
end-diastole frames. With the (Locally Linear 
Embedding) LLE algorithm, the nonlinear dimension 
has been reduced. The main advantage of the LLE 
algorithm is that similar frames in high-dimensional 
space keep their neighborhood in low-dimensional 
space. By identifying the relationship between frames 
and sorting the extracted images, they merged the three 
cycles into one cycle with more images, thus increasing 
the frame rate (Fig. 5) [15]. 

 
Fig 4. The LLE algorithm was used to perform a two-

dimensional non-linear embedding of three cardiac cycles in 
normal hearts, with k=10 neighbors used during the process 

[15]. 

 

Fig 5. a) Four consecutive frames of the first cycle. b) 
Inclusion of two other heart cycles in the first cycle [15]. 

Based on the proposed method, only ultrasound images 
are needed and there is no need for an ECG recording 
system to be used alongside ultrasound imaging, as the 
images are extracted without ECG references. This can 
result in a more cost-effective cardiac ultrasound 
imaging device, and the imaging method becomes easier 
for patients and cardiologists due to not needing to take 
an ECG and the simultaneous use of other electrodes. 
Although the results show that the proposed method 

applies to normal cases, the algorithm may not be 
responsive to a wide range of abnormal cases (such as 
patients with arrhythmia, pathology, and ventricular 
ectopic beats). 

Gifani et al (2015) [18] proposed another post-
processing approach based on interpolation for achieving 
ultra-high temporal resolution in cardiac ultrasound 
imaging based on sparse signal representation and 
temporal information. The proposed method does not 
require training in low-resolution and high-resolution 
dictionaries, as well as motion estimation. The first step 
in this method involves extracting the intensity variation 
time curves (IVTCs), which are evaluated in each pixel 
of consecutive echocardiographic frames (Fig. 6). The 
predefined functions include four families of wavelets, 
along with sine and cosine functions, based on prior 
knowledge of the nature of IVTC signals. By having 
initial sparse coefficients for the IVTC signal with T 
samples, new sparse coefficients are created for the new 
IVTC signal with T^' samples (Fig. 7). The figure shows 
an increase up to a 3-fold ratio. The main limitation of 
this method is its computational complexity compared to 
other methods. 

 
Fig 6. IVTC curve of one pixel in (x, y) coordinates extracted 

from all frames [18]. 

One of the post-processing methods is frame rate up-
conversion (FRUC), in which extra frames are 
interpolated and inserted between two consecutive 
frames. Many FRUC algorithms use motion estimation 
and motion-compensated frame interpolation. Motion 
estimation techniques in echocardiography use speckle 
tracking methods or matching the images to the base 
image (nonrigid image registration) of the spatial-
temporal deformation field, which effectively estimates 
the motion by minimizing the difference, Alessandrini et 
al. (2014, 2016) [19,20]. However, in low frame rate 
imaging, speckle noise and large motions between two 
consecutive frames make motion estimation difficult. 
Furthermore, in heart diseases and irregular heartbeats, it 
may not be estimated correctly. 

In the study of Mirarkolaei et al. (2020) [21], a 
variable bidirectional motion estimation model is 
proposed for motion-compensated frame interpolation. 
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Fig 7. The result of the method proposed in [18] create new IVCTs with different ratios: 1.4, 1.8, 2, 2.4, and 3 

 

The Euler-Lagrange equations that characterize the 
optimal two-dimensional dense motion field are derived 
and a multiscale iterative method is developed to obtain 
the motion field and missing intermediate frames. 
Experimental results show that the proposed algorithm 
produces interpolation frames without the commonly 
present blurring artifacts in existing motion-
compensated frame interpolation algorithms. Fig. 8 
shows the interpolation between two consecutive frames. 

 
Fig 8. (a)–(c) shows three consecutive frames with an 

interpolation between the two frames during end systole and 
early diastole before mitral valve opening [21]. 

Jalali et al (2020) [22] also used IVTC signal for 3D 
imaging. The frame rate limitation in 3D 
echocardiography is worsened as it must scan a volume 
instead of a plane, which takes more time compared to 
2D mode. In this study, a time interpolation method 
using B-splines has been suggested, which is more 
efficient than the sparse representation method in terms 
of both error rate and computational complexity. The 
choice of dictionary atoms in the sparse representation 
method, by which the IVTC signals must be 
approximated as a linear combination of atoms, can 
cause this difference. Cubic B-Spline super resolution 

provides excellent performance in increasing frame rate 
and improving image quality. Image quality metrics, 
such as contrast-to-noise ratio, show that the image is 
improved in interpolated frames as the frame rate 
increases. In 3D echocardiography, due to the lack of 
temporal information, frame rate enhancement is not 
performed as in 2D mode, and fewer frames result in 
mistaken interpolation of 3D IVTCs. The paper shows 
that cubic B-Spline has lower errors in reconstructing 
both 2D and 3D echocardiographic IVTCs compared to 
other B-Spline interpolations. Therefore, cubic B-Spline 
is the preferred interpolation method.  

In another study by Jalali and Behnam (2021) [23], it 
was proposed to increase the number of frames in 3D 
echocardiography sequences to enhance the accuracy of 
tracking endocardial surface spots. It was shown that 
using IVTC curves and cubic B-spline interpolation 
helped improve tracking accuracy compared to the 
original sequences. The results show that employing the 
proposed method can help the tracking algorithm 
perform better and follow spatial patterns more 
accurately. This is because in fast-moving organs such 
as muscles and heart valves, the speckle pattern 
constantly changes, and the tracking algorithm must 
adjust to new patterns in almost every new frame.  

