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Gaussian Signals 
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Abstract: In this paper, the nonlinear lattice-Hammerstein filter and its properties are 

derived. It is shown that the error signals are orthogonal to the input signal and also 

backward errors of different stages are orthogonal to each other. Numerical results confirm 

all the theoretical properties of the lattice-Hammerstein structure. 

 

Keywords: Hammerstein Series, Lattice Structure, Nonlinear Filter. 

 
 
 
1 Introduction 1 

Linear filters have widely been applied to different 

applications due to simplicity of implementation. From 

conceptual and implementation points of view, the 

impulse response of such systems completely 

characterizes the system behavior. Nevertheless, there 

are many practical situations where the use of nonlinear 

structure is inevitable and incorporation of linear 

structures may lead to inaccurate results. As such, data 

transmission lines, channel equalizers, echo cancellers, 

system identifiers, saturated power amplifiers, OFDM 

systems, and signal detectors may be mentioned [1] to 

[4]. This accordingly has motivated more research on 

developing new nonlinear techniques such as neural 

networks, order-statistics filters, homomorphic filters, 

and polynomial filters [5]. 

The latter technique embeds those nonlinear systems 

whose input-output signals are related through a 

truncated series expansion. In this regard, the Volterra 

series expansion has received specific attention in the 

literature due to its great potential in nonlinear modeling 

scenarios [2]. However, the major difficulty with these 

methods is their massive computational burden which 

may make their implementation impractical. More 

specifically, the main limitation with the Volterra 

expression is the large number of coefficients involved 

in computations. Moreover, it is normally difficult to 

analyze Volterra filters. 

An alternative nonlinear expression is the Hammerstein 

series with a much simpler structure for nonlinear 

modeling [1] and [15] to [17]. On the other hand, among 

linear structures, the lattice filter has thoroughly been 

studied in the literature. Individual properties of this 

                                                           
Iranian Journal of Electrical & Electronic Engineering, 2008. 

Paper first received 22nd January 2006 and in revised form 6th October 
2007. 

* The Authors are with the Department of Electrical Engineering, Iran 

University of Science and Technology, Tehran, Iran. 
E-mail: kahaei@iust.ac.ir. 

filter such as modularity, ease of computations, 

providing a Gram-Schmidt type of orthogonal signals, 

and etc., has made it an appealing structure in many 

applications [6] and [9] and [14]. To exploit the lattice 

properties in nonlinear structures, a lattice-Volterra 

filter has already been addressed [10] and [11]. This 

filter is computationally extremely complicated. 

The aim of this paper is twofold: first, to present a 

practical substitution for the lattice-Volterra filter with 

much less computations; secondly, to develop a new 

nonlinear structure whose properties are analytically 

tractable and also benefits of the lattice-type filter 

properties. In this paper, the Lattice-Hammerstein filter 

is developed and its properties are theoretically 

investigated. 

The paper is organized as follows. In Section 2, 

Hammerstein prediction-error filters are derived. The 

lattice-Hammerstein filter and its properties are 

presented in Section 3. Simulation results are presented 

in Section 4 and Section 5 concludes the paper. 

 

2 Hammerstein Prediction-Error Filters 

The truncated Hammerstein series expansion is given by 

[1] 
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where x(n) and y(n) respectively show the input and 

output signals, M expresses the number of system 

memories, P presents the nonlinearity degree, and 
j
h ( )i  

denotes polynomial coefficients. Then, the input matrix 

is given based on the input vector as: 
 

[ ]M
(n) (n), (n 1), , (n M 1)= − − +X x x x�  (2) 
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where 

 

T
2 P

(n i) x(n i), x (n i), , x (n i)

i 0 ~ M 1

 − = − − − 
= −

x �
 (3) 

 

The error vector of a Hammerstein forward prediction-

error filter (see Fig. 1) 
T

m m,1 m,2 m,P(n) f (n), f (n), , f (n) =  f � with m memories 

is defined based on Eq. (3) as 

 

m
f

m m m,i

i 1

ˆ(n) (n) (n) (n) (n i)
=

= − = − −∑f x x x A x  (4) 

where f

m
x̂ (n)  shows the forward prediction signal and 
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with m,i

kl
a  k & l=1,2,…,P and i=1,2,…,m being the 

elements of the forward prediction-error coefficient 

matrix. 

