
Iranian Journal of Electrical & Electronic Engineering, Vol. 21, No. 03, September 2025     1 

Iranian Journal of Electrical and Electronic Engineering 03. (2025) 3445  

 

Efficient Tactile Perception in Robotics: Reducing Data 
Redundancy through Compression and Normalization in 
Spiking Graph Convolutional Networks 
Elahe Rezaee Ahvanooii* and Sheis Abolmaali*(C.A). 

Abstract: Touch, one of the fundamental human senses, is essential for understanding 
the environment by enabling object identification and stable movements. This ability has 
inspired significant advancements in artificial neural networks for object recognition, 
texture identification, and slip detection applications. However, despite their remarkable 
capacity to simulate tactile perception, artificial neural networks consume considerable 
energy, limiting their broader adoption. Recent developments in electronic skin 
technology have brought robots closer to achieving human-like tactile perception by 
enabling asynchronous responses to temperature and pressure changes, thereby 
enhancing robotic precision in tasks like object manipulation and grasping. This research 
presents a Spiking Graph Convolutional Network (SGCN) designed for processing 
tactile data in object recognition tasks. The model addresses the redundancy in spiking-
format input data by employing two key techniques: (1) data compression to reduce the 
input size and (2) batch normalization to standardize the data. Experimental results 
demonstrated a 93.75% accuracy on the EvTouch-Objects dataset, reflecting a 4.31% 
improvement, and a 78.33% accuracy on the EvTouch-Containers dataset, representing 
an 18% improvement. These results underscore the SGCN's effectiveness in reducing 
data redundancy, decreasing required time steps, and optimizing tactile data processing 
to enhance robotic performance in object recognition. 

Keywords: Tactile Perception, Graph Convolutional Network, Spiking Neural Network, 
Redundancy Reduction, Batch Normalization. 

 

1  Introduction 

ACTILE sensors play a crucial role in object 
recognition and performing many everyday tasks, 

such as driving and food preparation. The tactile pixels 
in these sensors provide robots with remarkable 
capabilities for better object recognition. These tactile 
sensors can offer vital information, such as texture, 
roughness, and friction, which are used in applications 
like object identification, slippage detection, and texture 
analysis [1]. This study addresses the challenges of 
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object recognition using event-driven tactile sensors. 
Prior research has predominantly utilized conventional 
tactile sensors and machine learning techniques, 
including convolutional neural networks [2]. However, 
event-driven sensors differ significantly in performance 
and the type of data they provide,  these tactile 
asynchronously report environmental changes, offering 
data in the form of event-driven "spikes," where each 
taxel operates independently [3]. Compared to frame-
based traditional sensors, event-driven sensors offer 
advantages such as enhanced energy conservation, 
improved scalability, and reduced latency. However, 
learning from these event-driven systems is still in its 
infancy and demands further investigation and 
development [4]. 

Despite these advancements, artificial neural networks 
still consume significantly more energy than the human 
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brain, especially in robotics applications that require 
rapid and accurate environmental perception. The sense 
of touch is essential for various robotic tasks, including 
object manipulation and grasping. Recent advancements 
in electronic skin technology are bringing robots closer 
to achieving taxel perception comparable to that of 
humans. Electronic skins can respond to various stimuli, 
including temperature and pressure, simultaneously, 
thereby enhancing the precision and efficiency of robotic 
systems [5]. 

The model used in this study utilizes Spiking Graph 
Convolutional Networks (SGCN), which offer unique 
capabilities for sensing and perceiving objects through 
touch. The input data for this model is received in a 
spiking format, meaning that the information is 
processed dynamically and at high speed. An analysis of 
the input data revealed that a significant portion of this 
data contained redundancy. Addressing this issue 
requires optimization techniques to improve system 
efficiency and ensure optimal resource utilization [4]. 