Afrakhteh et al (2022) [24], have proposed a non-
polynomial interpolation method to increase the frame 
rate in echocardiography. Since the parts that move 
faster in echocardiography are crucial for medical 
diagnoses, more specialized bases than traditional 
polynomial bases should be used. Polynomial bases 
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produce larger errors in parts of the data with large 
variations. The primary findings of the article are as 
follows: First, non-polynomial interpolation performs 
better than polynomial interpolation in dealing with non-
smooth data. Second, since these non-polynomial 
functions are based on continuous and infinitely 
differentiable functions, they also keep their smoothness 
properties. Another advantage is that the proposed 
method can increase the temporal resolution of 
echocardiographic images up to 4-fold without reducing 
image quality. In another study by this group (2023) 
[25], a spatial-temporal numerical method based on two-
dimensional interpolation is proposed. Specifically, a 
new strategy called Intensity Variation Time Surface 
(IVTS) is proposed to combine temporal and spatial 
information in the reconstruction. In this method, first, 
IVTS is extracted based on data collected from different 
rows of all sample frames. Then, intermediate 
interpolated frames are created by reconstructing the 
missing information of IVTSs using 2D interpolation. 
The proposed 2D interpolation reduces reconstruction 
errors by extending the concept of IVTC to IVTS while 
keeping the helpful features of earlier IVTC-based 
methods. In this regard, radial basis functions (RBFs) 
have been used for two-dimensional interpolation. RBFs 
are chosen because they can interpolate on large-scale 
datasets, and their mathematical implementation is 
simple. Another important feature of this interpolation 
technique is its meshless nature, which allows for higher 
sampling rates in echocardiography to improve temporal 
resolution without a significant reduction in image 
quality. To assess the proposed method, RBF 
interpolation was evaluated on 2D/3D echocardiography 
datasets. Fig. 9 shows two examples of original frames 
compared to frames reconstructed using the proposed 
technique. 

 
Fig 9. The first row illustrates the original frames, and the 

second row displays the reconstructed frames using the 
proposed interpolation techniques [25]. 

In the work of Hosseinpour et al (2019) [26], 
compressed sensing (CS) is used for temporal resolution 
improvement. In compressed sensing, instead of 
sampling from a signal, measurements are taken from 
the signal. The number of measurements needed for 
signal recovery in compressed sensing is much lower 
than the number of samples needed for signal recovery 
according to the Nyquist theorem. For example, for an 
audio signal with a bandwidth of 4 kHz, the Nyquist 
theorem dictates that the sampling rate must be at least 8 
kHz for full signal recovery; however, the audio signal is 
sparse in the short-time Fourier transform (STFT) 
domain, meaning that many of its STFT coefficients are 
zero. CS is an acquisition method in which only a few 
randomly selected samples of a signal are measured 
blindly, and the complete signal is reconstructed under 
certain conditions. The schematic of the proposed 
method is shown in Fig. 10. Data sparsity is considered 
in both spatial and temporal directions in RF signals and 
intensity-time curves (IVTCs), respectively, and CS 
reconstruction is applied in both spatial and temporal 
directions. Using this method, the frame rate of 
ultrasound imaging can be increased by up to two times. 
Fig. 11 shows reconstructed images using the proposed 
methods. The drawback of the CS method is its 
extremely high processing time. 

 
Fig 10. methods of image reconstruction on a 2D ultrasound 
RF image sequence with a line-wise pseudo-random sampling 
mask. (a) using conventional CS reconstruction, (b) proposed 
CS reconstruction approach in the Spatial-Temporal domain 

[26]. 

In a line-by-line imaging system, the frame rate is 
dependent on the number of scan lines. Hence, if a 
fraction of lines is collected and other lines are estimated 
in the original image, the frame rate can be increased. 

Afrakhteh and Behnam (2020) [27] have proposed a 
data acquisition technique to estimate the RF data matrix 
using DCT-based reconstruction. Although compressed 
sensing provides a high-accuracy reconstruction of the 
original signal, its main limitation is a significant 
increase in computational complexity. Therefore, a 
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DCT-based method for reconstructing unformed lines 
with MV (only 33% of lines took part in the 
beamforming process) is presented with extremely low 
complexity. Fig. 12 shows the comparison of different 
methods for beamforming. 

 
Fig 11. The reconstructed image from a 3D echocardiographic 

volume sequence using the proposed Spatial-CS and Spatial-
Temporal-CS methods with complete temporal and spatial 

learned dictionaries is presented. The original image is shown 
in (a), and the reconstructed images using the Spatial-CS 

method are shown in (b-d), the images reconstructed using the 
Spatial-Temporal-CS method are shown in (e-g) for 25%, 50%, 

and 75% of the main lines, respectively [26]. 

 

Fig 12. An experimental cyst phantom using a 128-element, 6 
MHz linear array. a) RF lines were determined for 

beamforming (50% of total lines). b) MV + DCT (50% of total 
lines). c) MV (L = 64, Δ = 1/100 L). d) DAS. e) MV (33% of 

total lines). f) MV + DCT (33% of total lines) [27]. 

