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Abstract: Anisotropic media appear regularly in electromagnetic wave engineering. The 

finite-difference time-domain (FDTD) method is a robust technique to model such media. 

However, the value of the time step in the FDTD algorithm is bounded by the Courant-

Friedrichs-Lewy (CFL) condition. In this paper, a simple analytical approach is developed 

using the Gershgorin circle theorem to derive a point-wise closed-form relation for the CFL 

condition in bounded inhomogeneous anisotropic media. The proposed technique includes 

objects of arbitrary shapes with straight, tilted, or curved interfaces located in a 

computational space with uniform or adaptive gridding schemes. Both axial and non-axial 

anisotropies are considered in the analysis. The proposed method is able to investigate the 

effect of boundaries and interfaces on the stability of the algorithm. It is shown that in the 

presence of an interface between two anisotropic media, the von-Neumann criterion is not 

able to predict the stability bound for specific ranges of the permittivity tensor components 

and unit cell aspect ratios. Exploiting the proposed closed-form formulations, it is possible 

to tune the CFL time step and avoid the temporal instability by the wise selection of the 

gridding scheme especially in curved boundaries where subcell modelings such as Yu-

Mittra formalism are applicable. Some illustrative examples are provided to verify the 

method by comparing the results with those of the eigenvalue analysis and time-domain 

simulations. 
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1 Introduction1 

NISOTROPIC media appear in both microwave 

and optical structures [1-3]. They are exploited in 

microstrip lines [4], impedance surfaces [5], holey 

fibers [6], antennas [7], absorbers [8], and much more 

applications. Modeling the electromagnetic wave 

propagation in anisotropic media lacking canonical 

shapes is challenging because in an anisotropic material 

the permittivity/permeability is a tensor and hence the 

field vectors and the flux densities are not aligned. One 

of the most robust techniques to model wave 
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propagation in complex media is the finite difference 

time domain (FDTD) method [9], which has been 

applied to anisotropic media as well. Modeling the 

anisotropy in the FDTD algorithm requires a specific 

spatial field interpolation to associate the non-aligned 

field vectors [10]. 

   One of the challenges of the FDTD method is its 

temporal instability. The well-known von-Neumann 

criterion determines the upper stability bound on the 

FDTD time step in unbounded isotropic media using a 

spectral domain technique [11]. Consider a two-

dimensional computational space filled by an isotropic 

medium, and discretized into unit cells of sizes ∆𝑥×Δ𝑦. 

Then, the von-Neumann analysis yields 
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which is called the Courant-Friedrichs-Lewy (CFL) 

condition in unbounded isotropic media [11]. The 

parameters ε and μ are the electric permittivity and 

magnetic permeability of the medium, respectively. If 

the time step exceeds that of (1) the temporal instability 

will emerge. Although unconditionally stable FDTD 

methods do not suffer from the CFL limit, the numerical 

dispersion increases remarkably with the time step [12, 

13], and hence in many practical applications where the 

accuracy cannot be compromised for efficiency, the 

conventional leapfrog FDTD algorithm is preferred. 

   There are some reports on the stability analysis of the 

FDTD in unbounded isotropic dispersive and lossy 

media using von-Neumann and Routh-Hurwitz 

techniques [14-18]. However, there are few works 

dealing with the effect of boundaries and interfaces on 

the CFL condition. The common practice in studying 

the FDTD stability in bounded media is to derive the 

iteration matrix, that associates the fields at two 

consecutive time steps, and then to calculate the 

eigenvalues of the matrix [19]. If they lie on/inside the 

unit circle the algorithm is stable. However, the size of 

the iteration matrix increases tremendously with the 

FDTD grid size, and the derivation of the eigenvalues in 

practical large-scale grids becomes prohibitive. 

Reference [20], inspired by the theory of dynamical 

systems, studies the CFL condition in a PEC-enclosed 

space including nonlinear circuit elements using the 

concept of numerical energy. However, the effect of 

interfaces between the media on stability is not 

investigated. In addition, the CFL time step is derived 

from a cumulative addition of the elemental energies 

over the space, and hence the method is not able to find 

the point which has the most restrictive effect on the 

stability. In [21] a state-space-based approach is utilized 

to determine the maximum allowed time step in an 

inhomogeneous medium and it is shown that the derived 

time step for a finite medium is less stringent than the 

CFL condition of the corresponding unbounded 

medium. This is performed by deriving a closed-form 

relation for the singular values of a tridiagonal matrix. 

However, the approach cannot be generalized to 

anisotropic media. In [22] the CFL condition is 

investigated in the presence of two one-dimensional 

elastodynamic media using Gershgorin circle theorem. 

It is shown that for some ranges of the elastic material 

properties the CFL limit imposed by the interface is 

more restrictive than those of the surrounding media. 

