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Abstract: One of the major faults in Doubly-Fed Induction Generator (DFIG) is the Inter-

Turn Short Circuit (ITSC) fault. This fault leads to an asymmetry between phases and 

causes problems to the normal state between current lines. Faults diagnosis from non-

stationary signals for the Wind Turbine (WT) is difficult. Therefore, the strategy of fault 

diagnosis must be robust against instability. In this paper, a new intelligent strategy based 

on multi-level fusion is proposed for diagnosis of DFIG inter-turn stator winding fault. 

Firstly, to overcome the non-stationary nature of the vibration signals of the WT, empirical 

mode decomposition (EMD) method is performed in time-frequency domains to extract 

best fault features from information power sensor and information current sensor. 

Moreover, a feature evaluation technique is used for the input of the classifier to choose the 

best subset features. Secondly, Least Squares Wavelet Support Vector Machines (LS-

WSVM) classifier is trained to classify fault types based on feature level fusion (FLF) from 

different sensors. The main parameters of SVM and the kernel function are optimized by 

Genetic Algorithm (GA). Finally, Dempster-Shafer evidential reasoning (DSER) is used for 

fusing the GA-LS-WSVM results based on decision level fusion (DLF) of individual 

classifiers. In order to evaluate the proposed strategy, a DFIG WT test rig is developed. The 

experimental results show the efficiency of the proposed structure compared to other ITSC 

fault diagnosis methods. The results show that the classification accuracy of DSER-GA-LS-

WSVM is 98.27%. 
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1 Introduction1 

IND turbine (WT) generators are often in two 

types Permanent Magnet Synchronous 

Generators (PMSG) and Doubly-Fed Induction 

Generator (DFIG) [1]. Induction generators operate in 

constant and variable speed modes. In the variable 

speed mode, the generator is connected to the grid from 

the stator side directly and from the rotor side indirectly 
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(via a converter) [2, 3]. The under-study WT in this 

paper is a variable speed DFIG. WTs are largely 

installed in marine areas which are not easy to access 

them. Therefore, a continuous Condition 

Monitoring (CM) is necessary for reducing repair and 

maintenance costs [4, 5]. Generally, in induction 

machines including the DFIG, the Inter-Turn Short 

Circuit (ITSC) fault, which damages the insulation of 

windings, is common [6-8]. The ITSC detection 

prevents the expansion of the failure. Faults that are 

related to the stator winding insulation have weak 

signatures in signals and their detection is more difficult 

than another fault [8-11]. Moreover, the variable speed 

of the WT and its unstable dynamics cause disturbances 

and instability in electrical signals. Few researches 

related to ITSC fault in DFIG-based WTs have been 

conducted. However, many researches have been 

conducted about this fault in induction motors [10-14]. 

W 
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Forty percent of the electrical faults in WTs are related 

to the generator, and 40% of these faults are due to 

faults in the stator [6]. Investigating the faults related to 

stator shows that the fault of windings is the most 

important fault in stators. Damage to the insulator 

occurs due to ITSC, and partial discharge takes place 

between stator turns. The inter-turn fault emerges 

largely in the form of some kind of faults, such as coil-

to-coil, phase-to-phase, open-circuit phase, and phase-

to-ground [15]. This fault has little effect on the 

performance of the machine, and therefore, it can hardly 

be observed through performance parameters of the 

WT; however, its development is very costly and causes 

the destruction of the generator. In Table 1, an 

appropriate description of various conditions of fault in 

the stator windings is presented [9-15]. In the previous 

researches, the condition monitoring (CM) of WT based 

on vibration analysis technique has been proposed. The 

vibration analysis technique for ITSC fault is presented 

in [16, 17]. The vibration analysis technique requires 

adding sensors and related data collecting equipment. 

WT control system signals such as electrical signal 

cause a reduction in costs and eliminates the need for 

adding new sensors. In [18], two kinds of methods 

based on current are used. The first method is motor 

current analysis and Park’s vector, the second method is 

a combination of wavelet transform and Park’s vector 

methods. For a WT that does not operate in its 

stationary mode, using the second method is practical 

and reliable. In [19], as a result of investigation and 

analysis, it shown that the motor current analysis based 

on Park’s vector cannot be used for a WT with a non-

stationary signal. Therefore, the adaptive Park’s vector 

method is used for detecting the ITSC in [6] and [20]. A 

method based on ITSC fault modeling for the DFIG is 

presented in [20]. The hybrid (ABC/dq) method is used 

for modeling the DFIG with ITSC fault [6]. In this 

reference, an index using the wavelet analysis is defined 

for ITSC fault; the proposed index was robust against 

changes in operating points, ITSC fault percentage, 

rotor/stator resistance, and the sampling frequency. In 

Ref [21], a method is presented based on measuring the 

rotor side transient current of the DFIG and voltage-

pulse conversion for the asymmetry in rotor/stator 

phases. A method based on FFT analysis of reactive 

power signal is presented for detecting the ITSC fault 

in [22].The ITSC fault for a DFIG is detected by a 

simulation model based on finite element method [23]. 

In the healthy conditions of stator generator, the 

symmetry exists and the angle between phases is 120 

degrees, the corresponding THD is low and the index of 

Park’s vector trajectory is completely circular. Once the 

fault occurs, the THD and phase difference increase, 

and the circular shape of Park’s vector trajectory 

undergo a distortion [24]. The basic model based on 

residual generation is proposed in [25] for ITSC fault 

detection. In this reference, the fault is modeled as a 

sensor using an observer. In [26], artificial neural 

network (ANN) is used for detecting and locating the 

ITSC fault in stator and rotor windings [26]. In [27], the 

inter-turn fault of rotor and stator winding is modeled 

using the magnetic equivalent circuit (MEC) model. The 

method of using the rotor current and coil voltage is 

presented in [28]. In [28], due to equation dependency 

and the proven mathematics in vibration and stator 

current signals, the use of rotor current is recommended. 

The multiple-coupled circuit model approach for stator 

fault in DFIG-based WTs is proposed in [29]. A 

dynamic DFIG state-space model is adopted in the 

presence of ITSC fault in [30]. In this reference, a 

Kalman observer is developed for fault detection based 

on residual generation. In [31], two types of stator 

winding faults in DFIG are investigated. These faults 

include ITSC and winding resistive asymmetrical faults. 

A complete MEC model is presented for modeling these 

two faults in stator winding of DFIG in [7]. Another 

paper based on MEC model is introduced in the [32]. 

In [33], a symmetrical components method is used for 

the detection of insulation faults in a three-phase 

induction motor. 