TaxelSGNet [6] is a network based on event-driven 
taxel data that reacts asynchronously to environmental 
changes such as pressure or temperature. This network 
processes data in real-time and is more energy-efficient 
than traditional methods. Due to the irregular 
arrangement of sensors in robotic devices, this network 
is more suitable for taxel learning than conventional 
convolutional methods. It addresses this challenge by 
organizing taxel data into a graph structure, allowing the 
network to effectively leverage local connections 
between taxel sensors.  

The main ideas of this research are divided into two 
key phases. First, the input data is compressed using 
specialized compression techniques to reduce the data 
size and eliminate redundancy. This step helps decrease 
the data volume and improve processing speed. Next, the 
data is normalized using batch normalization in Spiking 
Graph Convolutional Networks to ensure balanced data 
distribution. This normalization process enhances 
learning quality, reduces training time, and increases 
prediction accuracy [2]. 

This study utilized two different datasets, and the 
results show high accuracy in classifying various 
household objects using the proposed methods. These 
findings suggest that the use of compression and 
normalization techniques can significantly improve 
classification accuracy and reduce the time required for 
data processing. The application of these methods, 
particularly in the identification and classification of 
household objects, demonstrates significant 
advancements in the fields of image processing and 
machine learning [5]. This research aims to reduce the 
redundancy in input data and improve the efficiency of 
information processing systems. 

2 Background and Related Work 

This study examines Spiking Graph Convolutional 
Networks (SGCNs) for object recognition, employing 
event-driven taxel data. In this section, we provide a 
concise overview of the background and pertinent 
literature in this area. Given the extensive nature of 
research in this field, we will only present a selection of 
representative works due to space constraints. 

To date, various taxel sensors have been designed and 
developed, including widely used sensors such as PPS, 
BioTac, and Tekscan [7]. In this study, we utilized the 
NeuTouch sensor, an event-based taxel sensor recently 
introduced in research [8]. Research into learning from 
event-based taxel data has been limited so far [9]. Recent 
studies have introduced a multi-faceted spiking neural 
network based on the SLAYER model [10]. However, 
our work differs from these studies; instead of using 
fully connected layers, we employ Spiking Graph Neural 
Networks with LIF neurons [11]. Taxels, which function 
as tactile sensor units, are similar to image pixels but 
process information such as contact and pressure instead 
of images [12]. The greater the number of taxel on the 
sensor surface, the higher the accuracy of the robot in 
recognizing taxel details [13]. These taxel allow robots 
to sense characteristics like roughness, softness, and 
temperature of objects similar to human touch. This 
capability enables robots to perform tasks including 
object recognition, preventing slippage, and analyzing 
surface textures more effectively [14]. 

2.1 Graph Convolutional Networks 
In these networks, convolutions operate not on 

conventional data but on the nodes of a graph [15]. 
These networks can be classified into two main types: 
spatial graph convolutional networks and spectral graph 
convolutional networks [16]. Spatial methods are 
directly applied to graphs, while spectral methods utilize 
spectral decomposition of the Laplacian matrix to better 
model the relationships among nodes [17]. The 
Laplacian matrix is employed in spectral methods for 
graph analysis and to enhance the understanding of node 
relationships [18]. These networks have applications in 
various fields due to their ability to process structured 
data such as graphs, including applications in object 
detection and classification in images and videos [19]. 

2.2 Spiking Graph Convolutional Networks 
These networks leverage event-based spike processing 

and feature extraction from sparse input data to identify 
important patterns and process event-based taxel sensor 
data [20]. A key feature of this architecture is its ability 
to perform transfer learning and process spatiotemporal 
data, akin to brain computations [21]. However, using 
these networks comes with significant challenges. The 
diversity of data, including dimensions, sizes, textures, 
and colors of objects, can impact accuracy and 