Following [22], we applied the Gershgorin theorem for 

the first time to the electromagnetic wave propagation at 

the interface between two one-dimensional simple 

dielectrics in [23]. Furthermore, we studied the effect of 

PEC, PMC, and PEMC boundaries on the stability 

bound of the FDTD method in the free space using a 

Fourier-based spectral domain technique. Utilizing the 

Gershgorin theorem, [24] extends the work in [23] to 

study the stability problem in the two-dimensional free 

space with a graphene sheet imported to the domain. In 

both [23] and [24] it is observed that the interfaces and 

boundaries introduce no further restriction to the CFL 

condition of the surrounding media. 

   Some contributions have addressed the problem of 

stability in the presence of anisotropic media. There is a 

report which utilizes dual lattices in an anisotropic space 

to construct a reciprocal conformal FDTD 

algorithm [25]. This in turn will avoid the late-time 

instabilities if the time step is chosen within the 

permitted range. In [26] two overlapped schemes are 

used to stabilize the algorithm topologically, and the 

stability analysis is performed via numerical calculation 

of the eigenvalues of the iteration matrix. In that work, 

the topological instability is avoided by suppressing the 

interpolations and extrapolations at the interfaces, and 

the temporal instability is not studied. In [27] reciprocal 

interpolation of non-aligned field components is utilized 

to avoid late-time instability. In [28], a complex  -

plane analysis is carried out to check the causality and 

hence the dynamic stability of anisotropic PMLs. It is 

shown that the Cartesian PMLs do not allow dynamic 

instability. However, at cylindrical and spherical PMLs 

instability may arise. Up to the author’s knowledge, in 

all works dealing with the stability of the FDTD method 

in anisotropic media, no closed-form derivation exists 

for the CFL limit, and the maximum permitted time step 

is determined numerically. 

   The contribution of this paper is the derivation of a 

closed-form CFL time step in a generic inhomogeneous 

axial or non-axial anisotropic medium of arbitrary shape 

in an FDTD grid which can use an adaptive meshing 

scheme. The upper bound is derived point by point and 

hence it is able to find the points or portions of the space 

which are responsible for any possible instability. In 

Section 3, using the Gershgorin circle theorem, the 

permitted range for the eigenvalues of the iteration 

matrix of the FDTD algorithm is determined. Then a 

sufficient upper bound imposed on the time step is 

derived in an axial anisotropic medium. The derivation 

is performed for a homogeneous anisotropic medium, 

two homogeneous anisotropic media with a flat 

interface, and a generic inhomogeneous anisotropic 

medium with an arbitrary permittivity profile. In 

Section 3 the proposed theory is generalized to the non-

axial anisotropic media. In Section 4 the eigenvalue 

analysis of the iteration matrix and time-domain 

simulations are conducted to validate the proposed 

theory. Among the simulations, the stability behaviors 

of homogeneous and inhomogeneous anisotropic 

cylinders whose boundaries are approximated by 

staircasing and Yu-Mittra formalism are investigated. 

Finally, in Section 5 the conclusions are provided. 

 

2 The Proposed Method 

   A two-dimensional computational space for the TE 

mode is depicted in Fig. 1, where the field components 

are restricted to Ex, Ey, and Hz. The space is enclosed by 
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Fig. 1 The TE computational space enclosed by a PEC 
 

boundary and filled with an anisotropic medium. 

 

a PEC boundary and is filled with a passive lossless 

electric-anisotropic medium. Assume that the medium is 

an axial anisotropic material that has only diagonal 

tensor components. The non-axial anisotropic media 

with non-diagonal tensor components will be studied in 

Section 3. The permittivity values are considered to 

have real positive and nonzero values. In this case, the 

permittivity tensor will be as follows 
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   The magnetic permeability of the medium is assumed 

to be the scalar μ throughout the paper. The anisotropic 

nature of the domain does not affect the TM mode since 

in that case, the electric field component is 

perpendicular to the plane of the electric anisotropy (xy 

plane). Therefore, a TM mode is not influenced by the 

anisotropy of the electric-anisotropic medium 

characterized by (2). In this paper, only the TE mode is 

studied. The dual problem of a TM mode in a magnetic 

anisotropic medium can be treated in a similar manner. 

The problem can be generalized to three-dimensional 

spaces in a straightforward manner. 

   The anisotropic materials are assumed to be non-

dispersive. If the frequency band of interest is far 

enough from the resonance frequencies, the permittivity, 

and permeability exhibit a nearly flat behavior and 

hence they can be approximated by constant values. 

Therefore the results presented in this paper are valid 

for flat or nearly flat permittivities and permeabilities. 

However, the proposed theory is able to be generalized 

to dispersive media which is a topic of our future 

research. 

   The TE Maxwell equations in inhomogeneous axial 

anisotropic media are as follows 
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where κxx = 1/εxx and κyy = 1/εyy are the components of 

the impermittivity tensor. 