In another study (2020) [28], Hosseinpour et al, used 
the matrix completion method in their data acquisition 
approach, in which the problem is completing a low-
rank matrix when only a subset of its elements is 
available. MC is an extension of CS for recovering two-
dimensional signals. The first rows of each RF image in 
the sequence form an MC image. Thus, the first row of 

the first RF image is the first row of the first MC image. 
The first row of the second RF image, the second row of 
the first MC image, and the first row of the T-th frame 
form the m-th row of the first MC image. Consequently, 
the first MC image is formed with T rows, which is 
equal to the number of RF images in the sequence. The 
number of columns in this MC image is equal to the 
number of RF lines in the image. This is performed for 
all rows of the RF image sequence (Fig. 13). This 
sequence can include several cardiac cycles. As the heart 
has periodic and repetitive movement in successive 
cycles, the cycles are like each other. Therefore, for the 
images obtained in a sequence (several cardiac cycles), 
most of the data or information are either the same or 
similar and the assumption of the low rank of the matrix 
is fulfilled. According to Fig. 14, the sequence of RF 
frames is reconstructed by the proposed method. The 
computational complexity of this method is much lower 
than CS, and the frame rate increases up to two times.  

 
Fig 13. Schematic of how MC matrices are formed from RF 

data matrix rows [28]. 

 

Fig 14. The proposed Spatial-Temporal-MC approach was 
employed for the reconstruction of an RF image sequence [28]. 



Iranian Journal of Electrical & Electronic Engineering, Vol. 21, No. 03, September 2025     9 
 

However, for ultra-fast movements, this value should 
still be higher. Fig. 15 shows reconstructed images from 
2D carotid artery data using three reconstruction 
methods. 

 
Fig 15. The reconstructed image from two-dimensional 
carotid artery data using three reconstruction methods is 

presented. The methods are as follows: (a) original image, (b) 
image from RF lines sampled at a sampling rate of less than 

50%. Reconstructed images using (c) Spatial-CS, (d) Spatial-
Temporal-CS, and (e) proposed Spatial-Temporal-MC methods 

[28]. 

3 Synthetic Aperture Imaging (STA) 

Another type of imaging method is the synthetic 
aperture, in which the transmission is done sequentially 
by each element, and the reception is through all 
elements, as shown in Fig. 16, [29]. This method creates 
several images with low resolution which are then 
combined to create a final high-resolution image. The 
disadvantage of this method includes its computational 
cost and susceptibility to motion artifacts. This method 
achieves a higher frame rate compared to conventional 
approaches. However, for ultrafast applications, specific 
designs have been introduced, which will be discussed in 
the following. 

 
Fig 16. Schematic of synthetic aperture imaging method [29] 

The TC algorithm is an extended version of the matrix 
completion algorithm that is widely used to solve 

problems related to large-scale matrices. It is often 
assumed that missing data entries depend only on their 
neighboring entries. Therefore, only a few neighboring 
inputs are used to estimate missing inputs. However, in 
some cases, missing entries do not only depend on 
neighboring entries but on the whole dataset. in other 
words, the dependency of missing inputs on existing 
data is general. In such cases, using all the available data 
to estimate the missing values leads to a more correct 
approximation. The TC algorithm is developed based on 
this idea, where the optimization problem is written in a 
way that all data is used to estimate the missing inputs. 
The higher the linear dependency between the matrix 
columns, i.e., the lower the matrix rank, the fewer 
columns are needed to retrieve other columns. The 
tensor rank is defined similarly. It can be concluded that 
for a low-rank tensor, its missing entries can be 
recovered by using a small number of existing entries. 
Therefore, the TC algorithm aims to minimize the tensor 
rank. 

Afrakhteh and Behnam, in their study (2021) [30], 
focused on synthetic aperture (STA) imaging. In this 
imaging technique, each element is activated 
sequentially, and then all elements receive and make a 
low-resolution frame. Consequently, the frame rate is 
dependent on the number of array elements, because all 
elements must be activated individually to form a single 
frame. Although acceptable image quality is obtained in 
the STA method, it is not efficient in terms of time and 
provides a limited frame rate depending on the number 
of array elements. To this end, their study introduced a 
novel approach, which randomly selects M/L elements 
instead of using all M elements and reconstructs the 
remaining frames using the tensor completion method, 
leading to a significantly higher quality image with a 3-
fold increase in frame rate. The proposed method is 
shown in Fig. 17. 

 
Fig 17. The proposed STA is illustrated in the diagram. The 
unknown data is represented by the black color in the tensor 

[30]. 
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In another research, Afrakhteh et al. (2022) [31], 
performed this process for the phased array probe and 
echocardiographic images. This time, some scan lines 
were not registered in the phased array, and by 
completing the tensor, it recovered the unregistered 
lines, and the frame rate increased up to 4 times. 

4 Plane Wave Imaging (PWI) 

Ultrafast frame rates are essential for many ultrasound 
imaging applications. This is necessary for detecting the 
movement of a specific target, such as heart rate during 
the cardiac cycle, determining blood flow velocity, and 
tracking shear wave propagation in elastography [32]. 