Iranian Journal of Electrical & Electronic Engineering, Vol. 21, No. 03, September 2025     3 
 

performance, leading to generalization issues [22]. 
Environmental noise, such as low light and vibrations, 
can reduce detection accuracy [23]. Additionally, the 
non-separable nature of the spike function complicates 
training and necessitates solutions like converting deep 
neural networks to spiking networks and approximating 
spike function derivatives [24]. Despite these challenges, 
the biological similarity of spiking graph networks 
makes them more suitable and biologically plausible for 
real-world applications [25]. Their ability to learn from 
limited training data and effectively process taxel 
information makes them a promising approach for event-
based taxel object recognition [26]. These networks are 
increasingly recognized for their unique ability to model 
and process complex information, especially in object 
recognition and touch-based learning [27]. Numerous 
studies continue to focus on enhancing the performance 
of spiking neural networks, including the creation of 
spatial and temporal spiking networks. An innovative 
model is a hybrid model that integrates both spatial and 
temporal spiking neurons to accurately capture intricate 
spatiotemporal features [28]. This model has achieved 
92% accuracy in object recognition and 89% accuracy in 
container content identification, demonstrating its high 
efficiency in these areas [30]. Furthermore, the use of k-
nearest neighbor methods to enhance accuracy has also 
been explored [31]. However, these models face 
challenges such as high computational complexity and 
the need for fine-tuning, which must be considered in 
their design and implementation [30]. Another 
innovative technique that enhances the stability of 
training spiking neural networks is threshold-dependent 
batch normalization [32]. This method normalizes 
neuron outputs and adjusts their firing thresholds to 
prevent excessive or insufficient firing, helping spiking 
neural networks perform complex tasks like image 
classification with greater accuracy [33]. This technique 
is particularly effective in deep networks that may 
encounter issues such as vanishing or exploding 
gradients [34]. Hybrid models in spiking neural 
networks, combining graph networks and biologically 
inspired neural models, enable more effective processing 
of spatiotemporal information [35]. These models offer 
high accuracy and flexibility but also face challenges 
such as computational complexity and the need for high-
quality data [36]. Ultimately, this review emphasizes 
that finding the right balance between accuracy and 
efficiency in selecting and designing spiking models is 
crucial. The choice of the appropriate approach should 
be based on the specific needs of each project, and new 
techniques like threshold-dependent batch normalization 
can play a significant role in enhancing the performance 
of spiking neural networks [37]. 

2.3 One-dimensional Max Pooling Compression 
One-dimensional Max Pooling is a data compression 

technique used to reduce dimensionality and 

computational load. This technique aims to reduce 
redundancy in input data and extract features. In One-
dimensional Max Pooling, a sliding window moves over 
the data, selecting the maximum value from each 
segment. This process reduces the number of time steps 
or input data while preserving important features. 

2.4 tdBN(tdBatchNorm)[32] 
In spiking neural networks, inputs are presented as 

discrete spikes, and neurons activate only when their 
membrane potential exceeds a specific threshold. While 
this spike-based mechanism has its advantages, it also 
presents significant challenges, particularly in adjusting 
neuron firing rates and addressing issues like vanishing 
or exploding gradients during training. To mitigate these 
challenges, threshold-dependent batch normalization is 
employed. This method is similar to conventional batch 
normalization in artificial neural networks but with 
specific adaptations for the unique features of Spiking 
Neural Networks (SNNs). A key modification is 
channel-wise normalization. In this process, the mean 
and variance of inputs are computed for each channel of 
pre-synaptic activations. The pre-activations are then 
normalized based on the threshold voltage to maintain 
stability and control over input signal variations. 

Channel Normalization Calculation: The channel 
normalization calculation is performed as follows for 
each channel m: 

𝑧𝑧𝑚𝑚 =
𝛾𝛾𝑊𝑊𝑡𝑡𝑡𝑡(𝑧𝑧𝑚𝑚 − 𝐸𝐸|𝑧𝑧𝑚𝑚|
�𝑉𝑉𝑉𝑉𝑉𝑉[𝑧𝑧𝑚𝑚] + 𝜎𝜎

 

In this formula: 

• 𝑊𝑊𝑡𝑡𝑡𝑡 is the neuron firing threshold. 

• 𝛾𝛾 is a hyperparameter depending on the 
network structure. 