   Taking the time derivative of (3c) and substituting 

(3a) and (3b) into the resulting equation yields the 

second-order wave equation for Hz in the 

inhomogeneous anisotropic medium as 
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   Note that the space derivatives of κxx and κyy are taken 

into account since the media are generally assumed to 

be inhomogeneous. From (3) and Fig. 1, the sampling 

indices are Ex(i,j+1/2), Ey(i+1/2,j), Hz(i,j), κxx(i,j+1/2), 

and κyy(i+1/2,j). Therefore, sampling (4) in the FDTD 

grid yields 
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Following [22], (5) is rewritten as 
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where Hz is a vector containing all the samples of Hz in 

the computational domain, and I and O are the identity 

and zero matrices, respectively. 

   From (7), in a stable algorithm all eigenvalues of the 

iteration matrix B must lie within the unit circle, i.e. 

|λB|≤1. Using simple algebraic manipulations, it can be 

shown that this is identical to |λA| ≤ 2 [22]. By the use of 

the Gershgorin circle theorem, one can estimate the 

permitted regions for the eigenvalues of a matrix in the 
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complex plane. According to this theorem, the 

eigenvalues of a matrix lie within circles whose centers 

are the diagonal entries of the matrix, and whose radii 

are the sum of the absolute values of the non-diagonal 

entries of the corresponding row [29]. In other words 
 

,i ii ij

j i

a a


   (8) 

 

   As a proof of concept, in the following, we consider 

three basic examples: a homogeneous anisotropic 

medium, two homogeneous anisotropic media with a 

flat interface, and an inhomogeneous anisotropic 

medium. 

 

2.1 A Homogeneous Anisotropic Medium 

   Fig. 1 illustrates a homogeneous anisotropic medium 

with nine Hz nodes. The anisotropic medium is 

represented by κxx and κyy. The impermittivities are zero 

in the PEC region. From (5), (6), and (7), the matrix A 

for this configuration can be derived. If the nine Hz 

nodes are numbered from left to right, and from bottom 

to top, the matrix A9×9 is obtained as 
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where the diagonal entries are the sum of the non-

diagonal entries of their corresponding row subtracted 

from 2. 

   The fifth row pertains to the central node in Fig. 1. 

Applying the Gershgorin theorem to this row and upon 

using (6), one obtains 
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   It can be shown that all the eigenvalues of A are real 

values [29]. On the other hand, to ensure stability, the 

eigenvalues of A must lie within a circle of radius 2, i.e. 

|λA| ≤ 2. Hence from (10), the CFL condition for the 

anisotropic medium is obtained as 
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   Since the CFL time step in (11) corresponds to the 

central node, whose adjacent Ex and Ey nodes are all in 

the same medium, it represents the CFL condition in an 

unbounded homogeneous anisotropic medium. 

Assuming κxx = κyy =1/𝜀, (11) reduces to (1), which is 

the CFL condition in isotropic media. Other rows of the 

matrix pertain to the Hz nodes adjacent to the PEC 

boundaries, i.e. boundary nodes. Applying the 

Gershgorin theorem to those rows yields upper bounds 

for ∆t which are not as restrictive as (11). This is due to 

the fact that some terms in the denominator of the time 

step will vanish and the resulting CFL condition will be 

larger than (11). Particularly, the edge nodes yield more 

relaxed CFL conditions than other boundary nodes. 

Therefore the CFL constraint given by (11) is the 

determinative CFL condition across the entire domain. 

   It is important to note that the Gershgorin theorem 

guarantees that the time step (11) falls inside the 

permitted values of the time steps. In other words, (11) 

gives a sufficient condition for stability. However, the 

actual permitted time step of the time marching 

algorithm ∆tmax may be slightly larger than (11). As we 

will observe in the results section, ∆tmax converges to 

∆tCFL as the grid size increases. This is in agreement 

with the results obtained for the finite isotropic media 

[21, 23]. In the proposed method it is not possible to 

study analytically the effect of grid size on the 

maximum permitted time step and hence this task is 

performed numerically. 

 

2.2 Two Homogeneous Anisotropic Media with a Flat 

Interface 

   Fig. 2 illustrates two homogeneous anisotropic media 

with a flat interface. The left and right media are 

represented by the permittivity tensors ε1 and ε2, 

respectively. Assume a uniform mesh across the entire 

domain. 

From (11), the CFL time steps for the left and right 

media are 
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Fig. 2 The TE computational space enclosed by a PEC 
 

boundary and filled with two homogeneous anisotropic media. 
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   Here we are interested in the CFL condition imposed 

by the interface. Deriving the matrix A18×18 from (6) and 

(7), and applying the Gershgorin theorem to the row 

pertaining to the node n, which is the Hz  node adjacent 

to the interface, one obtains the following CFL 

condition 
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int

1 2 2

2 2
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2

CFL

yy yy xx
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   The CFL condition pertaining to the node n' is equal 

to ∆tCFL1, since the four electric field nodes surrounding 

n' are all located inside medium 1. 

