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Optimal Multi-Objective Design for Hybrid Renewable Energy 
System in Distribution System Considering Multi-Scenarios 
Nguyen Nhat Tung*(C.A.) 

Abstract: This paper presents an effective approach for determining optimal integration 
of renewable energy distributed generator (RE-DGs) of solar farms (SFs) and wind 
farms (WFs) in IEEE 69-node power distribution network (PDN) with target of 
minimizing (1) the single objective function of total active power loss and (2) multi-
objective function including a) total active power loss, b) total reactive power loss, c) the 
voltage deviation and d) imported energy from the main power gird. Intelligent and 
adaptive meta-heuristic optimization algorithm called bonobo optimizer (BO) is 
introduced to address optimization problem considering the changing four seasons of 
winter, spring, summer and autumn from both generation and consumption. The 
obtained results from BO show its outstanding performance in determining the suitable 
installation of SFs and WFs compared with many published methods and implemented 
methods for two cases of single and multi-objective functions. 

Keywords: Solar farms; Wind farms; Bonobo optimizer; Total power loss; The voltage 
deviation. 

 

 Introduction 

HE general trend of the world is to minimize the use 
of fossil fuels and encourage the penetration of 

renewable resources, especially wind energy and solar 
energy [1, 2]. According to Internatonal Renewable 
Energy Agency (IRENA), the shared global renewable 
energy to the world demand is predicted to increase from 
25% in 2015 to 60% in 2030 and 85% in 2050 [3]. 
Receiving many benefits from the penetration of 
renewable energy distributed generation sources has 
strongly promoted the growth of these energy sources 
[4]. However, connecting RE-DGs without proper 
planning can cause many unwanted effects that are 
directly related to economic and technical factors [5]. 
Therefore, determining the appropriate penetration of 
RE-DGs is extremely necessary. Many researchers have 
proposed different approaches such as the mixed integer 
linear programming (MILP) [6], the mixed integer 
nonlinear programming (MINLP) [7, 8], artificial neural 
networks [9, 10], fuzzy logic control (FLC) [11, 12] and 
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meta-heuristic algorithms [13-15] in determining the 
integration of distributed generation sources (DGs) in 
general and RE-DGs in particular in PDN. Among these 
groups, the meta-heuristic algorithm group has many 
superior advantages in solving many complex 
optimization problems with the large search spaces. 
Therefore, meta-heuristic algorithms have attracted 
much attention from researchers around the world for 
finding feasible solutions to address optimization 
problems related to the installation of distributed 
generators (DGs) in general into power grids. 
Specifically, the authors in [16, 17] applied genetic 
algorithm (GA) and hybrid algorithm of GA-particle 
optimization algorithm (GA-PSO) for minimizing total 
power loss on branches by connecting DGs. Although 
GA and GA-PSO are long-standing and popular method 
in solving various optimization problems, its biggest 
drawback is poor performance with uncertain 
convergence. Besides, [18, 19] have proposed more 
aggressive meta-heuristic algorithms such as artificial 
bee colony (ABC) and ant colony optimization (ACO) 
algorithms to improve profile voltage as well as reduce 
energy loss on transmission branches in different PDN 
thanks to the reasonable penetration of DGs. ACO and 
ABC are optimization algorithms that are inspired by the 
intelligent characteristics of animals on earth. Although 
these methods are widely used, they also have 
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disadvantages of relatively slow convergence speed and 
easily falling into local optimal area, leading to poor 
performance. Additionally, the authors [20] also 
suggested another method called ant lion optimization 
algorithm (ALOA) for determining the location and 
capacity of RE-DGs such as SFs and WFs in IEEE PDN. 
This study also indicates the huge benefits of penetration 
from SFs and WFs in terms of environmental aspect as 
well as cost savings through loss reduction. With the 
same research object of renewable energy sources, [21] 
has further considered PDN with the existence of 
nonlinear loads. High penetration of these loads 
produces and injectes rich harmonic sources into the 
system, so consideration is given for minimizing related 
indicators such as total and individual harmonic 
distortions. That research also succeeded in reducing the 
total costs of grid operation as well as harmonic 
indicators while still ensuring that technical criteria were 
met by using the popular algorithm of particle swarm 
optimization (PSO). Similarly, [22] are also interested in 
the presence of nonlinear loads in PDN. These authors 
solved M-OF of loss reduction, harmonics reduction and 
voltage deviation with the penetration of renewable 
energy sources by applying biogeography-based 
optimization (BBO) in determining global solution. 
BBO is a powerful evolutionary algorithm but its 
effectiveness depends mainly on the control parameters, 
slow convergence speed and complex structure. Thus, it 
has not been widely used compared to other meta-
heuristic methods. In addition to the above-mentioned 
goals, studies in [23] and [24] considered additional cost 
factors in the installation of DGRs and electric vehicle 
charging station (EVCS) such as investment and 
operational costs as the main targets. These research 
have also proven that total costs can be decreased 
significantly thanks to the proper connection of DGs in 
PDN.  

Overall, the majority of published studies only focus 
on reducing branch power loss and improving node 
voltage as the primary tasks, and only a few researchers 
are interested in minimizing the total costs of installing 
and operating DGs. However, these are not enough in 
considering connection of DGs into PDN. Moreover, 
studies related to the penetration of renewable energy 
sources that consider for minimizing the imported 
energy from main grid have not yet received much 
attention, although this is also important in cutting the 
operational cost. On the other hand, past studies mostly 
searched for feasible solutions at peak load level or some 
load levels, and the found result may not be appropriate 
solution for all different load scenarios. Considering the 
time-varying of generation and demand will contribute 
to improving the quality of the optimal solution and 
shortening the difference between design and practical 
problems. Not only that, the mentioned studies used old 
algorithms with low efficiency and stability, leading to 

uncertain quality. Therefore, introducing an effective 
algorithms which can enhance the effectiveness in 
solving the various optimization problems is necessary. 
With the continuous development of computer science, 
in recent years, active meta-heuristic methods such as 
coyote optimization algorithm (COA) [25], bacterial 
foraging optimization algorithm (BFOA) [26], improved 
salp swarm algorithm (ISSA) [27], dragonfly algorithm 
(DA) [28], sewing training-based optimization (STBO) 
[29], walrus optimization algorithm (WaOA) [30], 
osprey optimization algorithm (OOA) [31], etc have also 
been developed for solving different problems. Among 
those algorithms, bonobo optimizer (BO) which is born 
based on the bonobos social behavior and breeding 
methods, has attracted a lot of attention because of its 
performance and stability in addressing real-world 
optimization problems [32]. 

Thus, this research suggests BO for determining the 
optimal installation of wind farms and solar farms in 
distribution network. The objective of the study is to 
consider all technical and economic aspects by 
simultaneous minimizing four sub-objectives including 
total active power loss, total reactive power loss, voltage 
deviation, and imported energy from main gird 
considering seasonal variations in load demand and grid-
connected distributed generation sources. Real data of 
solar irradiance and wind speed for simulating SFs and 
WFs were taken from [33]. Therefore, in this work, 96 
time segments (or data points) are averaged for 4 
seasons in 1 year (365 days) are considered in this study 
and the 4 seasons (winter, spring, summer and fall) are 
represented by 4 days with each day consisting of 24 
hours. Besides, IEEE reliability test system [4] that 
includes 96 time segments is used to simulate the time-
varying load demand. The primary contributions of this 
research is listed as: 

(1) An efficient algorithm named BO, is suggested 
for determining the optimal placement and 
penetration of renewable distributed generation 
sources including solar farms and wind farms in 
IEEE 69-node PDN considering time-varying 
demand and power generation. This can 
significantly improve the solution quality in 
addressing the optimization problem through 
applying the powerful method. 