• E[𝑧𝑧𝑚𝑚] is the mean of the channel mmm inputs.  

• Var[𝑧𝑧𝑚𝑚]  is the variance of the channel mmm 
inputs. 

• 𝜎𝜎 is a small value used to prevent division by 
zero. 

This formula adjusts inputs based on neuron firing 
thresholds to prevent vanishing or exploding gradients. 
Consequently, this technique aids in optimizing the 
network and enables more effective execution of models 
on neuromorphic hardware. After normalization, the 
final output is optimized using trainable parameters. This 
process significantly improves network firing rate 
adjustment and training stability, leading to more 
effective and stable learning.  

A new method combining threshold-dependent 
normalization techniques and the aforementioned 
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compression techniques has been introduced. This 
approach aims to reduce redundancy in input data and 
enhance overall efficiency. 

3 Methodology 

This section explores a method that utilizes Spiking 
Graph Convolutional Networks (SGCNs), originally 
introduced in [6], These establish the basis for our 
research. Unlike pixel-based networks in vision sensors, 
tactile taxels (sensory units) are analogous to human 
sensory receptors; they are distributed unevenly, with 
each one carrying different neural importance [40]. 
Advances in artificial electronic skins have enabled the 
development of flexible tactile sensors that can simulate 
or even surpass human tactile perception [41]. These 
sensors can be mounted on existing robotic limbs or 
feature irregularly arranged taxels [42]. One such 
example is the NeuTouch sensor, biologically inspired 
and equipped with 39 taxels in a radial pattern [43]. 
Although NeuTouch serves as a primary example, the 
developed methods for tactile sensors apply to sensors 
with varying taxel configurations and arrangements, 
enabling a wide range of applications in robotics and 
prosthetics [44]. 

To process touch-based graph data effectively, we 
introduce the Neural Spiking Tactile Graph Network 
(TactileSGNet) architecture. This network incorporates 
Leaky Integrate-and-Fire (LIF) neurons and features a 
Topology-Adaptive Graph Convolutional (TAGConv) 

layer, fully connected (FC) layers, and a final voting 
mechanism for classification [45]. 

LIF Activations[46]: In conventional neural networks, 
activation functions such as ReLU are used [47]. 
However, these functions are not suitable for spiking 
neural networks. Instead, we utilize the Leaky Integrate-
and-Fire (LIF) model which outlines these neural 
dynamics as follows: 

𝜏𝜏
𝑑𝑑𝑑𝑑(𝑣𝑣)
𝑑𝑑𝑑𝑑

= −𝑑𝑑(𝑣𝑣) + �𝑘𝑘𝑛𝑛𝑦𝑦𝑛𝑛

 

𝑛𝑛

 

Where 𝑑𝑑(𝑣𝑣) represents the membrane potential and τ is 
the time constant. To update this potential, we use the 
Euler method, and its simplified form is as follows: 

𝑑𝑑(𝑣𝑣 + 1) = 𝛼𝛼𝑑𝑑(𝑣𝑣) + �𝑛𝑛𝑘𝑘𝑛𝑛′ 𝑦𝑦𝑛𝑛

 

𝑛𝑛

 

The LIF activation function generates a spike when the 
membrane potential attains a specific threshold, after 
which it resets. 

TAGConv-Layer [48]: This layer adjusts to the 
topology of the input graph, with its convolution 
operation represented as follows: 

𝑦𝑦𝑔𝑔 = �𝐻𝐻𝑑𝑑,𝑒𝑒 ∗ 𝑝𝑝𝑑𝑑 + 𝑞𝑞𝑒𝑒

𝐷𝐷

𝑑𝑑=1

 

where Hd,e is the graph filter, and qe is the normalized 
adjacency matrix. 

 
Fig 1. Our network is a spiking neural network based on TactileSGNet [6]. A spiking neural network (SNN) processes 

input spikes from tactile sensors (taxels), specifying their connectivity by an input graph. The network consists of a 
graph convolutional layer (TAGConv) with max pooling and a normalization layer, two fully connected (FC) layers, 

and a voting layer, in addition to the LIF layers. 