   The CFL time steps in (12) are the bounds imposed by 

the two media regardless of the interface, while (13) is 

the bound imposed by the interface. The most restrictive 

one is equal to the minimum of the three time steps. 

Note that applying the Gershgorin theorem to the nodes 

adjacent to the PEC boundaries yields more relaxed 

conditions and hence they are not determinative. 

If κxx1 ≤ κxx2 and κyy1 ≤ κyy2, or κxx1 ≥ κxx2 and κyy1 ≥ κyy2, 

it is easy to show that 
 

 CFLint CFL1 CFL2min , ,t t t     (14) 

 

   Therefore, in this case, the CFL time step imposed by 

the interface is not determinative. If κxx1 ≥ κxx2 and κyy1 ≥ 

κyy2, the medium 1 offers the most restrictive CFL 

condition. Conversely if κxx1 ≤ κxx2 and κyy1 ≤ κyy2, the 

medium 2 offers the most restrictive CFL time step. If 

κxx1 ≥ κxx2 and κyy1 ≤ κyy2, the smallest time step is among 

∆tCFL1 and ∆tCFL2. It is easy to show that ∆tCFL2 is the 

most restrictive time step when 
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where ∆y/∆x is the unit cell aspect ratio. If (15) is not 

satisfied, ∆tCFL1 will be the most restrictive time step. If 

κxx1 ≤ κxx2 and κyy1 ≥ κyy2, the smallest time step is among 

∆tCFL1 and ∆tCFLint. For the following inequality 
 

2 1

1 2

2 xx xx

yy yy

y

x

 

 




 
 (16) 

 

the time step ∆tCFL1 is the most restrictive one. 

Otherwise, ∆tCFLint will be the determinative CFL time 

step across the entire space. This is an important result 

and shows that in this case the von-Neumann criterion, 

which does not take the effect of the interface into 

account, is not able to predict the stability bound. 

Table 1 summarizes the results. 

It is useful to study the stability behavior of isotropic 

media at their interface as a special case of anisotropic 

media. It is obvious that when κxx1 = κyy1 = κ1 and κxx2 =

Table 1 The CFL conditions in axial anisotropic media 

depicted in Fig. 2 for different impermittivities and unit cell 
 

aspect ratios. 

Condition 1 Condition 2 
The CFL Time 
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--------------------------- ΔtCFL2 

κxx1 ≥ κxx2 

κyy1 ≥ κyy2 
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κyy2 = κ2, (12) reduces to the well-known CFL relation in 

isotropic media. As stated above, in anisotropic media 

four relations can be defined between the four quantities 

κxx1, κxx2, κyy1, and κyy2, which are expressed in Table 1, 

column 1. For isotropic media there are only two 

relations: κ1≥ κ2 and κ1≤ κ2, which from (12) and (13), 

denote that the most restrictive CFL condition pertains 

to the medium 1 and medium 2, respectively. In the 

presence of isotropic media, the conditions expressed in 

the last four rows of Table 1 are no longer meaningful. 

In agreement with this fact, the expressions in the 

second column pertaining to the unit cell aspect ratios 

become imaginary. Hence the interface between two 

isotropic media has no restrictive effect on the CFL 

condition of the grid, and the medium with the largest 

impermittivity determines the CFL condition across the 

entire domain. 

 

2.3 An Inhomogeneous Medium 

   In this part, we generalize the problem and consider 

an inhomogeneous anisotropic medium with a 

permittivity tensor gradually varying with the position. 

When modeling this medium in the FDTD algorithm, 

the gradual variation in the permittivity will be 

discretized into permittivity jumps in the grid. Fig. 3 

shows a small portion of this medium in the 

computational grid. Each color denotes a different 

amount of permittivity tensor. A special category among 

inhomogeneous media that usually encounters in 

practical applications is a heterogeneous medium, i.e. a 

finite number of homogeneous objects. 

   If the inhomogeneous medium depicted in Fig. 3 is 

isotropic, from the results discussed above one 

concludes that the unit cell (pixel) with the largest 

impermittivity κ (the smallest permittivity 𝜀) imposes 

the most restrictive CFL condition on the whole grid.
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(17) 

 

 
Fig. 3 A portion of the computational space sampling an 
 

inhomogeneous anisotropic medium. 

 

Now we turn back to the problem of anisotropic media. 