To compute the optimal coefficients in mean-square 

error sense, the cost function is defined for forward 

errors as 

 

f T

m m mP E (n) (n) =  f f  (6) 

 

Setting the partial derivatives of f

mP  with respect to m,i

kj
a  

to zero, the normal equation is obtained as 
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where we call R and f
P  as the combined correlation 

and cross-correlation matrices whose elements are 

respectively given by 
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T
m m,1 m,2 m,m

kl kl kl kla ,a , , a =  a …   
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Fig. 1 A Hammerstein forward prediction-error filter with the nonlinear degree of P and m memories. 
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with k l

kl
r (i) E x (n)x (n i) = −   denoting the correlation 

function and assuming that x(n) is stationary. Applying 

the same approach, the normal equation for backward-

error coefficients is obtained as 

 

T 1 b

m

−=G R P  (10) 
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and 
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while the error vector of a Hammerstein backward 

prediction-error filter (see Fig. 2), 
T

m m,1 m,2 m,P
(n) b (n), b (n), , b (n) =  b …  with m 

memories is obtained by 

 

m
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where the backward coefficients matrix is defined as 
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We derive the lattice-Hammerstein structure using the 

above forward and backward prediction-error filters for 

Gaussian inputs for which the higher-order statistics are 

expressed in terms of second-order statistics as [8] 

 

{ }
{ }1 2 N

k l

0;                      N odd
E x x ...x

E x x ;   N even


= 

∑∏
 (14) 

 

As a result, we can write for the autocorrelation 

function: 
kl lk kl lkr (i) r ( i) r ( i) r (i)= − = − = k, l 1 ~ P= and 

correspondingly for (7) and (10), T=R R , T

m m
,=A A  

T

m m
=G G . 

By expansion of Eq. (7) and Eq. (10), one can easily 

obtain the relationship between forward and backward 

predictor-error coefficients as 
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In the sequel, we investigate some properties of forward 

and backward-error signals. To elaborate, by defining 

the backward error power as 
b 2

m mP E | (n) | =  b  and 

differentiating it with respect to the elements of Eq. (13) 

and doing necessary manipulations, we get 
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which for k1=1 , k2=2 ,…, kP=P, reduces to Property 1 

of the lattice-Hammerstein filter as 

 

{
}

{ }

2

P
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This means that backward errors are orthogonal to the 

input signal. Applying the same procedure to the 

forward prediction-errors, one can similarly show 

Property 2 as 

 

T

m
E (n i) (n) 0 i 1 ~ m − = = x f  (18) 

 

Moreover, using Eq. (12) and incorporating Eq. (17) 

results in the important orthogonal property of 

backward errors (Property 3) as 
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which expresses that backward errors of different stages 

( 1 2m m≠ ) are orthogonal to each other. These results 

are similar to those reported for linear lattice filters. 
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Fig. 2 A Hammerstein backward prediction-error filter with the nonlinear degree of P and m memories. 
 

 

3 Derivation of Lattice-Hammerstein Filters 

Analogous to linear lattice filters, we combine the 

forward and backward prediction errors to develop the 

lattice-Hammerstein structure shown in Fig. 3 [13]. 

Each module of this filter presented in Fig. 3(b) contains 

two input vectors from the previous module, two output 

vectors, and two lattice-Hammerstein coefficient 

matrices. The modularity of the resulting filter is in 

general similar to that of the linear lattice filter except 

that here the coefficient matrices are composed of 

different components based on Hammerstein series 

coefficients and also the inputs of the first module is a 

combination of the input signal x(n). 