   In this paper, the main novelty is the presentation of a 

new Condition Based Maintenance (CBM) structure for 

detecting the stator fault of WT generator based on 

multi-sensor data fusion. Some fusion techniques for 

CBM are proposed in recent years. Only a few 

researches are conducted in the realm of WT fault 

diagnosis based multi-sensor fusion strategy. The fusion 

strategy through combining the qualitative and 

quantitative information leads to achieving an extensive 

and deep knowledge about faults. Fusion approaches are 

mainly intended for three purposes; i.e., data 

collaboration, data redundancy, and complementary 

data [34]. Three levels are considered for fusion: data or 

signal, feature and decision [35]. A method based on 

swarm intelligence and Bayesian inference is proposed 

for fusion of WT SCADA data in Ref [36]. The bearing 

fault diagnosis based on data fusion strategy for WTs is 

discussed in Ref. [37]. In Ref [38], WT gearbox CM 

and fault diagnosis are conducted based SCADA input 

signal and multi-sensor information fusion strategy. The 

 
Table 1 Various conditions of fault in the stator windings. 

Action State  

Generator will continue to operate, but for how long? inter-turn short circuit 1 

Generator can continue to operate but for how long? Shorts between coils of the same phase 2 

Generator fails and protection equipment disconnects the supply Phase to phase short 3 

Generator fails and protection equipment disconnects the supply Phase to earth short 4 
Generator may continue to operate, depending on the load conditions Open circuit in one phase 5 
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initial diagnosis is done by Relevance Vector 

Machine (RVM) and for the final decision-making is 

used of D-S evidential reasoning (DSER). For fault 

diagnosis in the planetary gearbox using the feature-

level fusion and wavelet transform used of feature-

extraction has been presented in another research [40]. 

An Artificial Neural Network (ANN) is used the fusion 

method in the feature level In Ref. [40]. For diagnosing 

the fault of the gearbox, the RVM method has been used 

for fusion in feature level of vibration sensors. Feature 

extraction is done by Ensemble Empirical Mode 

Decomposition (EEMD), and determining the main 

parameters of RVM is done by ant colony algorithm. 

   In this study, a hybrid (two-level) fusion strategy is 

presented for diagnosing the ITSC fault. Considering 

the better performance of Support Vector 

Machine (SVM), to ANN methods, this model is used 

for the fusion of feature vectors. In order to improve the 

efficiency of the model, three changes have been made 

to the conventional structure of the model. These 

changes include: 

a) The higher computational load is the main drawback 

of SVM. This weakness is due to its optimization 

programming. The LS version of SVM simplifies 

the problem in such a way that the solution is 

characterized by a linear system. The Least Squares 

(LS) type of SVM model is used for this paper. 

b) Due to the ability of wavelet functions to locally 

analyze and extract features, the conventional kernel 

function, which is Radial Basis Function (RBF), is 

replaced by a Wavelet (W) function. 

c) Based on the practical application requirement of 

SVM, SVM, and the wavelet kernel parameters 

determination and optimization are conducted based 

on genetic algorithm. 

   Therefore in this paper, the first step electrical signal 

such as current and power is collected for fault 

diagnosis. In the second step, feature extraction from 

signals is conducted based on the time-frequency signal 

processing method. The measured electrical signal is 

usually a non-stationary signal. For feature extraction of 

a non-stationary signal, the time domain (RMS, crest, 

peak) or frequency domain (FFT) signal processing 

method is unsuitable. In this paper, the empirical mode 

decomposition (EMD) is used as a powerful signal 

processing method [41]. EMD decomposes a 

complicated signal into a set of intrinsic mode functions 

(IMFs). In this paper, time-domain and frequency-

domain features are extracted from each IMF signal. In 

the third step, a distance evaluation technique [41, 42] is 

applied to reduce the redundant or irrelevant input 

features. In the next step, based on feature-level 

fusion (FLF), initial classification is performed, and 

finally, fault diagnosis analysis is finished by using 

fusion decision level fusion (DLF). The decision stage 

is based on Dempster-Shafer evidential 

reasoning (DSER) algorithm. 

   The paper is organized as follows; the methods of 

signal processing are introduced in Section 2. The 

optimized LS-SVM model with wavelet kernel for 

stator degradation classification is described in 

Section 3. Section 4 is fault diagnosis methodology. The 

case study and experimental setup are presented in 

Section 5. Section 6 is dedicated to discussing the 

results and comparison with other methods and the 

paper is finally concluded in Section 7. 

 

2 Signal Processing 

   This section presents a brief discussion on the EMD 

signal processing method, feature Extraction, feature 

evaluation from the time domain, frequency domain, 

and time-frequency domain of current and power 

signals. The objective of this paper is to construct a new 

structure with high reliability for the diagnosis of WT 

generator ITSC fault, thus the three signals namely 

power output, converter stator-side three-phase current, 

and converter rotor-side three-phase current are chosen 

for signal processing. As stated, the ITSC fault is a 

result of damage to the insulation of the stator winding 

of the generator in areas between the coils [28]. Most of 

the condition monitoring and fault diagnosis methods in 

induction machines are based on current analysis. The 

capability of these methods of fault detection depends 

on the SNR ratio, the load on the machine, and most 

importantly, the performance of the machine in constant 

speed and stationary conditions [28-30]. In the stator 

current signal, Eq. 1 shows the frequency component of 

the fault in the corresponding spectrum [18]. 
 

 1 1st
nf f s k

p
   
  

 (1) 

 

where fst is the frequency component, f1 is the 

fundamental frequency, n = 1, 2, 3, … and k = 1, 3, 5. p 

is the pair pole of DFIG, fractional sliding is denoted by 

s. Based on this equation, the frequency component of 

the fault depends on sliding. In transient state and 

variability condition of WT s is varies [18-19]. 

Therefore, stator fault diagnosis based on the traditional 

signal processing method is difficult. In such conditions, 

it is better to use STFT or EMD for feature extraction, 

but STFT is dependent on the best selection of window, 

thus in this paper, EMS is used for processing of stator 

current, rotor current, and power signals. In the 

following, the presence signature of ITSC fault in rotor 

and power signals is discussed. 

   When exists an asymmetry in the stator-side of the 

DFIG, a negative harmonic component with frequency 

-f1 produces a magnetic field in the stator. This magnetic 

field produces a harmonic component with frequency 

(2–s)f1. If in the frequency domain, the ITSC fault is 

investigated in the rotor current signal, the index of this 

faulty component is the frequency (2K±s)f1 [21, 28]. 

The stator winding has a voltage with constant 

amplitude. This voltage is directly connected to the grid 

and has a frequency equal to f1. Once the ITSC fault in 

the stator occurs, regular positive and negative 
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sequences emerge, which their corresponding frequency 

are f1 and –f1, respectively. Therefore, the voltage of the 

grid or the voltage of the generator stator causes a new 

frequency component 2f1 in active and reactive 

power [22]. This frequency has amplitude two times 

larger than the power control loop and is easily 

observed in the signal. With regard to the fact that 

variations of the instantaneous reactive power are less 

than the instantaneous active power, reactive power 

signal is better for ITSC fault detection. 