(2) The study comprehensively examines the 
related aspects of integrating RE-DGs into the 
distribution grid. Specifically, single-objective 
function (S-OF) and multi-objective function 
(M-OF) are applied to simultaneously minimize 
the technical and economic factors, and 
weighted sum method is also used for making 
the best compromise decision in this work. This 
is a reasonable and comprehensive 
consideration. 
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(3) Simulated data of output power of SFs and WFs 
as well as load demand are used in this study 
with seasonal variations during the year for 96 
time periods. This contributes in enhancing the 
accuracy of the found optimal solution 
compared to reality. 

The rest of this paper is included: The objective 
function and its constraints are given in Sect. 2. The 
introduced optimization algorithm is shown in Sect. 3. 
The simulation results and the discussions are presented 
in Sect. 4. Finally, a summary of whole work in Sect. 5. 

Problem formulation  

Determining the appropriate installation of SFs and 
WFs in PDN for maximizing welfare while still meeting 
technical criteria is a major challenge. As Figure 1 
illustrates, distributed renewable energy sources are 
connected to the main power grid through power 
conversion devices for supplying electricity to the loads. 
The appropriate combination of distributed generation 
sources and main grid has created a flexible hybrid 
system with many excellent economic and technical 
benefits. Therefore, determining the right connectivity 
strategy that considers multiple aspects is essential. The 
detailed list of targets in M-OF for this work is 
mathematically presented as item 2.1. 

1.1 Objective functions 
Technical and economic benefits are considered as 

primary objectives in this research. Therefore, M-OF is 
selected to use in this research and presented in 
mathematical equations [14, 24]: 

Minimize 𝑂𝑂𝑂𝑂 = (𝛾𝛾1 ∙ 𝑆𝑆𝑂𝑂1) + (𝛾𝛾2 ∙ 𝑆𝑆𝑂𝑂2) +
                                   (𝛾𝛾3 ∙ 𝑆𝑆𝑂𝑂3) + (𝛾𝛾4 ∙ 𝑆𝑆𝑂𝑂4)     (1) 

The components of M-OF can be determined by using 
the following equations: 

𝑆𝑆𝑂𝑂1 =
𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅_𝐷𝐷𝐷𝐷

𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑅𝑅𝑅𝑅_𝐷𝐷𝐷𝐷 =
∑ ∑ 𝐼𝐼ℎ,𝑡𝑡,𝑅𝑅𝑅𝑅−𝐷𝐷𝐷𝐷

2 𝑅𝑅ℎ𝑁𝑁𝐻𝐻
ℎ=1

𝑁𝑁𝑇𝑇
𝑡𝑡=1

∑ ∑ 𝐼𝐼ℎ,𝑡𝑡
2 𝑅𝑅ℎ𝑁𝑁𝐻𝐻

ℎ=1
𝑁𝑁𝑇𝑇
𝑡𝑡=1

   (2) 

    𝑆𝑆𝑂𝑂2 = 𝑄𝑄𝑄𝑄𝑅𝑅𝑅𝑅_𝐷𝐷𝐷𝐷

𝑄𝑄𝑄𝑄𝑁𝑁𝑁𝑁𝑅𝑅𝑅𝑅_𝐷𝐷𝐷𝐷 =
∑ ∑ 𝐼𝐼ℎ,𝑡𝑡,𝑅𝑅𝑅𝑅−𝐷𝐷𝐷𝐷

2 𝑋𝑋ℎ𝑁𝑁𝐻𝐻
ℎ=1

𝑁𝑁𝑇𝑇
𝑡𝑡=1

∑ ∑ 𝐼𝐼ℎ,𝑡𝑡
2 𝑋𝑋ℎ𝑁𝑁𝐻𝐻

ℎ=1
𝑁𝑁𝑇𝑇
𝑡𝑡=1

                  (3) 

    𝑆𝑆𝑂𝑂3 =
𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅_𝐷𝐷𝐷𝐷

𝑉𝑉𝑉𝑉𝑁𝑁𝑁𝑁𝑅𝑅𝑅𝑅_𝐷𝐷𝐷𝐷 =
∑ ∑ |𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑉𝑉𝑠𝑠,𝑡𝑡,𝑅𝑅𝑅𝑅−𝐷𝐷𝐷𝐷|𝑁𝑁𝑆𝑆

𝑠𝑠=1
𝑁𝑁𝑇𝑇
𝑡𝑡=1

∑ ∑ |𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑉𝑉𝑠𝑠,𝑡𝑡|𝑁𝑁𝑆𝑆
𝑠𝑠=1

𝑁𝑁𝑇𝑇
𝑡𝑡=1

  (4) 

     𝑆𝑆𝑂𝑂4 = 𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅_𝐷𝐷𝐷𝐷

𝐼𝐼𝑅𝑅𝑁𝑁𝑁𝑁𝑅𝑅𝑅𝑅_𝐷𝐷𝐷𝐷 =
∑ 𝑃𝑃𝑡𝑡,𝑅𝑅𝑅𝑅_𝐷𝐷𝐷𝐷

𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑇𝑇
𝑡𝑡=1

∑ 𝑃𝑃𝑡𝑡
𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑇𝑇

𝑡𝑡=1
                   (5) 

Obviously, like Eq. (2) to Eq. (5) described, the values 
of 𝑆𝑆𝑂𝑂1, 𝑆𝑆𝑂𝑂2, 𝑆𝑆𝑂𝑂3 and 𝑆𝑆𝑂𝑂4 only range from 0 to 1, in 
which, the smaller the value, the better. Additionally, the 
weighted sum method is also used for deciding the 
compromise output of M-OF as Eq. (1), where 𝛾𝛾1 ,
𝛾𝛾2 , 𝛾𝛾3  and 𝛾𝛾4  are defined as weighting coefficients 

which involves the reduction of total active power loss, 
total reactive power loss, voltage deviation and imported 
energy from the main grid, respectively. These 
weighting coefficients should satisfy the constraint [17]: 

�𝛾𝛾𝑖𝑖

4

𝑖𝑖=1

= 1; 𝛾𝛾𝑖𝑖 ∈ (0,1)  (6) 

1.2 Constraints in this research 
-  Active power balance constraint [4]: 

�𝑃𝑃ℎ,𝑙𝑙𝑁𝑁𝑠𝑠𝑠𝑠

𝑁𝑁𝐻𝐻

ℎ=1

+ �𝑃𝑃𝑑𝑑,𝑙𝑙𝑁𝑁𝑙𝑙𝑑𝑑

𝑁𝑁𝐷𝐷

𝑑𝑑=1

= �𝑃𝑃𝑔𝑔,𝑅𝑅𝑅𝑅_𝐷𝐷𝐷𝐷

𝑁𝑁𝐷𝐷

𝑔𝑔=1

+ 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆  (7) 

-  Reactive power balance constraint:  

  �𝑄𝑄𝑙𝑙,𝑙𝑙𝑁𝑁𝑠𝑠𝑠𝑠

𝑁𝑁𝐻𝐻

𝑙𝑙=1

+ �𝑄𝑄𝑑𝑑,𝑙𝑙𝑁𝑁𝑙𝑙𝑑𝑑

𝑁𝑁𝐷𝐷

𝑑𝑑=1

= �𝑄𝑄𝑔𝑔,𝑅𝑅𝑅𝑅_𝐷𝐷𝐷𝐷

𝑁𝑁𝐷𝐷

𝑔𝑔=1

+ 𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆 
                                           

(8) 

-  The line current constraint [23]:   