To make the problem more general, a non-uniform 

gridding scheme is assumed. In this case, ∆x and ∆y are 

functions of the position. Then, applying the Gershgorin 

theorem to a generic Hz node located at (i,j), CFL 

condition (17) is obtained, which generally varies over 

the grid nodes. The impermittivities located inside the 

PEC boundaries are set to zero. To determine the most 

restrictive CFL condition it is enough to find the 

minimum value of the time steps in (17) over the entire 

domain, i.e. 
 

  CFL CFL
,

min , ,
i j

t t i j    (18) 

 

   Remind that the actual permitted time step ∆tmax of the 

grid may be slightly larger than the CFL time step given 

by (18). As the grid size increases, ∆tmax converges to 

(18). In the literature, ∆tmax in a bounded computational 

space is generally determined by a tedious numerical 

treatment of the eigenvalues of the iteration matrix [19]. 

For a grid size of M×N, the size of the iteration matrix 

will be MN×MN which increases tremendously with the 

size of the grid. Consequently, for practical applications 

determining ∆tmax is very time-consuming. Instead, (17) 

and (18) rapidly give ∆tCFL as a very close 

approximation of ∆tmax, where for large grid sizes the 

two time steps will converge. Equation (17) is a point-

wise relation and hence can detect the point which 

imposes the most restrictive CFL condition and may be 

a potential source of instability. This is particularly 

useful in studying the stability in flat, tilted, or curved 

interfaces. 

 

3 Generalization of the Theory to Non-Axial 

Anisotropic Media 

   We now assume that the electric permittivity is a non-

axial tensor, i.e. 
 

0 ,

r r
xx xy xx xy

r r
yx yy yx yy

   


   

  
    

    

ε  (19) 

 

   This tensor arises when the FDTD grid is not aligned 

with the principal axes of the anisotropic medium. 

Assuming that the medium is reciprocal, it can be 

shown that the non-diagonal entries are equal, i.e. εxy = 

εyx [2]. However, their location in the staggered FDTD 

grid is different; and hence different notations are used 

to represent them. This is important in inhomogeneous 

and heterogeneous media. In a reciprocal non-axial 

anisotropic medium the coordinate system can be 

aligned with the principal axis of the medium and hence 

the dielectric tensor becomes axial [2]. However, in a 

computational space, several non-axial anisotropic 

media with different principal axes may exist. In this 

case, it is not possible to align the FDTD grid with all 

principal axes. 

   In non-axial media the TE Maxwell equations are  
 

   , , ,x z z

xx xy

E H H
x y x y

t y x
 

  
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  
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1
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EEH
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   
 (20c) 

 

where κxy and κyx are the non-diagonal components of 

the impermittivity matrix. Following a similar 

procedure as in Section 2, the following wave equation 

is obtained 
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(21) 

 

   From (20), and following the gridding scheme in 

Fig. 1, the locations of the non-diagonal components are 

κxy(i,j+1/2) and κyx(i+1/2,j). Hence, using the central 

differencing and performing a spatial interpolation from 

four neighboring nodes to associate the non-collocated 

field components, the finite difference form of (21) can 

be cast in the following form 
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(22) 

 

where the coefficients are given in Appendix A. 

Applying the Gershgorin theorem to (22) yields the 

following CFL bound in a generic inhomogeneous non-

axial anisotropic medium 
 

 CFL
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t i, j

2
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4 x x y y x x y yD D D D D D D D D
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(23) 

 

where D1, D+
x, D−

x, D+
y, and D−

y are shown in Appendix 

A. In (23) the unit cell dimensions can be functions of 

the position. The most restrictive CFL time step is equal 

to the minimum of (23) over the entire space. In a PEC 

boundary, the values of impermittivities are set to zero. 

   For a special case of a homogeneous medium, (23) 

reduces to 
 

CFL
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   From (24) it is clear that due to the presence of 

nonzero cross components (κxy and κyx) the CFL time 

step in a non-axial anisotropic medium is smaller than 

that of an axial anisotropic medium given by (11). For a 

reciprocal homogeneous medium, in which κxy = κyx , 

(24) reduces to 
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(25) 

 

Assume that the materials in Fig. 2 are two non-axial 

reciprocal media. Applying (23) to the node n, adjacent 

to the interface, the CFL time step at the interface is 

determined which is a piecewise function due to the 

existence of absolute values in the denominator of (23). 

For κxy1 = κxy2 = κxy it is 
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For κxy1 ≠ κxy2 and ∆y/∆x ≤ 2κxx2/|κxy2–κxy1| it is equal to 
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(27) 

For κxy1 < κxy2 and ∆y/∆x ≥ 2κxx2/(κxy2 - κxy1) it becomes 
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Finally, for κxy1 > κxy2 and ∆y/∆x ≥ 2κxx2/(κxy1–κxy2) it 

equals to 
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(29) 

 

   Following the procedure in Section 2.2, one can 

compare the values of ∆tCFLint, ∆tCFL1, and ∆tCFL2 and 

derive the closed-form relations for the pertaining 

conditions. However, several conditions and 

formulations arise which are not reported here for 

brevity. 