To derive these coefficients, we start by writing Eq. (4) 

for the (m+1)-th stage as  

 

m
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i 1
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=
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where 
m,i m 1,i m 1,m 1 m,i
(n i) + + +′ − = +A x A A G  and the 

(m+1)-th forward prediction-error coefficient 
f

m 1,m 1 m 1K+ + +A �  has been taken out. In vector forms, 

(20) can be rewritten as 
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Fig. 3 Block diagram of (a) a lattice-Hammerstein filter with the nonlinear degree of P and M memories, (b) the i-th lattice-

Hammerstein module. 
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The weight vector 
z

W  which minimizes m 1(n)+f  in the 

mean-square error sense is then obtained as 

 

zz z xz ,=R W P  (23) 

 

where T

zz
E (n) (n) =  R Z Z  and T

xz
E (n) (n) =  P x Z . 

Substituting Eq. (22) in Eq. (23), we obtain the error 

vector of a Hammerstein forward prediction-error filter 

with m+1 memories as a function of the same filter with 

m memories as 

 

f

m 1 m m 1 m
(n) (n) (n 1)+ += − −f f K b  (24) 

 

and also, 

 

b f T T

m m 1 m

T
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 = − 

R K b x

b f
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where b T

m m m(n 1) E (n 1) (n 1) − = − − R b b  is the 

backward error matrix. Note that Eq. (25) is obtained 

using Eq. (4) and incorporating the orthogonal property 

of backward prediction errors to the input signal as 

proved in Eq. (17). 

In the same manner, we can express the error vector of a 

Hammerstein backward prediction-error filter with m+1 

memories as 

 

b

m 1 m m 1 m
(n) (n 1) (n)+ += − −b b K f  (26) 

 

and 
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where f T

m m m
(n) E (n) (n) =  R f f . Equations (24) and 

(26) present the lattice-Hammerstein relationships 

between, forward errors, backward errors, and the 

corresponding lattice-Hammerstein coefficients in 

accordance with Fig. 3, while 0 0(n) (n) (n)= =f b x . 

Moreover, using Eq. (25) and Eq. (27), the filter 

coefficients are computed based on the error signal 

matrices. Note that f

m 1+K  and b

m 1+K  are not in general 

the same. 

The relationship between forward and backward error 

powers, i.e., f

m (n)R  and b

m (n 1)−R  is first extended 

from Eq. (12) and Eq. (4) as 
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assuming that the autocorrelation matrix (i)ΓΓΓΓ  of the 

input signal given by 
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is symmetric for stationary and Gaussian input signals. 

Changing i to m+1-i in Eq. (28) and considering Eq. 

(15), the important relation between the power of 

forward and backward matrices are shown to be equal 

as 

 

b f

m m(n 1) (n)− =R R  (30) 

 

Noting that the trace of Eq. (30) is equivalent to the 

power of backward and forward errors, i.e., 
b 2

m mP E | (n) | =  b and 
f 2

m mP E | (n) | =  f , we can 

easily see that these powers are equal (Property 4): 

 

( ) ( )b b f f

m m m mP tr (n 1) tr (n) P= − = =R R  (31) 

 

4 Simulation Results 

Using computer simulations, the properties of the 

lattice-Hammerstein filter derived in previous parts are 

inspected. The input is a colored Gaussian signal 

generated by an FIR filter defined by h=[0.9045  0.7  

0.9045] whose input is  zero-mean white Gaussian 

noise. The results are averaged over 100 independent 

trials. The number of input samples is 1000. In the first 

experiment, the noise variance is 0.0248, the degree of 

nonlinearity of Hammerstein is P=2, and the number of 

stages (memories) is M=10. To verify equations Eq. 

(31), Eq. (17), Eq. (18), and Eq. (19), power of forward 

and backward errors are depicted in Figs 4 (a), (b) and 

(c). In agreement with Eq. (19), Fig. 4 (a) shows that 

backward errors of different stages are orthogonal, and 

thus, nonzero at the same stages and zero elsewhere. 

Also, from Fig. 5 (b), it is seen that in accordance to Eq. 