 

2.1 EMD 

   EMD method is used for processing non-stationary 

signal and operates the time-frequency domain. This 

technique performs the decomposition of the signal into 

a number of meaningful sub-signal components that 

representing a piece of information [41]. The 

instantaneous frequency and amplitude of each 

component can be estimated after decomposing the 

signal. The basis of the EMD method is the 

decomposition of the signal into a few oscillatory 

functions. These functions are called Intrinsic Mode 

Functions (IMF). The IMF function has to satisfy two 

conditions. The first condition is that in all data sets, the 

number of extrema and the number of passing through 

zero must be equal or has at most one unit difference. 

The second condition is that in every point, the average 

of the envelope defined by local maxima and the 

envelope defined by local minima must be zero. This 

implies the symmetry of IMF around zero. 

Consequently, for calculating the IMF the following 

procedure is performed [41, 42].  

Step1: Determination of all the local extrema of the 

signal, X(t) (including local maxima and minima of the 

signal). 

Step 2: Interpolating the relative maxima and minima 

using the cubic-spline method for obtaining upper and 

lower envelopes of the signal. 

Step 3: Calculating the average envelope from the 

upper and lower envelopes of the signal. 
 

 
   

2

L uX t X t
m t


  

(2) 

 

Step 4: Subtracting the average envelope signal from 

the input signal. 
 

     d t X t m t   (3) 

 

Step 5: Two conditions related to the IM function are 

checked; if they are satisfied IMFi = d(t) and the 

screening procedure finishes, otherwise the procedure 

returns to the first step. 

Step 6: When the calculation of IMF in the fifth step 

finishes, the obtained IMF must be separated from the 

signal, and then, steps 1 up to 5 are performed on the 

remaining signals. 

Step 7: If the remaining signal does not satisfy the two 

initial conditions, the procedure stops. 

   According to Steps 1-7, a signal with IMF is described 

as follows: 
 

     
1

n

i n

i

x t IMF t r t


   (4) 

 

   In Fig. 1, the flowchart of EMD is shown. In this 

paper, the first four IMFs have been used to get time 

and frequency domains features. 
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Fig. 1 EMD decomposition process. 
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2.2 Feature Extraction 

   When a fault occurs in WT, the behavior of electrical 

signals (i.e. current, voltage, and power signals) 

undergoes changes in the time domain. The amplitude 

and frequency spectrum are different from normal 

behavior for the time domain and frequency domain 

signals, respectively. In this paper, each of these signals 

is processed to extract ten time-domain features and ten 

frequency-domain features, as shown in Table 2. In this 

table, each feature based on energy, convergence, and 

position change of the main frequencies are categorized. 

Based on the EMD signal processing method, 20 

indexes are defined for each IMF; therefore, each 

feature vector for each sensor contains 80 samples. 

 

2.3 Best Subset of Features 

   In order to reduce the dimensions of the input matrix 

for a classifier algorithm, among the calculation 

features, a number of characteristics with appropriate 

criteria are chosen. The steps for choosing the best 

feature are as follows based on distance evaluation 

technique [43, 44]: 

Step 1: The mean distance of data that has the same 

situations is calculated (Eq. (5)). 
 

 
   , , ,

, 1

1

1

n

a b a b a b

m g

L p m p g
n n 

 


  (5) 

 

In (5), g ≠ m and its value changes from 1 up to n, 

where n denotes the number of data from a specific 

feature with the same situations (the same fault 

percentage), pa,b denotes the value of the feature, La,b is 

the mean distance of the same situations, a and b are the 

number of parameters and situations, respectively. 
 

,

1

1 M

Fa a b

b

L L
M 

   (6) 

 

 

Table 2 Time-domain and frequency-domain features. 

Frequency domain Time domain 

Description Equation Title Description Equation Title 

Energy 
 

1

K

k
f k

K


 1

f
index  

Amplitude 

and energy 
 

1

N

n
x n

N


 1

t
index  

Convergence 
  

1

2

1

1

K

fk
f k index

K







 2

f
index  

Amplitude 

and energy 
  

2

1

N

n
x n

N


 

2
t

index  

Convergence 
  

 
1

2

3

1

3

K

fk

f

sf k index

K index




 

3
f

index  

Amplitude 

and energy 

 
2

1

N

n
x n

N



 
 
 
 


 

3
t

index  

Position change of the main 

frequencies 

 

 

1

1

K

kk

K

k

f f k

f k








 

4
f

index  

Amplitude 

and energy 
 

1

N

n
x n

N


 4

t
index  

Convergence 
 

4

2

1
( )

K

k fk
f index f k

K




 
5

f
index  

Amplitude 

and energy 
  

3

1

N

n
x n

N


 5

t
index  

Position change of the main 

frequencies 

 

 

4

1

2

1

K

kk

K

kk

f f k

f f k








 

6
f

index  Distribution      max minx n x n
 

6
t

index  

Position change of the main 

frequencies 

 

   

2

1

4

1 1

K

kk

K K

kk k

f f k

f k f f k



 



 
 

7
f

index  Distribution 
  

11

1

N

tn
x n index

N







 7

t
index  

Convergence 
   

 
4

5

3

1

3

K

k fk

f

f index f k

k index




 

8
f

index  Distribution 
2

4

t

t

index

index
 

8
t

index  

Convergence 
   

 
4

5

4

1

4

K

k fk

f

f index f k

K index




 

9
f

index  Distribution 
  

2

max

t

x n

index
 

9
t

index  

Convergence 
   

 
4

5

1/ 2

1

1/ 2

K

k fk

f

f index f k

K index




 

10
f

index  Distribution 
  

4

max

t

x n

index
 

10
t

index
 

f(k): Spectrum k: 1,2,y,…,K; K: Number of spectrum lines; 

fk: Frequency value of the k-th spectrum line. 

x(n): Signal series n: 1,2,…,N; 

N: Number of data. 
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In (6), M represents different situations. 
Step 2: The calculation of the mean distance between 

the data with different situations is performed. 
 

 

 

, ,

, 1

1
; 

1

, 1,2 ,  ;

n

Fa Fa m Fa g

m g

p p
M M

m g n m g

L


 

 








 

 

 
 

(7) 
 

where L'Fa represents the mean distance between the 

data of different situations. Now pFa,b as the mean data 

with identical situations is calculated as (8): 
 

 , ,

1

1 n

Fa b a b

g

p p g
n 

   (8) 

 

Step 3: Selecting a type of feature in which this 

coefficient is larger. 
 