 

4 Results and Discussion 

   In this section, some examples of electromagnetic 

wave propagation in anisotropic media are studied as 

proofs of concept. In the verifications, homogeneous 

and inhomogeneous media and also axial and non-axial 

permittivity tensors are considered. 

 

4.1 A Homogeneous Axial Anisotropic Medium 

   The configuration under study is similar to Fig. 1 with 

a 10×10 grid size. Assume that εr
xx = 2, and εr

yy = 3 are 

the relative permittivities of the medium, and dy = dx = 

2 μm are the cell sizes. After derivation of A, the 

eigenvalues of the iteration matrix B are calculated. 

Fig. 4 depicts the eigenvalues of B for several values of 

the time step. The eigenvalues are complex conjugate 

and hence it is enough to depict them in the upper 

semicircles. From Fig. 4(a) when the time step is 

smaller than or equal to the CFL limit, the eigenvalues 

of the iteration matrix are located on the unit circle. For 

very small time steps, the eigenvalues shrink to a region 

on the circle which is close to 1. As the time step 

increases, they distribute around the circle. As it is 

observed from Fig. 4(b), for the time steps larger than 

the CFL limit real eigenvalues emerge; half of which 

are inside the circle and other half are outside the circle 

resulting in instability. The absolute values of the real 

eigenvalues outside the unit circle increase with the time 

step, and hence the instability occurs earlier. 

   In small size grids, the maximum allowable time step 

∆tmax obtained from the eigenvalue analysis is slightly 

larger than the CFL limit ∆tCFL given by (11). However, 

as the grid size increases ∆tmax rapidly converges to 

(11). Table 2 shows the ratio ∆tmax/∆tCFL for the 

configuration given in Fig. 1. It is assumed that the 

numbers of the cells in both directions are equal, i.e. M 

= N. For M ≥ 12, ∆tmax reduces to ∆tCFL. It is evident that
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(a) (b) 

Fig. 4 The eigenvalues of B in a homogeneous anisotropic medium for a) ∆t/∆tCFL = 0.1, and ∆t/∆tCFL = 1 and b) ∆t/∆tCFL = 1.02 and 
 

∆t/∆tCFL = 1.05. 

 
Table 2 The Ratio Δtmax/ΔtCFL as a function of the grid size. 

M Δtmax/ΔtCFL M Δtmax/ΔtCFL 

5 1.05 11 1.01 

6 1.03 12 1.00 

7 1.02 13 1.00 

8 1.01 14 1.00 

9 1.01 15 1.00 

10 1.01 16 1.00 
 

(In all plots dx = 1 𝛍m) 

  
(a) (b) 

 

  
(c) (d) 

  
(e) (f) 

Fig. 6 The eigenvalues of B in a space including two axial 

anisotropic homogeneous media with a flat interface; a) ∆t = 

∆tCFL2, b) ∆t = ∆tCFLint, (In (a) and (b): 𝛆r
xx1 = 4, 𝛆r

yy1 = 3, 𝛆r
xx2 = 

2, 𝛆r
yy2 = 1, and dy = dx), c) ∆t = ∆tCFLint, d) ∆t = ∆tCFL1, (In (c) 

and (d): 𝛆r
xx1 = 2, 𝛆r

yy1 = 3, 𝛆r
xx2 = 1, 𝛆r

yy2 = 6, and dy = 2dx), e) 

∆t = ∆tCFL1, and f) ∆t = ∆tCFLint, (In (e) and (f): 𝛆r
xx1 = 2, 𝛆r

yy1 = 3, 
 

𝛆r
xx2 = 1, 𝛆r

yy2 = 6, and dy = 3dx). 

Fig. 5 An anisotropic cylinder embedded in free space. An 
 

adaptive gridding scheme is used. 

 

in practical applications, the grid size is usually much 

larger than those given in Table 2. 

 

5.2 Two Homogeneous Axial Anisotropic Media with 

a Flat Interface 

   Assume that the space shown in Fig. 2 is sampled with 

a 20×20 grid. The media have axial anisotropic tensors. 

Half of the nodes are inside medium 1, and the other 

half is inside medium 2. To verify the results shown in 

Table 1, the simulations are performed for various 

values of the impermittivities and unit cell aspect ratios, 

and the eigenvalues are depicted in Fig. 5. For each 

case, the eigenvalues of the iteration matrix B are 

computed for the two smallest CFL limits among the 

three limits given in (12) and (13). As it is observed, the 

results follow the predictions of Table 1. In Fig. 5(d) the 

time step is equal to the smaller CFL time step among 

∆tCFL1 and ∆tCFL2. However, the algorithm is unstable 

since the aspect ratio of the unit cells is selected such 

that the determinative factor is the CFL limit imposed 

by the interface. In this case, it is evident that the von-

Neumann criterion cannot predict the minimum CFL 

time step over the computational space. 