𝐼𝐼ℎ ≤ 𝐼𝐼ℎ𝑀𝑀𝑙𝑙𝑀𝑀; ℎ = 1, … ,𝑁𝑁𝐻𝐻   (9) 
-  The node voltage constraint [18]: 

|𝑉𝑉𝑠𝑠𝑀𝑀𝑖𝑖𝑀𝑀| ≤ |𝑉𝑉𝑠𝑠| ≤ |𝑉𝑉𝑠𝑠𝑀𝑀𝑙𝑙𝑀𝑀|; 𝑠𝑠 = 1, … ,𝑁𝑁𝑆𝑆  (10) 
-  The operational power factor constraint of inverter 

[33] 

𝑃𝑃𝑂𝑂𝑀𝑀𝑖𝑖𝑀𝑀 ≤ 𝑃𝑃𝑂𝑂𝑔𝑔 ≤ 𝑃𝑃𝑂𝑂𝑀𝑀𝑙𝑙𝑀𝑀; 𝑔𝑔 = 1, … ,𝑁𝑁𝐷𝐷  (11) 
-  Installed power constraint of RE-DGs [10] 

𝑃𝑃𝑅𝑅𝑅𝑅_𝐷𝐷𝐷𝐷
𝑀𝑀𝑖𝑖𝑀𝑀 ≤ 𝑃𝑃𝑔𝑔𝑅𝑅𝑙𝑙𝑡𝑡𝑅𝑅𝑑𝑑 ≤ 𝑃𝑃𝑅𝑅𝑅𝑅_𝐷𝐷𝐷𝐷

𝑀𝑀𝑙𝑙𝑀𝑀 ; 𝑔𝑔 = 1, … ,𝑁𝑁𝐷𝐷  (12) 
-  Penetration constraint of RE-DGs [20] 

 �𝑃𝑃𝑔𝑔,𝑅𝑅𝑅𝑅_𝐷𝐷𝐷𝐷

𝑁𝑁𝐷𝐷

𝑔𝑔=1

≤�𝑃𝑃𝑙𝑙,𝑙𝑙𝑁𝑁𝑠𝑠𝑠𝑠

𝑁𝑁𝐻𝐻

𝑙𝑙=1

+ �𝑃𝑃𝑑𝑑,𝑙𝑙𝑁𝑁𝑙𝑙𝑑𝑑

𝑁𝑁𝐷𝐷

𝑑𝑑=1

 
  

                  (13) 

The applied method for addressing optimization problem 

In this work, a powerful method which named bonobo 
optimizer (BO), is suggested to find optimal solution for 
the installation of SFs and WFs in PDN considering the 
seasonal variation of distributed sources and loads. BO 
was developed by taking inspiration from the 
characteristic behaviors of bonobos, including social 
behavior and reproductive behavior, and the algorithm 
was first published by Das and Pratihar in 2019 [32]. BO 
is considered as an intelligent and adaptive meta-
heuristic algorithm and has a mechanism to update the 
solution position after each iteration for enhancing the 
quality of the community. 
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Fig 1. The power network integrates distribution generation of solar and wind energies 

 

Not only that, bonobos also exhibit their special 
reproductive behavior with four strategies such as 
promiscuous, restricted mating, consortship, and extra-
group mating [32]. All these behaviors of bonobos are 
modeled to address different optimization problems. 

 In this algorithm, each bonobo is represented for each 
optimal solution, in which bonobo with the best fitness 
value in the community is named alpha-bonobo (𝛼𝛼𝑆𝑆𝑁𝑁). 
After each iteration, the quality of 𝛼𝛼𝑆𝑆𝑁𝑁 is updated. The 
process of applying BO to address the optimization 
problem is implemented according to the following steps 
[34]: 

Step 1: Initialization for parameters which are not 
defined by user. 

Initial parameters for BO are generated such as 
positive phase count (𝑃𝑃𝑃𝑃𝑃𝑃), negative phase count 
(𝑁𝑁𝑃𝑃𝑃𝑃), directional probability (𝑃𝑃𝑑𝑑), phase change (𝑃𝑃𝑃𝑃), 
extra-group mating probability (𝑃𝑃𝑀𝑀𝑔𝑔𝑁𝑁), phase probability 
(𝑃𝑃𝜌𝜌) and temporary sub-group size factor (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓𝑙𝑙𝑓𝑓𝑡𝑡). 

Step 2: Bonobo selection via fission fusion strategy.  

In this stage, the community is separated into many 
temporary subgroups that subgroup’s size cannot be 
determined precisely because it depends on stochastic 
generation. However, the maximum size of temporary 
subgroups (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑅𝑅𝑁𝑁𝑡𝑡𝑀𝑀𝑙𝑙𝑀𝑀 ) can be defined by: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑅𝑅𝑁𝑁𝑡𝑡
𝑀𝑀𝑙𝑙𝑀𝑀 = max (2, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓𝑙𝑙𝑓𝑓𝑡𝑡 ∙ 𝑁𝑁𝑁𝑁)           (14) 

In the Eq. (14), 𝑁𝑁𝑁𝑁 is the community size and 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓𝑙𝑙𝑓𝑓𝑡𝑡 should be an integer number. If its found result 
is not an integer number, the next integer number is 
considered.   

Step 3: Generation of new bonobo by applying the 
mating strategies. 

In this stage, the mating strategies are divided into two 
main groups including (1) the promiscuous and 
restrictive mating strategies group and (2) the 
consortship and extra-group mating strategies group. In 
the first strategies group, a randomly produced number 
(𝑆𝑆1) within (0, 1) is compared with the 𝑃𝑃𝜌𝜌 for creating a 
new solution. If 𝑃𝑃𝜌𝜌 ≥ 𝑆𝑆1 then a new solution of bonobo 
(𝑏𝑏𝑏𝑏𝑘𝑘𝑀𝑀𝑅𝑅𝑛𝑛) is generated by using (32):  

𝑏𝑏𝑏𝑏𝑘𝑘𝑀𝑀𝑅𝑅𝑛𝑛 = 𝑏𝑏𝑏𝑏𝑘𝑘𝑀𝑀 + �𝑆𝑆1 ∙ 𝑠𝑠𝑠𝑠1 ∙ �𝑎𝑎𝑘𝑘𝑆𝑆𝑁𝑁 − 𝑏𝑏𝑏𝑏𝑘𝑘𝑀𝑀�� +
�(1 − 𝑆𝑆1) ∙ 𝑠𝑠𝑠𝑠2 ∙ 𝑓𝑓𝑓𝑓 ∙ �𝑏𝑏𝑏𝑏𝑘𝑘𝑀𝑀 − 𝑏𝑏𝑏𝑏𝑘𝑘

𝑡𝑡��                              (15) 

Where 𝑓𝑓𝑓𝑓 is the flag which can get the value of 1 if the 
fitness value of 𝑏𝑏𝑏𝑏𝑘𝑘𝑀𝑀 is greater than 𝑏𝑏𝑏𝑏𝑘𝑘

𝑡𝑡 and vice versa, -
1 is assigned for 𝑓𝑓𝑓𝑓; 𝑠𝑠𝑠𝑠1 and 𝑠𝑠𝑠𝑠2 are the sharing 
coefficients of alpha-bonobo and selected bonobo; 
𝑎𝑎𝑘𝑘𝑆𝑆𝑁𝑁,𝑏𝑏𝑏𝑏𝑘𝑘

𝑡𝑡 and 𝑏𝑏𝑏𝑏𝑘𝑘𝑀𝑀 are defined as the kth control variables 
of alpha-bonobo,  pth bonobo and nth bonobo, 
respectively. In the second strategies group, the 𝑃𝑃𝑀𝑀𝑔𝑔𝑁𝑁 is 
updated through each loop and its value is compared to 
𝑆𝑆2 which is randomly generated in (0, 1).  