Fa

Fa

L

L
 


 (9) 

 

where β is a threshold, so the best features are selected 

based on the bigger distance from β coefficient. 

 

3 FLL based on GA-LS-WSVM Classifier 

   ANN methods are based on the experimental risk 

minimization (ERM) and have some restrictions such as 

trapping in local minima, low convergence rate and low 

generalization capability [48]. SVM has structural risk 

addition to ERM and does not need much input data 

[49]. The structure of conventional SVM is similar to 

Fig. 2 [50]. The structure of SVM often encounters 

memory and time issues due to nonlinear solution and 

optimization of the main equations [48-50]. In order to 

solve these issues, LS-SVM, which uses linear 

equations instead of quadratic programming, is utilized. 

Furthermore, the SVM has parameters that their 

optimization hugely influenced in SVM 

performance [51]. There are three common solutions for 

this purpose: using grid search, GA, and Particle Swarm 

 

Ʃ 

 (𝒙𝟏) 

 (𝒙𝟐) 

 (𝒙𝒊) 

𝒌(𝒙, 𝒙𝟏) 
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𝒌(𝒙, 𝒙𝒊) 

𝒇(𝒙) 
Output

b𝛼1 

𝛼2 

𝛼𝑖  

...

...

Input 

vector x

Weights

𝛼1, … , 𝛼𝑖  

Inner product

𝑘 𝑥, 𝑥𝑖 

=  𝜑𝑇 𝑥 . 𝜑 𝑥𝑖   

𝜑 𝑥𝑖 , 𝜑 𝑥  

Mapped vectors

 

Fig. 2 Conventional structure of SVM. 

Optimization (PSO) [51, 52]. In this paper, instead of 

using the conventional kernels, such as linear kernel, 

Polynomial, RBF, and MLP, the wavelet transform 

kernel is used. 

 

3.1 LS-SVM 

   By supposing a training set in the form {(xi, yi) | xi ∈ 
Rn, yi ∈ {–1, +1}}N

i=1, where xi is the input and yi is the 

binary class label, the discriminant function is extracted 

according to (10) [53]. 
 

 Ty sign w x b      (10) 

 

   In (10), ∅(0) is a nonlinear function that maps the 

input to the high-dimensional feature space. This 

function is not explicit and may have infinite 

dimensions. Moreover, in (10), the vector w and the bias 

term b are to be determined. For determining these two 

terms of (10), the following optimization problem must 

be solved: 
 

  2

1

1
min ,

2 2

N
T

i

i

J w e w w e




    (11) 

 

where γ is a parameter for regulation. Considering the 

following equation: 
 

  1 ,   1.2, ,T

i i iy w x b e i N         (12) 

 

   The Lagrangian corresponding to (11) is defined 

by (13). 
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(13) 

 

where αi is the Lagrange multiplier. The KKT 

conditions are defined as follows: 
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


 (14) 

 

   In LSSVM, in contrast to the conventional SVM, 

solving (11) is not performed by QP solution. A Linear 

solution of (11) is performed according to the following 

equation: 
 

1

00
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T
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 (15) 
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where Z = [∅(x1)y1, …, ∅(xN) yN]T, y = [y1, y2, …, yN]T, 

1  = [1, 1, …, 1], α = [α1, α2, …, αN]. We have 
 

TZZ   (16) 

     

 

, 

, 1,2, ,

T

kl k l k l k ly y x x K x x

k l N

    

 
 

 
 

(17) 

 

   Finally, after solving (14), the LS-SVM for 

classification will be obtained as follows: 
 

 
1

sign ,
N

i i i

i

y y K x x b


 
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 
  (18) 

 

3.2 Wavelet Function as Kernel LS-SVM 

   The type of kernel function is important. As a general 

rule, if a function satisfies the Mercer condition, it can 

be used as a kernel function; it has been proven that the 

wavelet transform satisfies this condition [54]. If the 

wavelet function ψ(x) satisfies ψ(x) ∈ L2(R) ∩ L1(R) and 

0 = ψ(x), then  x  is the Fourier transform of ψ(x). 

This function is a time-frequency analysis. Also, this 

function can be recovered from the main signal. The 

method of inserting this function as the LS-SVM kernel 

function is presented in [55]. Assuming that 

 

0

x
d






 
  and if ψ(x) is on the path of realization 

of Fourier transform, and then ψ(x) is called the mother 

wavelet. Therefore, the wavelet functions group is 

defined as the following equation: 
 

 ,

1
a b

x b
x

aa
 

 
  

 
 (19) 

 

where a, b ∈ R, and a is larger than zero. A 

multidimensional wavelet function is made based on a 

one-dimensional wavelet function. 
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   The wavelet function that is inserted into SVM is 

according to (21). 
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(21) 

 

   After finding the kernel function, the final LMS-

WSVM function is obtained as (21): 
 

1 1

   sign
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   (22) 

3.3 Design of FLL based on LS-WSVM 

   Since there are various types of faults in this paper, 

the multiclass SVM is used for the FLL procedure. 

Among different kinds of multiclass SVMs, the one-

against-all method is used in this paper. For k classes, a 

number of k binary SVMs must be utilized [56]. For 

estimating the posterior probability corresponding to the 

SVM binary, a sigmoid function is used, for details 

about this function). Finally, the posterior probability 

corresponding to the multiclass SVM binary is obtained 

from the following equation: 
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(23) 

 

while Pi(x) is the posterior probability of x belonging to 

class I and di(x) is the normalized distance of x with 

respect to the line separating the SVM binary i. The 

separating hyperplane is considered as normalized and it 

is between zero and one. 
 

 
 

 
1

i

i k

ii

P x
p x

P x
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 (24) 

 

   Therefore, the following equation holds for a 

multiclass SVM. 
 

        1 2argmax ,  ,  ,    kD x p x p x p x   (25) 

 

   In this paper, a number of L SVM multi-classifiers 

exist that are used for k classes. The decision making a 

profile for the analyses corresponding to decision level 

fusion is given as follows: 
 

 

11 12 1

21 22 2

1 2

k

k

L L LK

p p p

p p p
DP x

p p p
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 
 

 (26) 

 

where pij is the posterior probability of x belonging to 

the i-th, i = 0, …, k class in the j-th, j = 0, …, L 

classifier. 

 

3.4 Optimization of Parameters 

   Since wavelet is chosen as the kernel function, the 

proper performance of SVM depends on two parameters 

γ and a. Choosing a value for γ less than the proper 

value causes an unbalance between model complexity 

minimization and ERM. If the value of a is selected 

smaller than the proper value, then SVM will 

experience an accumulation of input data. If a is 

selected large than the proper value, then WSVM will 
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not solve complex problems with flexibility as much as 

needed. One of the methods that are proposed for 

determining these parameters is the GA [52]. The 

principal concepts of the genetic algorithm include three 

operators, i.e., selection, crossover, and mutation. The 

main steps of a genetic algorithm are shown in Fig. 3. 