Elastography is a technique for measuring tissue 
stiffness. In elastography by compressing the desired 
tissue and imaging it before and after compression the 
elasticity of the tissue can be measured. Compression 
can be done dynamically by generating shear waves that 
propagate through the tissue, which is called shear wave 
imaging. Ultrafast imaging techniques are needed to 
image the tissue particles in this method. Shear waves 
suffer from much stronger attenuation effects. They 
travel at a speed of 1 to 10 meters per second and have a 
low frequency of 50 to 500 Hz. Therefore, tracking shear 
waves in tissues requires imaging at a frame rate of 1000 
frames per second to maintain the minimum limit of 
Nyquist sampling rate [33]. Achieving a super high 
frame rate of thousands of frames per second is not 
possible without using plane wave imaging. Plane-wave 
imaging is a type of imaging that uses an unfocused 
beam to view the imaging area. While a single transition 
in linear imaging creates a scan line, PWI produces a 
complete image with a single transition. To form a single 
frame in PWI, all elements in the transducer are 
activated simultaneously and then used to receive the 
reflected echoes from the observation points. Therefore, 
PWI can have a high frame rate, which is equal to the 
frame rate of linear imaging multiplied by the number of 
scans lines and is usually several thousand frames per 
second [9]. A schematic of this method is shown in Fig. 
18. 

 
Fig 18. Schematic of plane wave imaging (PWI) [9] 

4.1  Compound Plane Wave Imaging (CPWI) 
Due to the lack of focus in PWI and the use of a 

transmitted pulse to image the target area, the quality of 
imaging is usually reduced in terms of resolution, side 
lobes, and contrast. One of the most popular techniques 
for improving the quality of PWI is compound plane 
wave imaging (CPWI). Instead of forming an image 
with a single transmission in PWI, CPWI produces an 
image by combining several images as in Fig. 19, each 
of which is produced by directing the unfocused beams 
at a specific angle. 

The frame rate achieved in CPWI is the frame rate for 
a single plane wave divided by the number of compound 
angles as (2): 

                                            (2)     FRCPWI = FRPWI
𝑁𝑁𝐴𝐴

 

𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃 is the frame rate for a single plane wave and  
𝑁𝑁𝐴𝐴 is the number of compound angles. This frame rate is 
suitable for ultrafast imaging applications in specific 
numbers of angles. The maximum number of compound 
angles can be estimated based on the imaging depth, 
speed of sound, and tissue movement in the target area. 

 
Fig 19. Schematic of the CPWI imaging method and 

combining images produced at different angles [9]. 

Berkov (2011) [9], explained the minimum frame rate 
necessary for recording shear wave propagation in 
human tissue. To keep this frame rate when using CPWI, 
no more than 3, 5, and 15 frames can be combined 
during abdominal, heart, and breast imaging, 
respectively. When using CPWI for such applications, 
e.g., shear wave imaging that requires at least 1000 to 
4000 frames per second, the required imaging quality 
must be achieved using the minimum possible number of 
composite signals. This needs an understanding of the 
impact of the number and values of the composite angles 
on the spatial resolution and side lobe levels to ease the 
choice of suitable angles. Therefore, a method for 
calculating the optimal angles is necessary to achieve the 
best possible imaging quality using the minimum 
number of frames. 
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Afrakhteh and Behnam, implemented the tensor 
completion (TC) method for CPWI imaging (2021) [34] 
where instead of transmitting at 75 angles, which results 
in a lower frame rate, some angles were randomly 
removed. By completing the tensor information, the 
unrecorded angles were recovered. Using 20% coherent 
plane waves and reconstructing the remaining 80% via 
TC, they achieved image quality closely resembling the 
use of all 75 angles, with a resolution difference of less 
than 2%. Fig. 20 shows the proposed method. Black 
plates are frames that were not captured at random 
angles. In other studies, Afrakhteh et al. [35,36], unsent 
angles in CPWC were reconstructed using two-
dimensional spatial-angular interpolation. Radial basis 
functions (RBF) were used for two-dimensional 
interpolation due to their flexibility, mathematical 
simplicity, and ability to prevent overfitting (which can 
occur with techniques such as polynomial interpolation). 
Fig. 21 displays simulated cyst targets at 5 and 15 angles 
with and without TC. 

Paridar and Mohammadzadeh Asl, (2023) [37], 
proposed an MV algorithm based on tensor completion 
(TC) to simultaneously improve frame rate and image 
quality in CPWC. In this method, the MV algorithm is 
applied to a limited number of pixels. Then, using the 
TC algorithm, suitable values are assigned to the 
unprocessed pixels (Fig. 22). According to the authors, 
the proposed algorithm speeds up the beamforming 
process and thus improves the frame rate. The results 
show that by processing 40% of the data using the MV 
beamformer followed by the TC algorithm, a 
reconstructed image comparable to the case in which the 
MV algorithm is performed on the full data is obtained. 
To improve image quality compared to the conventional 
DAS algorithm, the adaptive MV algorithm was 
proposed for limited pixels of the sparse grid for each 
emission. Since this algorithm is applied to a small 
number of pixels, the computation time will be much 
less compared to the MV beamforming time for a 
complete set. Fig. 23 shows a reconstructed image using 
DAS, MV, and TC-based MV with 40% grid pixels. 