 

5.3 An Axial Anisotropic Cylinder 

   Fig. 6 depicts a homogeneous axial anisotropic
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(a) (b) 

  
(c) (d) 

Fig. 7 The magnetic field Hz as a function of time in the presence of an axial anisotropic cylinder; a) ∆t = ∆tCFL, b) ∆t = 1.01∆tCFL, 

((a) and (b) pertain to the homogeneous cylinder), c) ∆t = ∆tCFL, and d) ∆t = 1.01∆tCFL, ((c) and (d) pertain to the inhomogeneous 
 

cylinder). 

 

 

 
(a) (b) 

Fig. 8 a) ∆tCFL as a function of the cylinder radius for different values of 𝛆c and b) ∆tCFL as a function of 𝛆c for different values of the 
 

cylinder radius. 

 

cylinder of radius 15μm with εr
xx = 8, and εr

yy = 12, 

which is embedded in free space. The cylinder is located 

at the center of a 60μm×60μm computational space. An 

adaptive gridding scheme is used to refine the details in 

modeling the cylinder. In the cylindrical region dx = dy 

= 1 μm, and in the surrounding space three types of unit 

cells are used to model various regions: dx = dy = 2μm, 

2dx = dy = 2 μm, and dx = 2dy = 2 μm. These regions 

can be distinguished in Fig. 6. A staircase 

approximation is utilized to model the curved 

boundaries. 

   From (17) and (18), the CFL time step is computed as 

∆tCFL = 2.36 Femtoseconds, which pertains to the region 

inside the free space with the smallest unit cells. The 

space is excited at (x,y) = (50 μm,50 μm) by the 

Gaussian pulse exp[−(t-t0)2/τ], where τ = 3.6t0. Fig. 7(a) 

and Fig. 7(b) depict the magnetic field Hz at (x,y) = 

(20 μm,20 μm). For ∆t = ∆tCFL, the field is computed for 

100000 time steps which clearly remains stable. 

However, for ∆t = 1.01∆tCFL the instability emerges 

after a few hundred time steps. 

   Now we assume that the cylinder depicted in Fig. 6 is 

an inhomogeneous axial anisotropic cylinder with the 

permittivity components defined by 
 

2 21 cos 1 sin
,       , 

2 1

r r

xx c yy
r r

 
  

 
 

 
 (30) 

 

where r (in μm) and φ are the radius and angle in polar 

coordinates, and εc = 10 is a parameter. In this case, 

from (17) and (18) the CFL time step is computed as 

∆tCFL = 1.54 Femtoseconds. Fig. 7(c) and Fig. 7(d) show 

Hz at (x,y) = (20μm,20μm) computed for ∆t = ∆tCFL and 

∆t = 1.01∆tCFL. The waveform is stable for the former 

time step and it is unstable for the latter one. 

   By using the closed-form relation (17), the parametric 

analysis of the bounds on the time steps becomes 

straightforward and rapid. Fig. 8(a) illustrates the CFL 

time step ∆tCFL as a function of the radius of the 

inhomogeneous cylinder for different values of εc. The 

value of ∆tCFL decreases with the radius and increases 

with εc. Fig. 8(b) shows ∆tCFL as a function of εc for
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(a) (b) 

  
(c) (d) 

Fig. 9 The magnetic field Hz as a function of time in a non-axial anisotropic medium; a) ∆t = ∆tCFL, b) ∆t = 1.01∆tCFL, ((a) and (b) 

pertain to the homogeneous medium), c) ∆t = ∆tCFL, and d) ∆t = 1.01∆tCFL, ((c) and (d) pertain to the inhomogeneous 
 

medium). 

 

different values of the radius. For large values of εc, 

∆tCFL approaches constant values. 

 

5.4 Non-Axial Anisotropic Media 

   With reference to Fig. 1, assume a PEC-enclosed 

homogeneous reciprocal non-axial anisotropic medium 

with the relative impermittivity components κr
xx =1/ 5, 

κr
xy = κr

yx = 1/3, and κr
yy = 1/4. The computational space 

is sampled with 21×21 Hz nodes. The unit cell 

dimensions are assumed to be dx = dy = 1 μm. 

From (25) the CFL time step is calculated as ∆tCFL = 

4.25 Femtoseconds. The point (x,y) = (5 μm,10 μm) is 

excited with a Gaussian pulse exp[−(t-t0)2/τ], where τ = 

3.6t0. Fig. 9(a) and Fig. 9(b) depict the magnetic field Hz 

at (x,y) = (10 μm,5 μm). For ∆t = ∆tCFL, the field is 

computed for 100000 time steps which clearly remains 

stable. However, for ∆t = 1.01∆tCFL the instability 

emerges after a few hundred time steps. 