The free parameters, γ and C are represented by a 

chromosome in Fig. 4 in the form of binary numbers. 

Here the size of the population is set to around 200, 

meaning the inclusion of 40 bits by each gene. Parents 

are selected using two chromosomes from the entire 

population based on the fitness function. For selecting 

chromosomes in reproduction, the roulette wheel 

selection is used. In this operation, the chromosomes are 

paired randomly. Some pairs of chromosomes that are 

selected between two breakpoints are shifted. Before the 

crossover is done, the values of the two parameters for 

the first parents are 1.125 and 3.125; for the second 

parents these values are 0.375 and 8.75. After crossover 

the values of the two parameters for the first offspring 

are 1.375 and 3.75; for the second offspring these values 

are 0.125 and 8.125. A mutation is performed randomly 

by converting a zero bit into a one bit or vice versa. The 

rates of crossover and mutation are determined in a 

probabilistic manner.  Fig. 5 is the genetic process of 

determining the main parameters of WSVM. 

 

4 Fault Diagnosis Methodology 

   The main idea of the proposed structure is to use data 

fusion of several sensors. Fusion strategy has different 

levels. In this paper, fusion in FLF and DLF are 

addressed. The structure of fault diagnosis methodology 

based on fusion strategy is shown in Fig. 6. The 

structure includes five stages. In each stage, some 

functions are used. In the first stage, data collection is 

performed. In the second stage, the signal processing 

method is implemented. The third stage includes feature 

extraction and selection in both time and frequency 

domains. Fusion in feature level is done in the fourth

 

Step 1

Initialization

Establish randomly an initial 

population of chromosomes.

Step 2

Evaluating Fitness

Evaluate the fitness of each 

chromosome.

Step 3

Selection

Select a mating pair, #1 parent and 

#2 parent, for reproduction. 

Step 4

Crossover and 

mutation
Create new offspring by 

performing crossover and 

mutation operations.

Step 5

Next generation

Generate a population for 

the next generation

Step 6

Stop conditions

The best chromosomes are 

presented as a solution

 The number of 

generations equals a 

threshold

YesYes

NoNo

 
Fig. 3 Main steps of genetic algorithm. 

1
...

0 0 1

0
...

1 0 1

a

C

 

 
Fig. 4 Gene mapping of the main parameters of WSVM. Fig. 5 Genetic process for determining the main parameters of WSVM. 
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stage, and finally, fusion in decision level and fault 

diagnosis is performed in the fifth stage. The structure 

diagram of the ITSC fault diagnosis based on FLF is 

shown in Fig. 7. Three profiles decision are used for 

final decisions about the type and intensity of the fault. 

Using a single-sensor data source was common for 

condition monitoring and fault diagnosis in the prior 

research and commercial solution. For complicated 

machinery such as a WT, a single sensor is not capable 

of covering all features of a fault. Using a multi-sensor 

scenario based on the fusion strategy is the solution to 

the issue. This solution leads to the best decision. In this 

paper, two fusion levels are used in a combinatory form. 

The feature of each data sensor is extracted individually, 

and then, these features gathered in a group are used as 

the input for the algorithm. In fault diagnosis 

applications, the data from homogeneous sensors are 

fused in the feature and decision levels, and the data 

from heterogeneous sensors are fused at the decision 

level. 
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Fig. 6 Block diagram of the proposed approach. 

 

Training 

data

Testing 

data

LS-WSVM 

testing model

Fault 

classification

LS-WSVM 

training model
GA

Is stop 

condition 

satisfied?

No Yes

`

Input x

Fault 

type 1

No

Yes

Fault 

type 2

Yes

No ...

Fault 

type k

Yes Fault type 

k+1

LS-WSVM 1

f(x)=1?

LS-WSVM k

f(x)=1?

 
Fig. 7 Block diagram of the multi class GA-LS-WSVM. 
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4.1 Decision Level Fusion (DLF)-DSER 

   By assuming that a set according to (27) is a countable 

set of probabilities belonging to the realization of one 

possibility, this is a power set denoted by 2ϴ and the 

framework of investigations is about the occurrence of 

an event. The sample space is called a frame of 

discernment, and Hj ∈ ϴ [57]. 
 

 1 2, , .,  kH H H H   (27) 

 

   The Dempster–Shafer theory consists of three 

important and fundamental functions: probability mass 

function, belief function and plausibility function [58]. 

The mass function is described as follows: 
 

   
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
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 



 (28) 

 

   In the above equation, P(X) denotes the power of the 

evidence X and shows all probabilities belonging to the 

realization of one possibility. The symbol ∅ represents 

an empty function and A is a possible state from the 

power set. Therefore, the mass function indicates 

mapping the evidence to the occurrence of state A. This 

mapping is stated by a value between zero and one, 

provided the probability of the empty state is zero and 

the sum of mass functions of all subsets of the reference 

set is equal to unity. The value of believing in the 

occurrence of set A (Bel(A)) is the sum of mass 

functions of set B, which is the subset of A. In fact, the 

belief function is the pessimistic estimate of a possible 

state such as A. The plausibility or PLA is obtained by 

summing over mass functions of the set B (so that B ∩ 

A = ∅). 
 

   
|

   
B B A

Bel A m B


   (29) 

   
|
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PL A m B
 
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   According to these equations, it is obvious that Bel(A) 

≤ PL(A). Since the belief and plausibility of A are 

calculated from its mass function, it can be written: 
 

   1PL A Bel A   (31) 

 

   The probability of some event A, denoted by P(A), is a 

value between the plausibility and belief of that event. 

Therefore, the following relation holds: 
 

     
   
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Bel A P A PL A
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

 

  
 

 

 

(32) 
 

   Combination rules are the foundation of Dempster–

Shafer evidence theory. The calculation of belief and 

plausibility functions is performed based on the 

combination of mass functions. In this method, the 

combination of evidence theories is performed based on 

AND operator, and the sum of probability of an event 

such as A is calculated by multiplying the probabilities 

of all evidence by the probability of events that are 

equal to or including A. Combination of two and 

multiple mass functions are done by (33) and (34). In 

these equations, all the sets that do not intersect are 

rejected by the factor K in order to prevent them from 

influencing the results of estimates, and therefore, NF = 

1/(1–k) is called the normalizing factor. 
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(33) 
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(34) 

 

   The output value of each classifier is unique; the 

degree coefficient, di(j = 1, 2, …, L), is applied to BPA 

before the combination of evidence. It is assumed in this 

paper that Mi(H) is the main BPA of the classifier j. 