If 𝑃𝑃𝑀𝑀𝑔𝑔𝑁𝑁 >= 𝑆𝑆2 then new solution generation is 
implemented by Eqs. (16-19): 

𝑏𝑏𝑏𝑏𝑘𝑘𝑀𝑀𝑅𝑅𝑛𝑛 = 𝑏𝑏𝑏𝑏𝑘𝑘𝑀𝑀 + 𝜔𝜔1 ∙ �𝑠𝑠𝑐𝑐𝑆𝑆𝑓𝑓𝑣𝑣𝑙𝑙𝑣𝑣𝑘𝑘
𝑁𝑁𝑙𝑙𝑀𝑀 − 𝑏𝑏𝑏𝑏𝑘𝑘𝑀𝑀�;𝑘𝑘 = 1, … ,

𝑁𝑁𝐾𝐾 and 𝑛𝑛 = 1, … ,𝑁𝑁𝑁𝑁                             (16) 

𝑏𝑏𝑏𝑏𝑘𝑘𝑀𝑀𝑅𝑅𝑛𝑛 = 𝑏𝑏𝑏𝑏𝑘𝑘𝑀𝑀 − 𝜔𝜔2 ∙ �−𝑠𝑠𝑐𝑐𝑆𝑆𝑓𝑓𝑣𝑣𝑙𝑙𝑣𝑣𝑘𝑘
𝑁𝑁𝑖𝑖𝑀𝑀 + 𝑏𝑏𝑏𝑏𝑘𝑘𝑀𝑀�;𝑘𝑘 = 1, … ,

𝑁𝑁𝐾𝐾 and 𝑛𝑛 = 1, … ,𝑁𝑁𝑁𝑁                                                (17) 

𝑏𝑏𝑏𝑏𝑘𝑘𝑀𝑀𝑅𝑅𝑛𝑛 = 𝑏𝑏𝑏𝑏𝑘𝑘𝑀𝑀 − 𝜔𝜔1 ∙ �−𝑠𝑠𝑐𝑐𝑆𝑆𝑓𝑓𝑣𝑣𝑙𝑙𝑣𝑣𝑘𝑘
𝑁𝑁𝑖𝑖𝑀𝑀 + 𝑏𝑏𝑏𝑏𝑘𝑘𝑀𝑀�;𝑘𝑘 = 1, … ,

𝑁𝑁𝐾𝐾 and 𝑛𝑛 = 1, … ,𝑁𝑁𝑁𝑁                                              (18) 
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𝑏𝑏𝑏𝑏𝑘𝑘𝑀𝑀𝑅𝑅𝑛𝑛 = 𝑏𝑏𝑏𝑏𝑘𝑘𝑀𝑀 + 𝜔𝜔2 ∙ �𝑠𝑠𝑐𝑐𝑆𝑆𝑓𝑓𝑣𝑣𝑙𝑙𝑣𝑣𝑘𝑘
𝑁𝑁𝑙𝑙𝑀𝑀 − 𝑏𝑏𝑏𝑏𝑘𝑘𝑀𝑀�;𝑘𝑘 = 1, … ,

𝑁𝑁𝐾𝐾 and 𝑛𝑛 = 1, … ,𝑁𝑁𝑁𝑁                               (19) 

In this case, Eqs. (16, 17, 18 & 19) are selected for 
producing the next generation if (𝑎𝑎𝑘𝑘𝑆𝑆𝑁𝑁 ≥ 𝑏𝑏𝑏𝑏𝑘𝑘𝑀𝑀 and 𝑃𝑃𝜌𝜌 ≥
𝑆𝑆3), (𝑎𝑎𝑘𝑘𝑆𝑆𝑁𝑁 ≥ 𝑏𝑏𝑏𝑏𝑘𝑘𝑀𝑀 and 𝑃𝑃𝜌𝜌 < 𝑆𝑆3), (𝑎𝑎𝑘𝑘𝑆𝑆𝑁𝑁 < 𝑏𝑏𝑏𝑏𝑘𝑘𝑀𝑀 and 𝑃𝑃𝜌𝜌 ≥ 𝑆𝑆3), 
and (𝑎𝑎𝑘𝑘𝑆𝑆𝑁𝑁 < 𝑏𝑏𝑏𝑏𝑘𝑘𝑀𝑀 and 𝑃𝑃𝜌𝜌 < 𝑆𝑆3), respectively. Besides, 𝜔𝜔1 
and 𝜔𝜔2 can be determined by using Eq. 20 and Eq. (21). 

𝜔𝜔1 = 𝑒𝑒𝐴𝐴, where 𝐴𝐴 = 𝑆𝑆42 + 𝑆𝑆4 − 2/𝑆𝑆4                       (20) 

𝜔𝜔2 = 𝑒𝑒𝐵𝐵, where 𝐵𝐵 = −𝑆𝑆42 + 𝑆𝑆4 − 2/𝑆𝑆4                    (21) 

In Eqs. (16-19), 𝑠𝑠𝑐𝑐𝑆𝑆𝑓𝑓𝑣𝑣𝑙𝑙𝑣𝑣𝑘𝑘
𝑁𝑁𝑙𝑙𝑀𝑀 and 𝑠𝑠𝑐𝑐𝑆𝑆𝑓𝑓𝑣𝑣𝑙𝑙𝑣𝑣𝑘𝑘

𝑁𝑁𝑖𝑖𝑀𝑀 are 
considered as the max and min limits of the control 
variables. 𝑆𝑆3 and 𝑆𝑆4 are random numbers in the range of 
(0, 1), where  𝑆𝑆4 ≠ 0. 

If 𝑃𝑃𝑀𝑀𝑔𝑔𝑁𝑁 < 𝑆𝑆2 then new solution generation is 
implemented by applying Eq. (22). 
 𝑏𝑏𝑏𝑏𝑘𝑘𝑀𝑀𝑅𝑅𝑛𝑛

= �
𝑏𝑏𝑏𝑏𝑘𝑘𝑀𝑀 + 𝑓𝑓𝑓𝑓 ∙ 𝑒𝑒−𝑣𝑣5 ∙ �𝑏𝑏𝑏𝑏𝑘𝑘𝑀𝑀 − 𝑏𝑏𝑏𝑏𝑘𝑘

𝑡𝑡�, 𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓 = 1 𝑏𝑏𝑆𝑆 𝑃𝑃𝜌𝜌 ≥ 𝑆𝑆5, 𝑆𝑆5 ∈ (0,1)
𝑏𝑏𝑏𝑏𝑘𝑘

𝑡𝑡, 𝑏𝑏𝑐𝑐ℎ𝑒𝑒𝑆𝑆𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒                                                                                        
     

                            (22) 

Step 4: Violated control variables correction. 