   Now we consider the configuration in Fig. 6 where the 

cylinder is an inhomogeneous non-axial anisotropic 

medium with the following permittivity profile 
 

/ 3 1,   0.5,     / 20 1, r r r r

xx yy xy yxx y xy         
 

(31) 

 

where x and y are in μm and the point (x = 0, y = 0) 

corresponds to the central Hz node. The excitation and 

observation points are the same as in Section 4.3. The 

impermittivity components at the cylindrical boundary 

are modified based on Yu-Mittra subcell modeling [30]. 

Fig. 10 shows a portion of the boundary. In this case, 

the effective impermittivities at the boundary are 
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y y y
i j

y
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where κ0 = 1/ε0, and κxx, κxy, κyx, and κyy pertain to the 

cylinder material. The notation κxx/xy means that (32a) 

holds for both components κxx and κxy. The same 

expression holds for κyx/yy in (32b). The impermittivities 

in (32) are substituted in the CFL condition (23), where 

it yields the CFL time step ∆tCFL = 1.78 Femtoseconds. 

Fig. 9(c) and Fig. 9(d) depict the magnetic field Hz. As 

it is evident, the time domain simulations verify the 

proposed theory. 

 

5.5 Two Homogeneous Non-Axial Anisotropic Media 

with a Flat Interface 

   Assume that the space depicted in Fig. 2 is sampled 

with a 30×30 grid. The media have non-axial 

anisotropic permittivity tensors. Half of the nodes are 

inside medium 1, and the other half is inside medium 2. 

Assume that 3dx = dy = 3 μm, (κr
xx1 = 1/2, κr

xy1 = 10/3, 

κr
yy1 = 1/3) and (κr

xx2 = 1, κr
xy2 = 10, κr

yy2 = 1/6), then 

from (25) and (28) the CFL time steps are calculated as 

∆tCFL1 = 3.43, ∆tCFL2 = 2.39, and ∆tCFLint = 2.22 

Femtoseconds. In this case, the stability is constrained 

by the interface CFL condition. Fig. 11 shows the 

eigenvalues of the computational space calculated for ∆t 

= ∆tCFL2. Although the time step falls within the 

permitted range offered by the von-Neumann condition, 

instability arises in the grid. 

 

6 Conclusion 

   In this paper, we proposed a simple and accurate 

method to derive the stability bounds of the FDTD 

algorithm in a generic inhomogeneous or heterogeneous 

anisotropic medium. The permittivity tensors can be 

either axial or non-axial. The theory is based on the 

Gershgorin circle theorem applied to the wave equation 

in which the permitted regions for the eigenvalues of the 

iteration matrix in the complex plane are determined.



CFL Stability Conditions for the FDTD Method in Bounded 

 
… K. Hosseini 

 

Iranian Journal of Electrical and Electronic Engineering, Vol. 18, No. 2, 2022 11 

 

  

Fig. 10 A portion of the boundary between the non-axial 

anisotropic cylinder and free space modeled by Yu-Mittra 
 

formalism. 

Fig. 11 The eigenvalues of B in a space including two non-axial 

anisotropic homogeneous media with a flat interface for 𝛆r
xx1 = 2, 

𝛆r
xy1 = 0.3, 𝛆r

yy1 = 3, and 𝛆r
xx2 = 1, 𝛆r

xy2 = 0.1, 𝛆r
yy2 = 6. 

 

Assume that 3dx = dy = 3 μm and ∆t = ∆tCFL2. 
 

Then the sufficient stability conditions imposed on the 

time step are derived. The formulations are provided to 

take into account the non-uniform grids and they can be 

also applied to non-rectangular domains since they are 

point-wise relations. The proposed technique was 

studied in several scenarios including homogeneous and 

inhomogeneous axial and non-axial anisotropic media. 

It was revealed that for specific ranges of the 

permittivities and unit cell aspect ratios, the interface 

yields the most stringent CFL time step across the entire 

anisotropic domain, which is not predicted by the von-

Neumann criterion. However, in isotropic media, the 

CFL conditions offered by the interfaces are always 

more relaxed than the CFL conditions of the 

surrounding media. Several proof cases were 

demonstrated to verify the theory including 

homogeneous and inhomogeneous cylinders embedded 

in the free space sampled by adaptive grids. The 

validations were performed utilizing the eigenvalue 

analysis and time-domain simulations. For future works, 

we are working to generalize the proposed technique to 

dispersive media. Also, it is interesting to apply the 

Gershgorin theorem to a PML-enclosed medium. 

Another suggestion is to investigate the stability 

behavior of the unconditionally stable FDTD methods 

in the presence of the boundaries and interfaces using 

the Gershgorin theorem. 

 

Appendix 

   The coefficients of the wave equation (22) are given 

by 
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