 
Fig 20. Schematic of the proposed method of CPWI imaging and tensor completion [34] 

 
Fig 21. Image of cyst targets simulated by (a) CPWC (using 75PW), (b) CPWC (5PW), (c) CPWC (5PW) +TC (70PW), (d) CPWC 

(15PW), and (e) CPWC (15PW) +TC (60PW) [34] 
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Fig 22. The steps of the proposed method in the figure can be described as follows: The received signal corresponding to each 

transmission is represented by an S × N matrix, where S is the number of samples for each element. A beamforming grid consisting of 
Nx × Ny pixels is defined in the region of interest, and then MV is used to process these matrices with discarded data [37].

 

Fig 23. A reconstructed image of the simulation-resolution phantom was obtained using (a) DAS, (b) MV, and (c) a TC-based MV 
algorithm with 40% of grid pixels [37]. 

 

Another study by Paridar and Mohammadzadeh Asl, 
(2023) [38] reduced the number of angles using two 
sampling factors. More precisely, two different subsets, 
each consisting of a few transmits, were considered. The 
optimal values of angular distances are obtained based 
on the beam pattern that corresponds to the reference 
mode (that is, the case in which all plane waves are 
used). In the proposed algorithm, the delay and sum 
(DAS) beamformed images of the two subsets were 
combined to achieve the final reconstructed image. With 
this method, the required transmissions were reduced to 
16, (Fig. 24). The larger the angular distance (i.e., dL), 
the better the resolution of the reconstructed image due 
to covering a wider range of the imaging area. However, 
the image contrast is reduced. On the other hand, by 
reducing the angular distance, the contrast of the image 
improves at the cost of resolution. To deal with these 
two, it was proposed to select two subsets of 
transmission angles, each consisting of M and N 
(integers) plane waves. According to the description in 
the article: N=M=�NP, dN = dL, dM = NdL, NP=75. 
For the first subset, N transmissions are selected, which 
leads to good contrast. Also, for the second subset, the 
angular distance is multiplied by N. This means that M 
transmissions are selected with a greater angular 
distance than the first subset, resulting in good 

resolution. Finally, the results of the two sets are 
convoluted and the final image is made. Fig. 25 shows 
reconstructed images of phantom Simulation-Resolution, 
phantom Simulation-Contrast, phantom Experimental-
Resolution, phantom Experimental-Contrast, and in-vivo 
data (last column). The first and second rows are related 
to the results of subset 1 and subset 2, respectively. 

 
Fig 24. Schematic of the proposed method to increase the 

CPWI frame rate by reducing the number of angles [38]
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Fig 25. Reconstructed images from SR phantom (first column), SC phantom (second column), ER phantom (third column), EC 

phantom (fourth column), and in-vivo data (last column). The first and second rows are related to the results of subset 1 and subset 2, 
respectively [38]. 

5 Using Neural Networks in Image Enhancement and 
Beamforming in High Frame Rate Imaging 

One of the areas that has received attention recently is 
the use of neural networks to increase the frame rate, 
beamforming, and improve the quality of images. The 
diagnostic reliability of PWI imaging is reduced by low-
quality images. Medical ultrasound equipments on the 
market usually uses line-by-line scanning mode, which 
obtains high-quality images at a low frame rate. In 
addition, many proven data-based ultrasound image 
processing methods are taught by line-by-line scan 
images. In research by Zhou et al, (2019) [39], a network 
is proposed to improve the quality of PW images by 
reconstructing these images according to the line by line 
scan images. The gray level distribution of line-by-line 
scan images and PWI images are quite different, so the 
training pairs are not aligned, and the purpose of this 
paper is to solve the problem of low convergence of the 
network due to this difference. For this purpose, by 
organizing the sequence of the transducer array, it 
records the two pairs of images with the least difference. 
The proposed method obtains a linear scan quality image 
with an extremely high frame rate. The evaluation of the 
model was done with the PWI data set compared to the 
CPWI with a combination of 75 angles shaped by DAS. 
The network used in this work is based on the generative 
adversarial network (GAN). The GAN can be used to 
generate new samples that can be reasonably obtained 
from the original dataset. GAN consists of two neural 

networks, a generator G(x) and a differentiator D(x). 
Both play an adversarial game. The goal of the generator 
is to trick the discriminator by producing data like the 
data in the training set. The discriminator will try not to 
be fooled by finding fake data from real data. Both 
works simultaneously to learn and train complex data 
such as audio, video, or image files. As an example of 
image-to-image conversion, we can mention the 
conversion of summer to winter images and day to night 
images. These images are produced in such a way that 
even humans cannot tell that the images are fake. In the 
mentioned work, it has been tried to convert low-quality 
PWI images into line by line ones with the proposed 
method of GAN compared to other networks, for 
example, CNN.  

In the study by Tang et al. (2021) [40], a GAN-based 
network is proposed to enhance the quality of PWI 
images. The network's weights are refined using full 
CPWI, resulting in high-quality image reconstruction. 
The discriminator calculates the difference and gives it 
to the network generator to modify the weights. The 
output for PWI images using a network is presented 
compared to CPWI with 3, 11, and 75 angles. The data 
used is from the PICMUS collection, which includes 
cases simulated with Field 2, experimental phantom, and 
in vivo of the human carotid.  