Fully ConnectedLayer:This layer functions similarly to 
standard layers in neural networks: 

y = Az + c 
Here, z denotes the inputs from the previous layer, A 
represents the weight matrix, c is the bias vector, and y 
signifies the output feature. 
Voting Layer: This layer facilitates the final 
classification, where the neuron that generates the 
highest number of spikes within a designated time 
window determines the predicted class. 

Training: To train the network, a loss function is 
established. This function computes the mean squared 
error between the vector z and the voting results from 
the output layer, averaged over a specified time step. 

𝑛𝑛 = �𝑉𝑉𝑡𝑡 −
1
𝑇𝑇
�𝑀𝑀0

𝑇𝑇

𝑡𝑡=1

�

2

 

In this context, M0 represents the decision matrix, and 
rt represents the output feature from the final layer at 
time t. In conventional neural networks, the network is 
trained by reducing the error function using standard 
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backpropagation methods. However, Spikes are non-
differentiable; however, we can approximate the 
derivative of the spike function, demonstrating 
effectiveness across a range of tasks. In this research, we 
utilize the box function g(n) to estimate the derivative of 
the spike function, owing to its simplicity and 
demonstrated effectiveness 

𝑔𝑔(𝑛𝑛) = 𝑠𝑠𝑖𝑖𝑔𝑔𝑛𝑛 �|𝑛𝑛 − 𝑛𝑛𝑇𝑇| <
𝜃𝜃
2
�

1
𝜃𝜃

 

In this formula, 𝜃𝜃 is recognized as the width parameter. 

4 Result of Expriments: 

The primary aim of our experiments was to assess 
various architectures for event-based tactile object 
recognition. The main objective of this research is to 
improve the efficiency and processing speed of spiking 
tactile data. To showcase the advantages of the proposed 
method compared to existing approaches, we compared 
our model with two similar methods: Hybrid Graph 
Neural Networks and Event-Based Tactile Learning 
using position-spiking neurons. This research was 
carried out using the PyTorch library. 

a) Datasets 

We compared the methods using two event-driven 
tactile datasets, which were gathered using a Franka 
Emika Panda robotic arm fitted with a NeuTouch sensor: 

• EvTouch -Containers: This dataset includes 
tactile data from four types of containers with 
five different fill levels, resulting in 300 
samples.  

• EvTouch - Objects: This dataset consists of 
tactile data from 36 object classes with 720 
samples.  

The input size for EvTouch_Objects is specified as a 
tensor of shape [39, 2, 325]. In this structure, the first 
dimension, 39, the Number of taxels, indicates the 
number of samples processed concurrently during 
training or evaluation. The second dimension, 2, 
corresponds to the compression or release of the taxels. 
The third dimension, 325, indicates the time steps 
involved in the experiment, during which the taxels 
grasp and release the object. 

For EvTouch-Container, the input size is a tensor of 
shape [39, 2, 250]. This structure is similar to the 
previous one, but the number of time steps involved in 
the experiment, during which the taxels grasp and 
release the object is 250.  

These datasets were used to evaluate object recognition 
performance with tactile sensors. 

 

b) Methods: 

To reduce redundancy in the input data, we employed 
compression and normalization techniques. Below, we 
outline the proposed methods for compression and 
normalization. 

4.1 Proposed Compression Method: One-dimensional 
Max Pooling  

In our proposed method, we defined window sizes 
ranging from 2 to 5 and step sizes from 2 to 5. The 
window size and step size can be adjusted across 
different dimensions within the specified ranges. The 
table below shows the step sizes and window sizes used.  