Therefore, the revised quantities are defined by the 

following equations: 
 

   i i im H d M H  (35) 

 θ 1i im d   (36) 

 

   Finally, if r-evidence exists, the D-S decision-making 

theory for fusing the classifiers is defined as 
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 (37) 

 

where mr(Hk1) = max{mr(Hj), Hj ≠ Hk0}, mr(Hk0) = 

max{mr(Hj), Hj ⊆ Hj = 1, 2, …, k}, τ0 and τ1 are the 

threshold values, which are obtained experimentally or 

under specific rules. In this paper, threshold values are 

regulated based on experimental data. 

 

4.2 Fault Diagnosis Steps based on FLF and DLF 

   On the basis of the FLF (Fig. 6) and DLF (Fig. 7), the 

processes of ITSC fault diagnosis are described below: 

Step 1: The measurement signal is carried out through 

test rig. The electrical signals include stator currents, 

rotor currents, and power are acquired with acquisition 

systems. 

Step 2: EMD signal processing method is applied on 

the signals. The collected electrical signals are 

decomposed into n IMFs. 

Step 3: The four first IMFs are selected and the features 

extraction is conducted based on time-domain and 

frequency-domain. 

Step 4: Best subset of features is selected based on (5)-

(9). 
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Step 5: The feature vectors profiles are made and these 

vectors are divided into training and testing sets. 

Step 6: Run the LS-SVM. 

Step 7: The kernel function is selected.  

Step 8: The GA algorithm is executed. 

Step 9: The multi-class GA-LS-WSVM classifier is 

produced based on Fig.6. Initial diagnosis of each is 

obtained using (24)-(26). 

Step 10: The DLF stage is conducted. DSER is applied 

for decision-level fusion based on the decision profile. 

In this stage, the results of the final diagnosis are 

obtained. 

 

5 Experiment Setup 

5.1 The Case Study Fault 

   With regard to the fact that the ITSC fault occurs due 

to damages to the insulation between the turns of a 

winding, it is modeled as a short circuit in the winding 

that affects the stability of current. This modeling is 

according to Fig. 8(a). For this purpose, it is assumed 

that in the modeling, the impedance of the short-

circuited stator winding is reduced. The amount of this 

reduction is related to the fault severity. Hence, in 

MATLAB/Simulink, a variable resistance, similar to 

Fig. 8.b is placed in parallel to one of the phases. The 

number of short-circuited turns is determined according 

to the changes in this resistance [19-22]. 

5.2 WT Test Rig 

   The verification of the proposed method is done on a 

designed WT test rig by the authors, that shown in 

Fig. 9; the test rig characteristics are shown in Table 3. 

This test rig is used to test converter fault and it has 

communication with the CM module. The ITSC is 

applied under different operating conditions of WT. 

This test rig contains a 90-kW DFIG coupled to a sun 

gearbox with a transmission 1 to 3.33. The gearbox is 

rotated by a 110-kW asynchronous motor. The 8-poles 

DFIG operates at 400 V and 50 Hz. The system 

comprises two voltage source inverters in back-to-back 

converter topology with a high power rate 30 kw. In this 

topology, there are gate drive circuit to trigger of 12 

gates of IGBT and DFIG crowbar circuit to protection 

of short circuit current. An ARM/FPGA digital board 

with 100 kHz sampling frequency is used for the control 

system of the converter. The control of the converter is 

based on vector control strategy and is doing by FOC 

and GOC with the SVM method. For measuring 

mechanical speed, an encoder that is coupled to the 

shaft of the DFIG generator is used. Wind pattern 

emulated to ABB-ACS800-31 motor drive using the 

torque-speed curve is based on the LabView interface 

and using a PC. The test rig works under “healthy” and 

“faulty” conditions during the experiments. Relevant 

signals are collected from the generator and the 
 

 

A

B

C

Phase APhase C

Phase B

Variable 

resistor

 
(a) (b) 

Fig. 8 The structure of stator winding with ITSC fault in phase C. 
 

  

 

(a) (b) (c) 

Fig. 9 DFIG wind turbine test rig. 
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Table 3 Parameters of test-rig components. 

Drivetrain 

90 Power 

1488 RIV/MIN Speed 

400 V Stator voltage 

700 V DC link voltage 

199 Current 

578 Nm Torque 

4 Number of pole pairs 

120.4 mH Magnetizing inductance 

0.88 cos φ 

24.8 mΩ Stator resistance 

44 mH Stator inductance 

16.6 mΩ Rotor resistance 

33 mH Rotor inductance 

Gear with 1 stage by 1:3.32 Gearbox 

8 pole / 55 kW/ 400 V/ 742 rpm Prime mover motor 

Converter 

5 mΩ Filter resistance 

800 μH Filter inductance 

100 kHz Sampling frequency 

2.5 kHz Switching frequency 

FOC Grid side converter 

GOC Rotor side converter 
 

Table 4 Phase difference between three phases of stator in the 

presence of fault. 

Fault % AB BC CA 

Normal 120.012 120.063 119.358 

5 % 122.747 120.087 116.996 

10% 125.536 120.997 113.467 

25% 135.096 119.667 105.237 

40 % 142.198 119.558 98.244 
 

Table 5 Variation of THD in various fault percentages. 

Fault % A B C 

Normal 3.39% 3.54% 3.20% 

5 % 3.62% 3.57% 3.22% 

10% 3.92% 3.65% 3.18% 

25% 5.59% 3.52% 3.23% 

40 % 7.98% 3.48% 3.39% 
 

Fig. 10 Data acquisition system configuration. 

 
Fig. 11 Real wind speed data emulated on test rig. 

 
Fig. 12 Power output-generator speed curve for DFIG test rig. 

 

converter. The different types of electrically asymmetric 

fault are applied on the stator, representing the effect of 

an ITSC fault in the WT generator. Two systems for 

data collection in this test rig are used. A data 

acquisition system was used to obtain rotor and stator 

currents. Another system is WT CMS. This system is 

used to measuring of operational data (power, generator 

speed, and wind speed) of WT. An Overview of the data 

acquisition system and communication is presented in 

Fig. 10. 

   The Hardware simulator input information including 

wind speed data was collected from Kahak Qazvin 

power plant. The input to the simulator is the real wind 

speed data collected by an anemometer from a 

MAPNA’s wind farm located in Takestan-Iran. The 

wind speed data includes different operating ranges 

(cut-in, transition, power generation, and cut-out) from 

less than 1 m/s up to 28 m/s. The data leads to the 

operation of the DFIG in sub-synchronous, synchronous 

the super-synchronous ranges. The wind speed 

information (Fig. 9) is used as input to the drive of the 

propulsion motor. The torque reference is applied to the 

motor and rotates in the various operating areas of the 

WT. Fig.10 shows the power curve of the 90 DFIG WT 

test rig. The unstable dynamics of WT and WT 

operation at variable speed, which is due to instability 

and turbulence in the measurement signals, are well 

described in Figs. 9 and 10. 