So far, we have seen the use of neural networks trained 
with high-quality line-by-line scanning data, which can 
convert plane wave data into images comparable to line-
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by-line scans. In the study of Wang et al. (2022) [41], 
the PWI imaging mode is fixed, but they trained the 
network with the data that has beamformed by MV and 
then obtained the same quality as MV from the data that 
has beamformed by DAS. The total training data of 200 
frames includes 50 cases simulated with field 2, 50 cases 
from the experimental phantom and 100 in vivo data. 
The results of the three beamformers are shown in Fig. 
26. The proposed method has comparable image quality, 
less computational complexity, and a faster frame rate 
compared to MV, as shown in Fig. 26 (c). In terms of 
computational complexity, MV requires 2.18 billion 
FLOPs to calculate the weights, and the proposed 
method requires 32.6 million FLOPs to form a scan line. 
The computational complexity of MV is about 67 times 
higher than the proposed method. In practice, the 
average execution time of MV is 6.02 seconds by CPU 
for one scan line and 0.9 ms for the proposed method 
with GPU. This leads to an increase in speed of about 
3000 times [41]. By concurrent parallel processing of M 
scan lines via GPU, the frame rate of the proposed PWI 
beamforming can reach 1000 frame per second, which is 
sufficient for real-time PWI imaging [41].  

A notable approach involves employing deep learning-
based beamformers, such as U-Net and EfficientNet, to 
reconstruct high-resolution B-mode images from raw RF 
data. The study by Nguon et al. (2022) [42] introduced a 
modified U-Net architecture leveraging EfficientNet-B5 
as the encoder and U-Net as the decoder, demonstrating 
significant improvements in lateral resolution, contrast-
to-noise ratio, and peak signal-to-noise ratio compared to 
conventional delay-and-sum (DAS) and CPWC 
methods. The proposed model reduces computational 
complexity while maintaining superior image quality, 
making it a viable alternative for real-time applications. 
Additionally, this method mitigates the challenges 
associated with single plane wave imaging by improving 
the suppression of sidelobe artifacts and enhancing 
image clarity without requiring multiple wave 
transmissions. 

In different single plane wave reconstruction methods, 
the underlying network maps the input plane wave data 
at different angles, uniformly, to the base image. 
However, the data will be quite different from each other 
at different input angles. Therefore, it can cause 
computational problems during network training. Most 
discussed methods either ignore this problem or fix the 
plane wave transmission angle to zero degree when 
training the network. In another study of Zhou et al. 
(2018) [43], a cGAN was used to learn the mapping 
between 1500 single plane wave RF data from a 
database and 75 plane wave composite images. To solve 
the problem of angles, it was proposed to reconstruct an 

image of a single plane wave at any arbitrary 
transmission angle like the image of composite 75 angles 
using a multiscale CNN. They used 75 different versions 
of a multiscale CNN such that each network was trained 
using RF data corresponding to a unique angle. The data 
used are from the PICMUS and CPWC datasets. 

Wasih et al. (2023) [44] proposed a cascaded deep 
neural network approach to reconstruct an ultrasound 
image from a plane wave. To solve the problem of data 
variability in different angles, a linear data 
transformation technique was used to equalize the data 
in different angles to zero degrees. Instead of using 
many identical networks for each angle, a data 
transformation technique was used to make the input 
data as similar as possible. This process results in a 
DNN network that requires less memory and time. The 
transformed input data is then used to train CNN. This 
network, called PixelNet, learns the weight of pixels, 
which is then multiplied in the single-angle DAS image. 
The images obtained after PixelNet are then used to train 
a cGAN to further reduce the noise from the image. The 
networks were trained on the publicly available 
PICMUS and CPWC datasets and evaluated on a 
separate CUBDL dataset obtained from different 
acquisition settings than the training dataset. Fig. 27 
displays the complete CPWI image compared to the 
results of different beamforming methods of a single 
plane wave steered at +3.02. 

Jui-Ying Lu et al. (2022) [45] introduced a novel 
convolutional neural network (CNN)-based 
beamforming approach to enhance the quality of single-
angle plane wave ultrasound imaging. Traditional 
methods like Delay-and-Sum (DAS) beamforming often 
result in a tradeoff between image quality and frame 
rate, particularly in single-angle plane wave imaging. 
The authors developed a CNN beamformer that 
combines GoogLeNet and U-Net architectures to replace 
the conventional DAS algorithm. This model uses RF 
channel data as input and outputs in-phase and 
quadrature data, enabling high-quality image 
reconstruction. Simulations and phantom experiments 
demonstrated that the CNN beamformer significantly 
improved resolution and contrast compared to DAS. In 
in vivo studies, the contrast-to-noise ratio (CNR) of 
carotid artery images produced by the CNN beamformer 
was approximately 12 dB, much higher than the 3.9 dB 
achieved by DAS. The CNN beamformer effectively 
preserved tissue speckle details while minimizing the 
tradeoff between image quality and frame rate inherent 
in coherence compounding.  

To improve single angle plane wave ultrasound 
imaging, Xiaolei Qu et al. (2023) [46] presented an 
innovative approach. The authors propose a transformer- 
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Fig 26. PW phantom simulation images using (a) DAS, (b) MV, and (c) ABF-MV [41] 

 
Fig 27. (a) shows the ground-truth image (full CC). (b), (c), and (d) were obtained by different methods using a single plane wave 

steered at +3.02. (b) shows the image made by DAS, (c) was obtained using MV, and (d) displays the image obtained by the proposed 
method [44]. 

based deep learning model that effectively captures both 
global and local features of ultrasound data. This 
complex transformer network is designed to address the 
challenges of low image quality and limited resolution 
associated with single-angle plane-wave imaging. By 
leveraging the attention mechanism inherent in 
transformers, the method enhances image reconstruction 
accuracy and achieves superior image quality compared 
to traditional techniques. 