Table 1: Window Size and Step Size 

Stride Window-size 
2 2 
3 3 
2 4 
3 4 
4 4 
2 5 
3 5 
5 5 

4.2 tdBN Normalization Method(tdBatchNorm)[32] 
In our proposed method, normalization was carried out 

using the tdBN normalization technique. This method 
improved accuracy and reduced training and testing loss, 
leading to faster processing and more efficient 
computations. In the following sections, the accuracy of 
the proposed method will be compared with other 
similar techniques in the field, along with a detailed 
comparison of training and testing loss with the original 
paper. 

4.3 Comparison of Methods: 
We compared our proposed method with four different 

approaches that utilized the same datasets. Each of these 
methods and their resulting accuracy are described 
below: 

TactileSGNet [6]: In this study, we compared the 
training loss and test loss results obtained with those 
reported in this paper, which forms the basis for our 
work, as our primary objective is to enhance the network 
proposed in this article. 

Hybrid-SRM-FC [49]: This is a hybrid model used for 
event-based tactile data learning, consisting of TSRM 
and LSRM models. This approach is more energy-
efficient than traditional ANN networks. 

Hybrid-LIF-GNN [49]: Similar to the previous model, 
this hybrid approach processes event-based tactile data 
using a combination of Graph Convolutional Networks 
(GNN) and LIF models. LIF is employed to simulate the 
characteristics of spiking neurons and process event-
driven spiking data. LIF neurons periodically activate or 
deactivate, mimicking the behavior of biological 
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neurons. GNNs are used to learn from graph-structured 
data and complex relationships. 

Work [50]: This model employs spiking neurons that 
function similarly to biological neurons. These neurons 
respond asynchronously to stimuli by firing spikes, 
making the network ideal for processing event-driven, 
sparse tactile data. The network uses a graph-based 
structure to organize and process data from tactile 
sensors, effectively utilizing local communication 
between the sensors. 

5 Training Preparation and Evaluation 

The parameters used in our model are listed in Table 1. 
We split the data into 80% for training and 20% for 
testing, with equal class distribution. The model is 
trained for 100 epochs, and as shown in Figures 2 and 3, 
our comparison metric is the precision on the test set. 
The study evaluated the training and testing process and 
found that our proposed method converged faster 
compared to the model used in TactileSGNet. 
Additionally, it achieved lower test loss and training loss 
than the reference method. 

 
Fig 2. Training Losses and Test Losses as Training 

Progressed on EvTouch-Objects 

 
Fig 3. Training Losses and Test Losses as Training 

Progressed on EvTouch-Containers. 

The precision attained by our method on the EVTouch-
OBJECT dataset is 93.75%, obtained using a window 
size of 5 and a step size of 2. This represents an 
improvement of approximately 0.32% compared to the 
HYBRID_LIF_GNN method, which had the highest 
accuracy among the other approaches while requiring 
fewer computations. This outcome highlights the 
remarkable efficiency of our approach, where despite the 
count of time steps being reduced, our model's accuracy 
surpasses that of SOTA. On the EVTouch-
CONTAINER dataset, our method shows an 
improvement of about 18% over the original paper, with 
an accuracy of 78.33%, also obtained using a window 
size of 5 and a step size of 2. Table 3 presents the best 
accuracies achieved by various methods and our 
proposed approach. This table shows that the precision 
of the Hybrid_SRM_FC and HYBRID_LIF_GNN 
methods is more than our method for the EVTouch-
CONTAINER dataset. Notably, these networks 
comprise two sub-networks, each containing a spiking 
graph layer and three spiking FC layers, and employ the 
baseline timing window sizes. Consequently, the 
computational demands of these structures far surpass 
those of our suggested method. 
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Table 2. The parameters used in this paper will be detailed in the following sections 

 
Table 3. Comparison of Methods 

Since the studies we compared our results with only 
report the highest accuracy and do not provide variations 
in accuracy values, statistical comparisons, such as 
ANOVA, for metrics like recall are not feasible. To 
illustrate the variability of the proposed method's results 
for the two datasets EvTouch-Objects (using the 
method with window size = 5 and time-step = 3) and 
EvTouch-Containers (using the same method) 
experiments were repeated multiple times. The best 
accuracies obtained from these experiments, as reported 
in Table 4, have been included: 

 Table 4. Best results of each of the datasets 
Experiment 

number EvTouch-objects EVTouch-
containers 

1 91.67 71.67 
2 92.67 73.33 
3 93.65 73.66 
4 93.75 75.33 
5 93.75 78.33 

 
The mean and variance for the EvTouch-Objects 
dataset are 93.10 and 0.68, respectively, and for the 
EvTouch-Containers dataset, they are 74.46 and 5.10, 
respectively. 