 

6 Experimental Result and Discussions 

6.1 Experimental Result 

   In order to study the relations between the fault 

features and the fault degree and training the two-level 

fusion algorithm, various test data are needed. This 

experiment is performed for analyzing the behavior of 

ITSC fault. In this section, various tests are designed in 

stationary conditions. Every percent of asymmetry is 

proportional to the coil turns. In Table 4, for different 

percentages of fault in phase A, the phase difference
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Table 6 Numerical analysis of trajectory of Park’s vector. 

Fault % Eccentricity 

Normal 0.010 

5 % 0.251 

10% 0.348 

25% 0.518 

40 % 0.620 
 

between three phases of the stator are shown. As the 

fault percentage in phase A increases the phase 

difference between A and B phases increases, while the 

phase difference between two healthy phases has a very 

small change (close to 120 degrees). In Table 5, the 

variation of THD is presented. In this table, it is seen 

that the fault percentage increases with THD, but in the 

other two healthy phases, the variation of fault 

percentage is small and close to THD in healthy state. 

Transformation of three phases into two phases is 

performed by Park’s transformation. In equilibrium 

state, the trajectory of Park’s vector is circular, and 

when the ITSC is exerted, the trajectory becomes 

elliptical. Table 6 is a numerical analysis of the 

trajectory of Park’s vector. For Investigating the 

accuracy and precision of the proposed structure, the 

ITSC fault scenario is randomly considered as Table 6. 

The data collecting operation is performed each 1 ms. 

With regard to real wind speed (Fig. 11), all operation 

ranges of WT from sub-synchronous to super-

synchronous are taken into account. Therefore, the 

collected data includes both stationary and transient 

ranges. The features extracted in the fusion-based fault 

diagnosis process are very important because the real 

results of the proposed structure are obtained when a 

proper data collecting is done and the features 

corresponding to the fault are extracted. In this paper, 

80 features have been defined for each signal. In order 

to reduce the dimensions of the input matrix for the 

fusion algorithm, the best feature are selected based on 

the β coefficient (β is selected 2.8). As result, the first, 

second and third fusion blocks in the feature level 

contain 100, 300, and 300 input samples, respectively. 

   Among total input features, 60% are used for training 

and 40% for testing. In this paper, three blocks of GA-

LS-WSVM classifier are used for seven electrical 

sensors. For performance evaluation of GA-LS-WSVM, 

this method is compared with its other family members, 

i.e., the SVM with RBF kernel function, the SVM with 

a nonlinear solution and without LS and the SVM 

optimized with PSO. The precision of the classification 

is calculated based on the parameter CA according 

to (38). Considering the fact that there are five classes, 

the average precision is calculated from (39) and is 

called ACA. 
 

100
i

c

i i

t

H
CA

H
   (38) 

100c

t

H
ACA

H
   (39) 

In the above equations, Ht
i is the total number of the 

samples from class i and Hc
i is the number of samples 

that are properly classified. Moreover, Ht is the total 

number of samples and Hc is the total number of 

samples that are properly classified. Investigation and 

statistical analysis are performed separately for different 

stages of testing and training data. In the training stage, 

the optimal parameters of kernel are chosen 

proportional to the kernel function. In the analysis 

section, there are three classifiers and five classes; in 

fact, the decision profile consists of a matrix with five 

rows and three columns. In this paper, there are three 

SVM multiclass classifiers, and DSER exists in the 

fusion-decider section. Therefore, the methods GA-LS-

WSVM-DSER, PSO-SVM-DSER, and GA-LS-RBF-

SVM-DSER are utilized for ITSC fault diagnosis and 

are compared with the case in which they are used 

individually without DSER. DSER operates based on 

H1–H5 states, which are the ITSC fault diagnosis 

classes. There are three evidences for combining and 

r = 3. Before fusion, BPA has to be calculated and for 

its calculation, the decision profile matrix, which has 

five rows and three columns, must be taken into 

account. For each evidences, a coefficient is defined. In 

this paper dj(j = 1, 2, 3), and therefore, these coefficients 

are 0.85, 0.75, and 0.70 for power signal, three phases 

of stator and three phases of rotor, respectively. In this 

research the experimental values of τ0 and τ1 are 0.001 

and 0.04, respectively. Three analyses are discussed: 

1. The performance of each individual classifier 

indicates the fusion only in the FLF without 

combining the ideas. 

2. The performance of classification and fault 

diagnosis based on FLF and decision DLF in a 

hybrid form. 

3. Fault diagnosis based on each signal separately and 

without performing fusion strategy. 

   Tables 7-9 show the results of analyses 1-3, 

respectively. Comparing Tables 7 and 8 reveals that 

ACA factor for individual classification in testing and 

training conditions are 90.09% and 95.88% for PSO-

RBF-SVM, 94% and 97.016% for GA-LS-WSVM and 

87.23% and 91.86% for RBF-SVM, respectively; while, 

in fusion mode ACA of three methods for the testing set 

and training set are 95.51% and 97.83% for DSER-

PSO-SVM, 98.27 and 99.36 for DSER -GA-LS-WSVM 

and 90.34 and 93% for DSER-RBF-SVM. This implies 

that combining in decision level has increased the 

accuracy of fault diagnosis. Moreover, in both tables, 

the performance of GA-LS-WSVM method is better 

than other classifier algorithms in the same family, and 

this implies that the wavelet kernel function is better 

than RBF. If the same algorithm is used alone and the 

features extracted from the seven signals are used 

directly without fusion in the feature level as inputs for 

GA-LS-WSVM, then the accuracy will be according to 

Table 9. It can be seen that the accuracy of the fault 

diagnosis is noticeably less than the values in
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Table 7 Results of analyses with only FLF. 

RBF-SVM GA-LS-WSVM PSO-RBF-SVM 
CAi Fault Class 

Train Test Train Test Train Test 

93.44 85 98.2 95 96.23 90 CA1 F1 1 

91 88.65 97.3 94 95 91 CA2 F2 2 

93.48 90.16 96.23 93 94.35 90.23 CA3 F3 3 

89.16 83.23 98.35 95 96.83 89.23 CA4 F4 4 

92.26 88.99 95 93 97 90 CA5 Normal 5 

91.86 87.23 97.016 94 95.88 90.09 ACA Total  

 
Table 8 Results of analyses with FLF and DLF hybrid fusion. 