Viñals et al. (2024) [47] conducted a comparative 
analysis of convolutional neural networks (CNNs) 
trained on radiofrequency (RF) versus IQ data to 

enhance the quality of ultrafast ultrasound imaging. 
Their findings indicate that training CNNs with RF data 
can yield superior improvements in image quality, 
demonstrating the potential of RF-based training for 
advanced image reconstruction. Additionally, the study 
by Huang et al. (2024) [48] focuses on improving the 
quality of ultrafast ultrasound imaging using advanced 
deep learning techniques. The authors propose a 3D 
deep convolutional neural network (3D-CNN) 
framework specifically designed to enhance the quality 
of 3D ultrafast ultrasound images. This method 
addresses common challenges such as noise and 
artifacts, which are prevalent in high-frame-rate 
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imaging. By leveraging the spatial and temporal 
information inherent in 3D data, the proposed approach 
achieves significant improvements in image clarity and 
diagnostic reliability. 

6 Discussion 

In this article, we aimed to review the research 
conducted in the field of increasing the frame rate in 
ultrasound imaging. Table 2 presents the articles and 
methods investigated in this study. We reviewed various 
medical ultrasound imaging methods, starting with 
conventional imaging with linear and phased arrays in 
part 2. Due to its low frame rate, methods were designed 
to increase the imaging speed, which we mentioned in 
part 2.1. These methods are divided into three 
categories: data acquisition schemes, post-processing 
methods, and beamforming, each study may have one of 
these approaches. We mentioned several methods, 
including retrospective gating, matching with ECG, and 
various interpolation methods. These methods face 
challenges, especially in cases of irregular heartbeats. 
Another way to increase the frame rate is to record a 
percentage of lines and then reconstruct other data using 
compressed sensing (CS), but this method has high 
computational complexity. Other methods based on 
DCT, and matrix completion (MC) were also discussed 
to overcome these challenges. 

Part 3 introduced synthetic aperture (STA) imaging; to 
increase the frame rate, the proposed method reduces the 
active elements in the aperture and records a percentage 
of the frames and then reconstructs the other frames 
using tensor completion. Part 4 discussed the ultrafast 
imaging method, which is plane wave imaging. Due to 
the low image quality in this method, the plane wave 
combination method (CPWI) was proposed in part 4.1. 
However, increasing the number of angles in this 
method reduced the frame rate. Most solutions involve 
reducing the number of angles, but this leads to a 
decrease in image quality. Therefore, a compromise 
between frame rate and image quality must be made.  

In some studies, the number of angles was randomly 
reduced, and then unrecorded frames were reconstructed 
using TC or interpolation methods. In another study, 
reduced angles were categorized into two types whose 
task was to create desired contrast and resolution. 
However, the information from unregistered angles was 
not recovered. We mentioned that beamforming is one 
way to increase speed, and in one study, all data did not 
take part in the MV process and were reconstructed 
using the TC method. 

Finally, we discussed the neural network, which has 
recently received attention, and studies have been 
conducted in this field. Numerous studies have tried to 

convert quality from different modalities. For example, 
creating line-by-line imaging quality in PWI imaging or 
converting data quality from DAS beamforming to MV. 
However, there are challenges, such as paying attention 
to the angle at which the PW is recorded, and it is not 
possible to train and test the data of one angle with the 
data of another angle, so all angles must be mapped to a 
single angle. Another challenge is the movement of the 
tissue, the studies conducted on the fixed tissue or the 
movement in the tissue such as the carotid artery have 
been omitted. However, these methods are not 
applicable to the moving tissue of the heart. Another 
issue is that the training data is from normal and healthy 
tissue, and the question that arises is that in the process 
of testing and exploitation if, for example, an image 
containing a tumor is given to the network, the tumor 
may not be detected and removed. So, there should be a 
rich dataset of all diseases that can train the network 
powerfully for different conditions. 

7 Conclusion 

In conclusion, increasing the frame rate of cardiac 
imaging is one area where researchers are still looking 
for ways to increase the speed to cover the rapid 
movements of the heart and capture excellent quality and 
comprehensive images for both healthy and diseased 
subjects. This article is a review of researches that were 
done from different perspectives. Some with acquisition, 
some with post-processing and some with beamforming. 
Methods that focus on increasing speed through the data 
acquisition process have more reliability than post-
processing methods that aim at reconstruction through 
existing data. Today, research on the use of neural 
networks has gained strength. In this method, a network 
is used that trains low-quality PW input with high-
quality data, and in this way, you can get a quality like 
the combination of 75 angles from one angle. Some 
points here are important and should be considered, 
including the data set used, which should be large 
enough and in such a way that the network can be 
trained well. In the data that has been used, the subject 
of disease and abnormal tissue conditions have not been 
considered, and generally they have been recorded from 
healthy and normal people. As a result, the network will 
not be able to recognize abnormal images, and if such an 
image is given to the network, it will probably erase the 
abnormal factors of the image. As a result, it cannot be 
used to diagnose diseases in practice. Here comes the 
importance of educational data. And if such a collection 
is created, such separation should also be considered in 
the networks so that they can receive different images 
and according to the type of disease, training and testing 
can be done in the desired category. With this 
assumption, there is still a challenging way for 
researchers. 
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Table 2. The studies mentioned in this article about increasing the frame rate of ultrasound imaging. 
Authors, ref, 