6 Ablation Study:  

The comparison of accuracy achieved under 
compression conditions without normalization, as shown 
in the table below, indicates that although normalization 
was not applied, the accuracy obtained surpasses that 
reported in the original paper for both datasets. For the 
EVTouch-object dataset with a window size of 5 and 
steps of 2, 3, and 5, the achieved accuracy is 91.66%, 
which represents an improvement of approximately 

2.21% compared to the reference paper. For the 
EVTouch-Container dataset, the accuracy is 73.333%, 
which is consistent with window sizes 4 and step 4, and 
window size of 5 and step 3, reflecting an approximate 
improvement of 13.16% over the reference paper’s 
accuracy. 
Table 5. The Accuracy Achieved by Our Method without the 

Use of Normalization. 

Method 
EVTouch-objects 

(Accuracy/Converge 
Timestep) 

EVTouch-containers 
(Accuracy/Converge 

Timestep) 
2-2 89.58/(ep65) 70.00/ (ep43) 
3-3 90.97/(ep50) 70.00/ (ep82) 
4-2 91.66/(ep67) 70.00/ (ep52) 
4-3 91.66/ (ep49) 70.00/ (ep52) 
4-4 90.27 /(ep47) 73.33/ (ep76) 
5-2 91.66 /(ep42) 70.00/(ep62) 
5-3 91.66/ (ep49) 73.33/ (ep53) 
5-5 91.66/ (ep90) 70.00/ (ep52) 

7  Conclusion 

Improving the accuracy and efficiency of neural 
networks used for receiving and processing tactile data 
remains a fundamental challenge. Enhancing the 
precision and performance of these networks not only 
accelerates advancements in deep learning but also 
represents a significant step toward optimizing artificial 
intelligence and automation systems. Additionally, input 
data often consists of long sequences of binary values 
that can be effectively compressed using advanced 
techniques. Such compression reduces the number of 
time steps and significantly decreases computational 
needs and energy consumption. Consequently, data 
compression enhances system efficiency and resource 
management, leading to reduced power consumption.  

The proposed method resulted in an accuracy 
improvement of approximately 0.42% for the EvTouch-
Objects dataset and 18% for the EvTouch-Container 
dataset, compared to the TactileSGNet method, which is 
the basis for our work. To achieve even better results in 
this field, applying new graph-based methods and 
innovative techniques can further enhance the accuracy 
and efficiency of machine learning models and spiking 
convolutional neural networks. This aspect will be 
addressed in future work. 

Parameter Value Description 

Number of Network Layers 3 Number of layers in the neural network 
Gradient Width Approximation (β) 0.5 Parameter for adjusting the approximate gradient 

Batch Size 1 Number of samples processed in each batch 
Membrane Potential DecayConstant 0.2 Rate of membrane potential decay over time 

Learning Rate 1×10−3 Learning rate for updating weights in the network 
MembranePotentialRecovery(𝒖𝒖𝑹𝑹) 0 Membrane potential value after neuron activation 

MembranePotentialActivationThreshold 0 The membrane potential threshold at which the neuron 
activates 

Method EVTouch-
OBJECTS 

EVTOUCH-
CONTAINER 

TACTILSGNET [6] 89.44 60.17 

Hybrid_SRM_FC [49] 91.00 86 

HYBRID_LIF_GNN [49] 93.33 79.33 

Work [50] 90.28 - 

Our work 93.75 78.33 
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