After each new solution is released, the control 
variables (𝑠𝑠𝑐𝑐𝑆𝑆𝑓𝑓𝑣𝑣𝑙𝑙𝑣𝑣𝑘𝑘

𝑀𝑀𝑅𝑅𝑛𝑛) in each solution are checked and 
corrected if they have any violations according to the 
following rules 

𝑠𝑠𝑐𝑐𝑆𝑆𝑓𝑓𝑣𝑣𝑙𝑙𝑣𝑣𝑘𝑘
𝑀𝑀𝑅𝑅𝑛𝑛 =

⎩
⎪
⎨

⎪
⎧𝑠𝑠𝑐𝑐𝑆𝑆𝑓𝑓𝑣𝑣𝑙𝑙𝑣𝑣𝑘𝑘

𝑁𝑁𝑖𝑖𝑀𝑀, 𝑖𝑖𝑓𝑓 𝑠𝑠𝑐𝑐𝑆𝑆𝑓𝑓𝑣𝑣𝑙𝑙𝑣𝑣𝑘𝑘
𝑀𝑀𝑅𝑅𝑛𝑛 < 𝑠𝑠𝑐𝑐𝑆𝑆𝑓𝑓𝑣𝑣𝑙𝑙𝑣𝑣𝑘𝑘

𝑁𝑁𝑖𝑖𝑀𝑀                                                               
𝑠𝑠𝑐𝑐𝑆𝑆𝑓𝑓𝑣𝑣𝑙𝑙𝑣𝑣𝑘𝑘

𝑁𝑁𝑙𝑙𝑀𝑀 , 𝑖𝑖𝑓𝑓 𝑠𝑠𝑐𝑐𝑆𝑆𝑓𝑓𝑣𝑣𝑙𝑙𝑣𝑣𝑘𝑘
𝑀𝑀𝑅𝑅𝑛𝑛 > 𝑠𝑠𝑐𝑐𝑆𝑆𝑓𝑓𝑣𝑣𝑙𝑙𝑣𝑣𝑘𝑘

𝑁𝑁𝑙𝑙𝑀𝑀  ;𝑘𝑘 = 1, … ,𝑁𝑁𝐾𝐾                                  
𝑠𝑠𝑐𝑐𝑆𝑆𝑓𝑓𝑣𝑣𝑙𝑙𝑣𝑣𝑘𝑘

𝑀𝑀𝑅𝑅𝑛𝑛 , 𝑏𝑏𝑐𝑐ℎ𝑒𝑒𝑆𝑆𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒                                                                                           
  

    

                                                                                         
(23) 

Step 5: Evaluation for found solutions. 

The fitness function is used to evaluate for the nth 
generated solution by applying Eq. (24). 

𝑂𝑂𝑖𝑖𝑐𝑐𝑛𝑛𝑒𝑒𝑠𝑠𝑠𝑠𝑀𝑀 = 𝑂𝑂𝑂𝑂𝑀𝑀 + (𝜑𝜑1 ∙ ∆𝑉𝑉𝑏𝑏𝑓𝑓𝑐𝑐𝑀𝑀 + 𝜑𝜑2 ∙ ∆𝑃𝑃𝐶𝐶𝑆𝑆𝑐𝑐𝑀𝑀 + 𝜑𝜑3
∙ ∆𝑃𝑃𝑒𝑒𝑛𝑛𝑀𝑀);  𝑛𝑛 = 1, … ,𝑁𝑁𝑀𝑀 (24) 

Where 𝑂𝑂𝑂𝑂𝑀𝑀 is value of the multi-objective function at 
the nth solution; 𝜑𝜑1, 𝜑𝜑2 and  𝜑𝜑3 are the penalty function 
coefficients; ∆𝑉𝑉𝑏𝑏𝑓𝑓𝑐𝑐𝑀𝑀,∆𝑃𝑃𝐶𝐶𝑆𝑆𝑐𝑐𝑀𝑀 and ∆𝑃𝑃𝑒𝑒𝑛𝑛𝑀𝑀 are 
respectively the penalty amounts of node voltage, 
current on branches and penetration of DGs. 

Step 6: Comparison for remaining good quality 
solutions. 

The solutions are compared by using the fitness 
function and the alpha-bonobo that has the best quality 
in the current community is determined through each 

iteration. Additionally, based on the quality of the 
current alpha-bonobo compared to the previous alpha-
bonobo, the control parameters are updated. 

Step 7: Iteration stopping. 

The iteration process is repeated until the current 
iteration number reaches the maximum limit (𝐼𝐼𝑐𝑐𝑒𝑒𝑆𝑆𝑄𝑄 =
𝐼𝐼𝑐𝑐𝑒𝑒𝑆𝑆𝑁𝑁𝑙𝑙𝑀𝑀) and the best solution of the considering 
problem is also determined. 

The process of implementing BO is also briefly 
illustrated in Figure 2. 

  Set the initial parameters 
of BO            

No

Yes

Show the global alpha-bonobo

Yes

Consortship or extra-group mating strategy is 
selected for generating new bonobo 

- Check and correct new created bonobos if any violation.
- Calculate the quality for each bonobo using the fitness 
function.
- Determine the alpha-bonobo. 

No

- Calculate the quality for each solution using the 
fitness function.
- Determine the alpha-bonobo. 

Select the bonobo by using the fission fusion 
society strategy

1+= LL IterIter

1rP ≥ρ

Promiscuous or restrictive mating strategy is 
selected for generating new bonobo 

Modify the parameters for the next generation based on fitness 
value comparison between current and previous alpha-bonobos.

maxIterIterL =

 

Fig 2. The flowchart of BO for finding the global solution 

Discussion and simulation results 

In this paper, bonobo optimizer is introduced to solve 
the optimization problem of installing distributed 
generation sources for S-OF and M-OF in IEEE 69-node 
PDN. Node and line data are collected for research from 
[20] and network configuration is also plotted as Figure 
3. In this study, for implementing simulation of BO, GA, 
GA-PSO, ABC and SFS, the selected parameters are 
referenced from previous researches. Specifically, to 
simulating BO, the key parameters are signed such as 
𝑃𝑃𝑃𝑃𝑃𝑃 = 0, 𝑁𝑁𝑃𝑃𝑃𝑃 = 0, 𝑃𝑃𝑑𝑑 = 0.5, 𝑃𝑃𝑃𝑃 = 0, 𝑃𝑃𝜌𝜌 = 0.5, 
𝑃𝑃𝑀𝑀𝑔𝑔𝑁𝑁 = 𝑃𝑃𝑖𝑖𝑀𝑀𝑖𝑖𝑡𝑡_𝑀𝑀𝑔𝑔𝑁𝑁 and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓𝑙𝑙𝑓𝑓𝑡𝑡 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑀𝑀𝑖𝑖𝑡𝑡_𝑓𝑓𝑙𝑙𝑓𝑓𝑡𝑡. Where,  
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Fig 3. IEEE 69-node PDN 

 

𝑃𝑃𝑖𝑖𝑀𝑀𝑖𝑖𝑡𝑡_𝑀𝑀𝑔𝑔𝑁𝑁 and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑀𝑀𝑖𝑖𝑡𝑡_𝑓𝑓𝑙𝑙𝑓𝑓𝑡𝑡 are defined as the initial 
values of 𝑃𝑃𝑀𝑀𝑔𝑔𝑁𝑁 and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓𝑙𝑙𝑓𝑓𝑡𝑡, and they are clearly 
determined like presented [32]. For running GA, GA-
PSO, SFS and ABC, the control parameters are taken 
from studies [16], [17], [36] and [19], respectively. 
Besides, due to the nature of meta-heuristic algorithms, 
the quality of the found optimal solution depends on the 
initial parameters such as population size and number of 
iterations. Therefore, in order to evaluate efficiency 
fairly, 𝑁𝑁𝑁𝑁 and 𝐼𝐼𝑐𝑐𝑒𝑒𝑆𝑆𝑁𝑁𝑙𝑙𝑀𝑀 are surveyed to select 
appropriate values. Specifically, 𝑁𝑁𝑁𝑁 is surveyed in the 
range from 20 to 50 (the selected step size is 10) and 
𝐼𝐼𝑐𝑐𝑒𝑒𝑆𝑆𝑁𝑁𝑙𝑙𝑀𝑀 is also surveyed from 100 to 300 (the selected 
step size is 100). The obtained results from the survey 
showed that 𝑁𝑁𝑁𝑁 and 𝐼𝐼𝑐𝑐𝑒𝑒𝑆𝑆𝑁𝑁𝑙𝑙𝑀𝑀 should be 30 and 200 for 
the implemented methods to ensure complete 
convergence. 