(31), the power of forward and backward errors of 

similar stages are identical. Moreover, Fig. 5 (c) shows 

that forward/backward errors are orthogonal to the input 

signal as proved in Eq. (17) and Eq. (18). 
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In the second experiment, the effect of nonlinearity on 

the derived results is investigated. This is carried out by 

changing P from 2 to 6. As shown in Fig. 5 (a), forward 

and backward errors powers are again identical. 

Moreover, if we compare Fig. 4 (b) with Fig. 5 (b), it is 

observed that the latter powers are the same for different 

degrees of nonlinearities, i.e., P=2 & 6. This may by 

justified by noting the fact that in both experiments the 

same input signal is applied, and therefore, higher 

degrees of nonlinearity are not effectively involved in 

the signal modeling process. This has been led to very 

close error powers. 

 

 

 

 

(a) 

 

(b) 

 

 

 

 
(c) 

Fig. 4 Properties of  lattice-Hammerstein coefficients for P=2, M=10, and variance of 0.0248, (a) orthogonal property of backward 

errors, (b) power of forward & backward errors,  and (c) orthogonal property of forward/backward errors to the input signal. 

 



Eghtedari & Kahaei: Development of Nonlinear Lattice-Hammerstein Filters for Gaussian Signals 7 

In the third experiment, the role of the number of 

memories, M, (stages) and the input energy are studied. 

In this case, we have P=2, and M changes from 10 to 7. 

Figs 6 (a), (b) and (c) shows the results for the input 

variance of 0.0248. Fig. 6 (a) once more confirms Eq. 

(31). Also, due to the orthogonal property of backward 

errors shown in Fig. 6 (c), as proved in Eq. (19), each 

lattice module acts separately [17]  in the sense that the 

outputs of each stage are only determined by the 

coefficients and inputs of the same stage. 

 

 

 

 
(a) 

 

(b) 

 

Fig. 5 Properties of lattice-Hammerstein coefficients for P=6, M=10, and variance of 0.0248, (a) power of forward & backward 

errors and (b) orthogonal property of backward errors. 

 

 

To see the effect of the input energy on the filter 

performance, the noise variance is increased to 2.48. It 

is seen that the previous properties observed in Figs 6 

(b) and (d) still remain. From Figs. 6 (b) and (d) 

compared to Figs 6 (a) and (c), we can see that, as 

expected, the errors energies in accordance to inputs 

energy have been increased. 

To more investigate the correlation effect on the 

coefficients, in the forth experiment, we have generated 

a less correlated signal with a variance of 2.48, while 

the other conditions are similar to those of the previous 

experiment. Comparing Figs 7 (a) and (b) with Figs 6 

(b) and (d) previous results are confirmed. 

 

 

 

 

(a) 

 
(b) 
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(c) 

 

 
(d) 

Fig. 6 Properties of  lattice-Hammerstein coefficients for P=2, M=7, and variance of 0.0248 (a & c), and variance of 2.48 (b & d), 

(a), (b) power of forward & backward errors, and (c), (d) orthogonal property of backward errors. 

 

 

 

 

 
(a) 

 

(b) 

 

Fig. 7 Properties of lattice-Hammerstein coefficients for P=2, M=7, and variance of 2.48 for a less correlated signal, (a) power of 

forward & backward errors and (b) orthogonal property of backward errors. 

 

 

4 Conclusions 

The nonlinear lattice-Hammerstein filter was developed. 

In this regard, the forward and backward Hammerstein 

prediction-error filters and the corresponding 

relationships were analytically derived. Various 

properties of the lattice-Hammerstein filter were proved. 

It was shown that the powers of forward and backward 

error signals are identical and orthogonal to the input 

signal and backward errors of different stages are 

orthogonal to each other. All the theoretical results were 

verified using extensive computer simulations. The 

computational burden of the proposed filter is much less 

than that of the lattice-Volterra filter. This makes the 

lattice-Hammerstein filter a reasonable candidate for 

nonlinear modeling problems. 
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