DSER-RBF-SVM DSER -GA-LS-WSVM DSER-PSO-SVM 
CAi Fault Class 

Train Test Train Test Train Test 

93 90.23 100 100 100 97.32 CA1 F1 1 

94 89.66 100 98.82 98 96.82 CA2 F2 2 

95 93.73 100 100 100 98.23 CA3 F3 3 

90 86.89 98.8 95.81 97.04 95.95 CA4 F4 4 

93 91.23 98 96.74 94.11 89.23 CA5 Normal 5 

93 90.34 99.36 98.27 97.83 95.51 ACA Total  

 
Table 9 Results of analyses without fusion and based on seven signals with GA-LS-WSVM algorithm. 

P IRS3 IRS2 IRS1 IGS3 IGS2 IGS1 
CAi Fault Class 

Train Test Train Test Train Test Train Test Train Test Train Test Train Test 

75 71.23 62.11 62 59.83 56.83 62.23 55.21 64.21 60.00 61.14 57.63 63 56 CA1 F1 1 

73 69.23 65.14 60 60 58.18 59.98 52.63 63.27 61.21 62 58.21 65 61.04 CA2 F2 2 
76 73.41 63.04 61.14 60.89 57.12 66.12 59.18 65.12 60.21 64 59.16 66 62.82 CA3 F3 3 

81 75.84 62 58.12 65 54.12 63.73 56.01 62.29 60.12 71 57.48 61 55.23 CA4 F4 4 

80 76.32 67 61.12 61.45 52.22 68 57 69.12 60.09 69.18 58.21 62 58 CA5 Normal 5 

77 73.20 63.85 60.47 61.43 55.69 64.01 56.00 64.80 60.32 65.46 58.13 63.40 58.61 ACA Total  

 
Table 10 Results of analyses with only feature level fusion. 

GA-RNN BPNN 
CAi Fault Class 

Train Test Train Test 

83.16 73.66 75 69.86 CA1 F1 H1 

80.01 71.12 69.78 61.04 CA2 F2 H2 

80.78 72.13 78.46 73.12 CA3 F3 H3 

83.12 75.14 75.05 70.01 CA4 F4 H4 

86.18 78.12 73.23 69 CA5 Normal H5 

82.65 74.03 74.30 68.60 ACA Total H 

 
Table 11 Results of analyses with hybrid feature and decision level fusion. 

DSER -GA-RNN DSER-BP-RNN 
CAi Fault Class 

Train Test Train Test 

83.20 80.11 85.21 78.29 CA1 F1 H1 

75.66 74.11 87.33 73.11 CA2 F2 H2 

75 73.12 89.21 72 CA3 F3 H3 

78.26 77 76.12 76.10 CA4 F4 H4 

83.19 79.16 78.11 77 CA5 Normal H5 

79.06 76.70 83.19 75.30 ACA Total H 

 

Tables 7 and 8. This fact indicates the importance of the 

fusion in fault diagnosis. 

 

6.2 Discussions 

   The GA-LS-WSVM method chosen from the SVM 

family is compared with two methods from the neural 

network family, i.e. Back-Propagation Neural Networks 

(BPNN) and GA-Recurrent NN (GARNN). The specific 

performance of these methods is presented in Table 10. 

On the other hand, the performance of these two 

methods using the decision level fusion with DSER is 

presented in Table 11. Specific performances of BPNN 

and GA-RNN in training and testing phase are for 

BPNN 74.30 and 68.60, for GARNN 74.03 and 82.65, 

respectively. This analysis shows that the performance 

of GA-RNN is better than BP-NN. The ACA 

performances of BPNN and GA-RNN with DSER, for 

training and testing phases are respectively 75.30 and 

83.19for DSER-BPNN, and 76.70 and 79.06 for DSER-

GARNN. Moreover, Comparing Tables 7-11, it is 

concluded that the performance of SVM is better than 

NN and fusion strategy improves the performance of 



Fault Diagnosis of Wind Turbine Double-Fed Induction 

 
… M. Kamarzarrin et al. 

 

Iranian Journal of Electrical and Electronic Engineering, Vol. 18, No. 2, 2022 15 

 

fault diagnosis. Better performance of SVM results from 

overcoming the issues of NN, i.e. its convergence speed 

is high, does not experience over-fitting and is not 

trapped in local extrema. Other cases that are 

highlighted in this paper are: 

1. Using the EMD signal processing method makes it 

possible that at all operating points of the WT, fault 

diagnosis is conducted. The function EMD 

decomposes the signal components in a better way 

and performs the feature extraction in both time and 

frequency domains. 

2. Using a method for selecting the best subset of 

features reduces the extra features that cause an 

increase in the input vector. 

3. A proper choice of LS-SVM parameters influences 

its performance. The use of GA improves fairly the 

kernel and the SVM parameters. 

4. The use of wavelet function instead of RBF leads to 

better performance of the SVM. 

5. Using a hybrid fusion in feature and decision levels 

leads to higher classification precision for ITSC fault 

diagnosis. 

6. Using the electrical signals existing in control 

system eliminates the need for extra sensors and data 

collection equipment (for collecting signals such as 

vibration and acoustic signals) with the purpose of 

condition monitoring and fault detection. 

 

7 Conclusions 

   In this paper, a novel structure based on two-level 

fusion (FLF and DLF) for diagnosing ITSC fault in a 

DFIG-based WT, has been presented. In this paper, the 

repair and maintenance structure on the basis of fusion-

based monitoring has been used. In the first layer, seven 

signals including three signals of rotor phases, three 

signals of stator phases and a reactive power signal are 

used. In the second layer and at the feature extraction 

level, the EMD function is used which is applicable in 

no stationary conditions, and 80 features were extracted 

from each signal. Feature matrices are very versatile and 

include different operation ranges of the system along 

with the time and frequency domain characteristics. In 

the third layer, features are fused at the feature level. 

This part includes three steps namely forming the 

feature matrix, choosing the best feature matrix, and 

initial fusion and decision-making by the SVM 

algorithm. In order to improve the efficiency of this 

algorithm, three changes were made in the conventional 

structure of the algorithm, and finally, GA-LS-WSVM 

is used. The fourth or decision layer comprises two 

steps. Initially, the decision profile is formed by three 

GA-LS-WSVM outputs, and then, based on DS theory, 

the final decision for the fault is made. The accuracy of 

this method for diagnosing the ITSC fault in different 

levels is tested. This method is tested for both stationary 

and transient conditions and showed an excellent 

performance. The experimental have proven very well 

that using fusion structure increases the reliability of 

fault diagnosis, and based on versatile data, the 

percentage of false diagnosis can be reduced. The 

structure proposed in this paper is used to condition 

monitoring of WTs with other faults in electrical and 

mechanical subsystems, too. The proposed method is 

robust against changes in the load and performance 

parameters. 
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