1.3 Consideration of single objective function 
In this specific scenario, the suggested method, BO, is 

used to solve the problem of optimal installation of three 
distributed generators for minimizing total power loss at 
the peak load level, and the obtained results are also 
compared with many published methods, as Table 1 

As Table 1 indicated, with the primary target of 
minimizing total power loss, BO has found the most 
optimal solution compared to the six previously 
published methods. By applying the global solution of 
BO, total power loss is reduced significantly from 
0.2245 MW to 69.204 kW, corresponding to a loss 
reduction of 69.18%. This value of BO is better than 

68.74% of SGA [37], 68.75% of PSO [37], 69.07% of 
SFS [36], 68.37% of QOSIMBO-Q [38], 69.01% of 
KHA [39] and 68.10% of QOTLBO [40]. This shows 
that BO's solution is more positive than other methods in 
cutting total power loss of PDN in this case. Besides, 
thanks to the appropriate integration of DGs, the voltage 
profile is also strongly improved and all node voltages 
have also satisfied the constraint of (0.95, 1.05) p.u. Like 
Figure 4 plotted, the weakest node voltage has been 
enhanced from 0.909 p.u at node 65 to 0.978 p.u thanks 
to the application of optimal solution of the suggested 
method. Overall, determining the optimal integration of 
DGs not only brings great benefits in reducing total loss 
but also improving node voltage. 

1.4 Consideration of the multi-objective function 
In this specific case, a M-OF consisting of four single 
objectives is implemented and weighted sum method is 
also applied to determine the output of each proposed 
solution [17]. In that method, the weighting coefficients 
such as  𝛾𝛾1 , 𝛾𝛾2 , 𝛾𝛾3  and 𝛾𝛾4  are investigated to choose 
the suitable values for M-OF. The values of these 
coefficients are assigned based on the importance level 
of components in the objective function. In this study, 
the single objective component that involves reducing 
energy imports from the main power grid is the most 
important and the component which related to improving 
node voltage is considered the least important. 
Therefore, the search range for the value of 𝛾𝛾4  is (0.4, 
0.6) and (0.1, 0.15) for 𝛾𝛾3 , and the remaining range is 
(0.15, 0.25) for 𝛾𝛾1  and 𝛾𝛾2  as shown in Table 2. 
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Table 1. The optimal solution for installing DGs. 

Method Optimal 
solution of DGs Total power loss Loss reduction Minimum 

voltage 
Maximum 

voltage 

SGA [37] 

Node 17 – 
0.4665 (MW) 

Node 61 – 
1.6845 (MW) 

Node 53 – 
0.5466 (MW) 

70.175 (kW) 68.74% 0.9780 (p.u) 1.00 (p.u) 

PSO [37] 

Node 61 – 
1.7812 (MW) 

Node 17 – 
0.5312 (MW) 

Node 50 – 
0.7202 (MW) 

70.158 (kW) 68.75% 0.9779 (p.u) 1.00 (p.u) 

SFS [36] 

Node 11 – 
0.5273 (MW) 

Node 18 – 
0.3805 (MW) 

Node 61 – 
1.7198 (MW) 

69.428 (kW) 69.07% 0.9780 (p.u) 1.00 (p.u) 

QOSIMBO-Q 
[38] 

Node 09 – 
0.8336 (MW) 

Node 18 – 
0.4511 (MW) 

Node 61 – 
1.5000 (MW) 

71.0 (kW) 68.37% 0.9726 (p.u) 1.00 (p.u) 

KHA [39] 

Node 12 – 
0.4962 (MW) 

Node 22 – 
0.3113 (MW) 

Node 61 – 
1.7354 (MW) 

69.563 (kW) 69.01% 0.9779 (p.u) 1.00 (p.u) 

QOTLBO [40] 

Node 18 – 
0.5334 (MW) 

Node 61 – 
1.1986 (MW) 

Node 63 – 
0.5672 (MW) 

71.625 (kW) 68.10% 0.9782 (p.u) 1.00 (p.u) 

BO 

Node 18 – 
0.3710 (MW) 

Node 11 – 
0.5354 (MW) 

Node 61 – 
1.7189 (MW) 

69.204 (kW) 69.18% 0.9780 (p.u) 1.00 (p.u) 
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Fig 4. The voltage profile of suggested method and compared methods 

Table 2. Figure 1Table 2 The survey for selecting the weighting coefficients in M-OF 

Coefficients 𝜸𝜸𝟏𝟏 𝜸𝜸𝟐𝟐 𝜸𝜸𝟑𝟑 𝜸𝜸𝟒𝟒 𝒎𝒎𝒎𝒎𝒎𝒎 (𝑶𝑶𝑶𝑶) 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 (𝑶𝑶𝑶𝑶) 𝒎𝒎𝒎𝒎𝒎𝒎 (𝑶𝑶𝑶𝑶) 

Scenario 1 0.2 0.2 0.1 0.5 
 

0.07846 
 

 
0.0871 

 

 
0.1032 

 

Scenario 2 0.15 0.15 0.1 0.6 
 

0.06098 
 

 
0.06734 

 

 
0.08266 

 

Scenario 3 0.2 0.2 0.15 0.45 
 

0.081215 
 

 
0.08838 

 

 
0.10232 

 

Scenario 4 0.25 0.25 0.1 0.4 
 

0.09637 
 

 
0.10523 

 

 
0.15718 

 

 

 
Fig 5. The output power curves in p.u of SFs, WFs and loads 
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To evaluate precision in determining the appropriate 
weighting coefficients, 40 test runs for four DGs are 
performed at the peak load with four pairs of weighting 
coefficients. The min, mean and max values of 
coefficients in M-OF are also collected for comparison 
in Table 2. Clearly, scenario 2 of (𝛾𝛾1 = 0.15, 𝛾𝛾2 =
0.15,   𝛾𝛾3 = 0.10, and  𝛾𝛾4 = 0.60) has better values of 
𝑂𝑂𝑂𝑂 than other scenarios, so the found weighting 
coefficients in the scenario 2 is chosen for this study. 

As mentioned, this study considers the seasonal 
variation (winter, spring, summer, and autumn) from 
loads and output power of renewable energy generation 
sources. In this case, each season is represented by a day 
of 24 hours, and therefore, a total of 96 data points are 
considered in this work. The load data is referred from 
[4] and output power data of SFs and WFs are taken 
from [33]. These data are also illustrated as presented in 
Figure 5. 

Due to the nature of stochastic algorithms, 40 test runs 
(𝑁𝑁𝑅𝑅𝑆𝑆𝑀𝑀) are simulated under the same conditions in this 
study. The best and average fitness values which 
demonstrate the efficiency and stability of each 
algorithm in the runs, are reported explicitly in Table 3. 
Table 3. The obtained results from implemented method in 40 

test runs  

Applied 
methods 

The best 
fitness 

The average 
fitness 

The fitness 
deviation 

GA 0.2767 0.2831 0.0064 
GA-PSO 0.2756 0.2797 0.0041 

ABC 0.2743 0.2789 0.0046 
SFS 0.2670 0.2713 0.0043 
BO 0.2650 0.2679 0.0029 

As shown in Table 3, the best and average fitness 
values of BO (0.2650 and 0.2679) are also better than 
GA (0.2767 and 0.2831), GA-PSO (0.2756 and 0.2797), 
ABC (0.2743 and 0.2789) and SFS (0.2670 and 0.2713). 
In addition, to demonstrate the stability of the methods, 
the deviation between the best fitness value and the 
average fitness value is also calculated. These values are 
0.0064, 0.0041, 0.0046, 0.0043 and 0.0029 for GA, GA-
PSO, ABC, SFS and BO, respectively. Clearly, the 
fitness deviation value from the suggested method is the 
smallest, leading to the best stability across multiple runs 
compared to others. 