Year Acquisition Technique Application Approach Method Temporal 
Enhancement 

Wang et al. [13] 
(2008) 

Multi-line acquisition, multi-
line transmission, (Phased 

array) 

B-mode Cardiac 
imaging 

Acquisition, post-
processing 

Retrospective ECG 
gating 481 Hz 

Gifani et al. [15] 
(2010) Conventional Phased array B-mode Cardiac 

imaging post-processing Manifold learning 3-fold 

Perrin et al. [14] 
(2012) Conventional Phased array B-mode Cardiac 

imaging 
Acquisition, post-

processing ECG gating 3-fold 

Gifani et al. [18] 
(2015) Conventional Phased array B-mode Cardiac 

imaging post-processing 
Interpolation, IVTC 

curves, Sparse 
representation 

ratios: 1.4, 1.8, 2, 
2.4, and 3 

Zhou et al. [42] 
(2018) 

PWI imaging 
(Linear array) 

PICMUS & CPWC 
data post-processing Neural Networks (cGAN, 

CNN) 
One PWI to 75-

CPWI 

Zhou at el. [39] 
(2019) 

PWI imaging 
Linear imaging 
(Linear array) 

carotid artery post-processing 

Neural Networks (GAN) 
Reconstructing one PWI 

image into a line scan 
image comparable to the 

75-CPWI 

75-fold 

Hosseinpour et al. 
[26] (2019) 

Conventional Linear/Phased 
array 

2D carotid artery, 3D 
simulated 

Echocardiography 
Acquisition 

Compressed Sensing 
(CS), IVTC curves, 

 
2-fold 

Afrakhteh et al. 
[27] (2020) 

Conventional Linear/Phased 
array 

Simulated cyst 
phantom, Cardiac 

imaging 
Acquisition DCT-based 

reconstruction 33% of line 

Hosseinpour et al. 
[28] (2020) 

Conventional Linear/Phased 
array 

2D carotid artery, 3D 
simulated 

Echocardiography 
Acquisition Matrix Completion (MC) 2-fold 

Mirarkolaei et al. 
[21] (2020) Conventional Phased array B-mode Cardiac 

imaging post-processing 
Motion-compensated 

frame interpolation using 
Euler-Lagrange equations 

2-fold 

Jalali et al. [22] 
(2020) Conventional Phased array B-mode Cardiac 

3D imaging post-processing 
IVTC curves, 

interpolation using cubic 
B-splines 

orders: 1, 2,3, 4, 5, 6 

Afrakhteh et al. 
[30] (2021) 

synthetic aperture (STA) 
imaging 

Simulated point/cyst 
target, experimental 

phantom 
Acquisition Tensor Completion (TC) 3-fold 

Afrakhteh et al. 
[34] (2021) 

CPWI imaging 
(Linear array) 

Simulated/ 
experimental point/ 
cyst targets, carotid 

artery. 
(PICMUS data) 

Acquisition Tensor Completion (TC) 20% coherent plane 
waves 

Tang et al. [40] 
(2021) 

PWI imaging 
(Linear array) PICMUS data post-processing 

Neural Networks (GAN) 
Reconstructing one PWI 

image into 75-CPWI 
75-fold 

Wang et al. [41] 
(2022) 

PWI imaging 
(Linear array) 

Simulated/ 
experimental point/ 
cyst targets, carotid 

artery. 

post-processing 

Neural Networks, 
DAS-beamformed image 

reconstruction to MV-
beamformed image 

1000 fps 

Afrakhteh [31] 
(2022) 

Conventional Linear/Phased 
array 

Simulated cyst target, 
Cardiac 
imaging 

Acquisition Tensor Completion (TC) 4-fold 

Jalilian et al. [25] 
(2023) Conventional Phased array 2D/3D 

echocardiography post-processing 

spatial-temporal 
numerical method, 

IVTS curves, 
2D interpolation, 

Radial Basis Functions 
(RBFs) 

ratios: 2, 3, 4 

Afrakhteh et al. 
[35,36] (2023) 

CPWI imaging 
(Linear array) PICMUS data Acquisition 

2D spatial-angular 
interpolation, Radial 

Basis Functions (RBFs) 

33% coherent plane 
waves (25, 50 of 75) 

Paridar et al. [33] 
(2023) 

CPWI imaging 
(Linear array) PICMUS data post-processing MV algorithm based on 

tensor completion (TC) 40% of the data 
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Paridar et al. [38] 
(2023) 

CPWI imaging 
(Linear array) PICMUS data Acquisition 

Reducing the number of 
angels with an optimal 

value 

16 transmissions (of 
75) 

Wasih at el. [43] 
(2023) 

PWI imaging 
(Linear array) 

PICMUS & CPWC & 
CUBDL data post-processing 

Cascaded Deep Neural 
Networks (cGAN, DNN, 

CNN) 
 

Increasing the 
quality/speed of a 

PWI by converting 
DAS quality to MV 

and making it 
comparable to CPWI 
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