The best obtained results regarding the location and 
installed capacity of SFs and WFs of the implemented 
methods are described in Table 4. Clearly, BO found the 
best solution with the OF value of 0.2650 and it is lower 
than GA of 0.2767, GA-PSO of 0.2756, ABC of 0.2743 
and SFS of 0.2670 after trial runs. In other words, the 
determined solution by BO is better than other methods 
in the case of considering this M-OF. Specifically, for 
the first and second single objective component that 

involves the reduction of active and reactive power 
losses (SF1 and SF2), the SF1 and SF2 values of BO 
(0.1346 and 0.1779) are lower than the other four 
methods such as GA (0.1576 and 0.1966), GA-PSO 
(0.1544 and 0.1928), ABC (0.1642 and 0.2021) and SFS 
(0.1485 and 0.1789), respectively. This indicates that 
active and reactive power loss reduction from BO's 
optimal solution is also better than others. Besides, for 
the third single target which is related to voltage (SF3), 
this value of BO is 0.2561 and it is much lower than 
0.3067 of GA, 0.3075 of GA-PSO, 0.2630 of ABC but a 
little higher than SFS. This means that the voltage 
deviation of BO is better than GA, GA-PSO and ABC 
but worse than SFS, and this has to be a trade-off in 
considering M-OF. Finally, the single-objective 
component related to importing energy from the main 
power grid (SF4) is also compared. Obviously, this value 
of BO is 0.3209 and it is lower than 0.3216, 0.3214, 
0.3217 and 0.3210 of GA, GA-PSO, ABC and SFS, 
respectively. In other words, the found solution by 
suggested method can reduce energy import better than 
remaining methods, and this is important in cutting 
electricity purchase cost from the main gird during 
operation. Overall, the results obtained for SF1, SF2, 
SF3 and SF4 from the implemented methods indicate 
that the suggested method is much more effective than 
others for solving the multi-objective problem of 
installing RE-DGs in PDN.  

Furthermore, the convergence characteristics of the 
five implemented methods are also compared. To ensure 
complete convergence of the methods, the number of 
iterations are investigated and 200 iterations are selected 
for this optimization problem. As shown in Figure 6, the 
convergence curve of BO is also better than GA, GA-
PSO, ABC and SFS. 

Obviously, at the 48th iteration, BO has a tendency to 
achieve stable convergence and the best optimal solution 
in this case is determined at the 55th iteration. 
Meanwhile, GA, GA-PSO, ABC and SFS found their 
best optimal solutions at the 70th, 59th, 81st and 60th 
iterations, respectively. It is shown that the effective new 
solution generation mechanism of the suggested method 
has significantly contributed to improving the ability to 
avoid local optimal traps and promoting BO to achieve 
better convergence than other compared methods. In 
summary, BO is not only an efficient method in terms of 
performance but also has better convergence than other 
methods in solving the problem of optimizing the 
installation of distributed sources in PDN. 

By applying the best solution from the suggested 
method (BO), the penetration of renewable energy 
distributed generation sources versus consumption 
demand is plotted as Figure 7. 
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Table 4. The obtained results from implemented method in 40 test runs 

Item SFs WFs 𝑺𝑺𝑶𝑶𝟏𝟏 𝑺𝑺𝑶𝑶𝟐𝟐 𝑺𝑺𝑶𝑶𝟑𝟑 𝑺𝑺𝑶𝑶𝟒𝟒 𝑶𝑶𝑶𝑶 

GA Node 16 – 0.5263 (MW) 
Node 61 – 0.6279 (MW) 

Node 61 – 2.3583 (MW) 
Node 55 – 0.8761 (MW) 0.1576 0.1966 0.3067 0.3216 0.2767 

GA-PSO Node 17 – 0.5241 (MW) 
Node 62 – 0.6305 (MW) 

Node 53 – 0.7333 (MW) 
Node 61 – 2.5013 (MW) 0.1544 0.1928 0.3075 0.3214 0.2756 

ABC Node 15 – 0.2019 (MW) 
Node 67 – 0.9465 (MW) 

Node 61 – 2.7867 (MW) 
Node 21 – 0.4530 (MW) 0.1642 0.2021 0.2630 0.3217 0.2743 

SFS Node 59 – 0.9591 (MW) 
Node 50 – 0.2000 (MW) 

Node 61 – 2.4456 (MW) 
Node 17 – 0.7863 (MW) 0.1485 0.1789 0.2533 0.3210 0.2670 

BO Node 12 – 0.5165 (MW) 
Node 61 – 0.6383 (MW) 

Node 17 – 0.7137 (MW) 
Node 61 – 2.5193 (MW) 0.1346 0.1779 0.2561 0.3209 0.2650 

 

 
Fig 6. Convergence properties of GA, GA-PSO, ABC, SFS and BO 

 
Fig 7. The penetration by RE-DGs in the considering periods 
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Fig 8. Total active power loss with and without RE-DGs 

 
Fig 9. Total reactive power loss with and without RE-DGs 

 

As calculated in 96 hours of 4 seasons, the total 
generation of SFs and WFs is 156.23 MW/ 75.29 MVar 
and they account for 67.91%/ 46.78% of the total 
demand, 230.05 MW/ 160.93 MVar, respectively. 
Hence, electricity shortage of 73.82 MW/ 85.64 MVar 
will be imported from the main power grid to ensure the 
balance between generating power and consuming 
power. Thanks to the penetration of RE-DGs into the 
distribution grid, the imported energy from the main grid 
is minimized and has resulted in a reduction in the total 
cost of purchasing energy for operation. Besides, with 
integrating RE-DGs, the total loss in PDN has decreased 
strongly from 8.2224 MW to 1.1064 MW and from 
3.7460 MVar to 0.6665 MVar with corresponding to 
86.54% and 82.21% in loss reduction for active and 
active power losses as presented Figure 8 and Figure 9, 
respectively. This proves the huge benefit of determining 
the appropriate connection of RE-DGs for reducing both 

total active and total reactive power losses in PDN. It 
also contributes to mitigating operational cost for the 
system in the long term. Furthermore, an added benefit 
from suitable integrating RE-DGs is the enhanced node 
voltage profile. As shown in Figures 10 and 11, the 
voltage profiles of four representative days for the four 
seasons of the year are presented. Obviously, before 
integration of RE-DGs, there were many node voltages 
outside the acceptance range (0.95, 1.05) p.u with the 
lowest voltage being 0.9090 p.u at the peak load periods 
as Figure 10. However, the operating voltage range of 
the nodes has been significantly increased to (0.9508, 
1.0181) p.u thanks to the connection of RE-DGs as 
demonstrated by Figure 11. This also confirms that 
proper integration of RE-DGs can positively enhance the 
voltage profile and that is considered as a great benefit 
from the penetration of RE-DGs in PDN. 
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Fig 10. Voltage profile in the considering periods before connecting RE-DGs 

 

 
Fig 11. Voltage profile in the considering periods after connecting RE-DGs 
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Conclusions 

In this study, an intelligent and adaptive meta-heuristic 
algorithm that called BO was introduced for determining 
the optimal integration of SFs and WFs considering M-
OF. The objectives of the study are to minimize total 
active power loss, total reactive power loss, voltage 
deviation and the amount of imported energy by the 
main power grid. This paper also used the weighted sum 
method for deciding the output of M-OF in the most 
compromise way considering demand and generation 
changes according to the seasons of the year. The results 
from the suggested method (BO) are compared with 
previously published methods and implemented methods 
in two cases, and BO has demonstrated its effectiveness 
compared to others in solving various optimization 
problems. For the first case of the S-OF, the optimal 
solution from BO can cut the total loss from 0.2245 MW 
to 69.204 kW, corresponding to 69.18% in loss 
reduction compared to the original system. For the 
second case of M-OF, the best quality solution from BO 
can achieve 86.54% and 82.21% in active and reactive 
power losses reduction, respectively. Not only that, 
voltage profile is also significantly increased from 
(0.9090, 1.00) p.u to (0.9508, 1.0181) p.u through 
appropriate connection of RE-DGs in PDN. All of the 
above has contributed to demonstrate the diverse 
benefits from integrating RE-DGs in PDN.  

In future work, to enhance the benefits from high 
penetration of renewable distributed generation while 
maintaining system stability, smart inverters (SI) and 
battery energy storage systems (BESS) will be 
considered for integration into the distribution system. 
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The nomenclatures  

𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅_𝐷𝐷𝐷𝐷      Total active power loss with connecting RE-DGs 
𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑅𝑅𝑅𝑅_𝐷𝐷𝐷𝐷      Total active power loss without connecting RE-DGs 
𝑄𝑄𝑃𝑃𝑅𝑅𝑅𝑅_𝐷𝐷𝐷𝐷      Total reactive power loss with connecting RE-DGs 
𝑄𝑄𝑃𝑃𝑁𝑁𝑁𝑁𝑅𝑅𝑅𝑅_𝐷𝐷𝐷𝐷      Total reactive power loss without connecting RE-DGs 
𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅_𝐷𝐷𝐷𝐷      Voltage deviation with connecting RE-DGs 
𝑉𝑉𝑉𝑉𝑁𝑁𝑁𝑁𝑅𝑅𝑅𝑅_𝐷𝐷𝐷𝐷      Voltage deviation without connecting RE-DGs 
𝐼𝐼𝐼𝐼𝑅𝑅𝑅𝑅_𝐷𝐷𝐷𝐷      Imported energy with connecting RE-DGs 
𝐼𝐼𝐼𝐼𝑁𝑁𝑁𝑁𝑅𝑅𝑅𝑅_𝐷𝐷𝐷𝐷      Imported energy without connecting RE-DGs 
𝑁𝑁𝑇𝑇 ,𝑁𝑁𝐻𝐻,𝑁𝑁𝑆𝑆   Number of considering hours, branches of system, nodes of system  
𝐼𝐼ℎ,𝑡𝑡,𝑅𝑅𝑅𝑅−𝐷𝐷𝐷𝐷 , 𝐼𝐼ℎ,𝑡𝑡   The hth branch current at the tth hour after and before connecting RE-DGs  
𝑉𝑉𝑠𝑠,𝑡𝑡,𝑅𝑅𝑅𝑅−𝐷𝐷𝐷𝐷 ,𝑉𝑉𝑠𝑠,𝑡𝑡   The sth node voltage at the tth hour after and before connecting RE-DGs 
𝑅𝑅ℎ,𝑋𝑋ℎ,𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁   The hth branch resistance and reactance, and nominal voltage (VNom=1) 
𝑃𝑃𝑡𝑡,𝑅𝑅𝑅𝑅_𝐷𝐷𝐷𝐷
𝑆𝑆𝑆𝑆𝑆𝑆 ,𝑃𝑃𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆   Active power from main power gird that injected at the tth hour 

𝑁𝑁𝐷𝐷,𝑁𝑁𝐷𝐷    Number of loads and distributed generators 
𝑁𝑁𝐾𝐾 ,𝑁𝑁𝑁𝑁    Number control variables and bonobos (solutions)  
𝑃𝑃ℎ,𝑙𝑙𝑁𝑁𝑠𝑠𝑠𝑠,𝑃𝑃𝑑𝑑,𝑙𝑙𝑁𝑁𝑙𝑙𝑑𝑑   The hth branch active power loss and the dth active power load  
𝑃𝑃𝑔𝑔,𝑅𝑅𝑅𝑅_𝐷𝐷𝐷𝐷 ,𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆   Active power of the gth generator and injected active power by main grid 
𝑄𝑄ℎ,𝑙𝑙𝑁𝑁𝑠𝑠𝑠𝑠,𝑄𝑄𝑑𝑑,𝑙𝑙𝑁𝑁𝑙𝑙𝑑𝑑   The hth branch reactive power loss and reactive power of the dth load 
𝑄𝑄𝑔𝑔,𝑅𝑅𝑅𝑅_𝐷𝐷𝐷𝐷 ,𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆   Reactive power of the gth generator and injected reactive power by main grid 
𝐼𝐼ℎ, 𝐼𝐼ℎ𝑀𝑀𝑙𝑙𝑀𝑀    Branch current and maximum acceptable branch current of the hth branch 
𝑉𝑉𝑠𝑠,𝑉𝑉𝑠𝑠𝑀𝑀𝑙𝑙𝑀𝑀    Node voltage and maximum acceptable node voltage of the sth node 
𝑃𝑃𝑂𝑂𝑀𝑀𝑙𝑙𝑀𝑀,𝑃𝑃𝑂𝑂𝑀𝑀𝑖𝑖𝑀𝑀,𝑃𝑃𝑂𝑂𝑔𝑔  Maximum and minimum power factors, and the gth generator’s power factor 
𝑃𝑃𝑅𝑅𝑅𝑅_𝐷𝐷𝐷𝐷
𝑀𝑀𝑙𝑙𝑀𝑀 ,𝑃𝑃𝑅𝑅𝑅𝑅_𝐷𝐷𝐷𝐷

𝑀𝑀𝑖𝑖𝑀𝑀 ,𝑃𝑃𝑔𝑔𝑅𝑅𝑙𝑙𝑡𝑡𝑅𝑅𝑑𝑑 ,𝑃𝑃𝑔𝑔,𝑅𝑅𝑅𝑅−𝐷𝐷𝐷𝐷𝑠𝑠 Maximum and minimum active power of each generator, rated active power for the 
gth generator and generated active power for the gth generator 

𝑏𝑏𝑏𝑏𝑘𝑘𝑀𝑀𝑅𝑅𝑛𝑛,𝑏𝑏𝑏𝑏𝑘𝑘𝑀𝑀   The kth control variables of new bonobo and the nth bonobo 
𝑠𝑠𝑐𝑐𝑆𝑆𝑓𝑓𝑣𝑣𝑙𝑙𝑣𝑣𝑘𝑘

𝑁𝑁𝑙𝑙𝑀𝑀, 𝑠𝑠𝑐𝑐𝑆𝑆𝑓𝑓𝑣𝑣𝑙𝑙𝑣𝑣𝑘𝑘
𝑁𝑁𝑖𝑖𝑀𝑀  The kth maximum and minimum control variables which are predetermined   

𝑎𝑎𝑘𝑘𝑆𝑆𝑁𝑁    The kth control variable of alpha-bonobo 
𝑂𝑂𝑖𝑖𝑐𝑐𝑀𝑀    The fitness value of the nth solution 
𝐼𝐼𝑐𝑐𝑒𝑒𝑆𝑆𝑁𝑁𝑙𝑙𝑀𝑀, 𝐼𝐼𝑐𝑐𝑒𝑒𝑆𝑆𝑄𝑄   Maximum iteration and the Lth iteration 
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