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Abstract: FPGA’s block memory may be programmed as a single or dual-port RAM/ROM 

module that leads to an area-efficient implementation of memory-based systems. In this 

contest, various works of carrying out an optimized implementation of simple to complex 

DSP systems on embedded building blocks may be seen. The multiplier is a core element of 

the DSP systems, and in implementing a memory-based multiplier, it is observed that one 

of the operands is kept constant, hence leading the design to a constant-coefficient 

multiplication. This paper shows Virtex-7 FPGA’s dual-port ROM-based implementation 

of an 8x8 variable-coefficient multiplier that may be used in several simple to complex 

DSP applications. The novelty of the proposed design is to configure the block ROM in 

dual-port mode and, hence, get four partial products in two clock cycles and introduce two 

unconventional adder approaches for partial product addition. This approach leads to fully 

resource utilization and the provision of a variable-coefficient multiplier. The work also 

shows the comparison of proposed architecture with already existing memory-based 

implementations and concludes the work as a novel step towards the efficient memory-

based implementation of multiplier core. 
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1 Introduction1 

HE FPGA may be used to implement computation-

intensive algorithms more efficiently in comparison 

to  DSP or microprocessors[1]. The three main factors 

that play an essential role in FPGA-based design are the 

targeted FPGA architecture, electronic design 

automation (EDA) tools, and design techniques 

employed at the algorithmic level using hardware 

description languages [2]. 
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   For example, Xilinx Virtex-7 FPGA, a selected 

device, contains several features and embedded DSP 

cores to strengthen its arithmetic capabilities along with 

dual-or, single-port RAM modules, ROM modules, 

synchronous FIFOs, and registers that may be easily 

implemented using the Xilinx CORE Generator [3]. 

   The block RAM stores up to 36 kb of data and can be 

configured as either two independent 18 kb RAMs or 

one 36 Kb RAM. Each memory can be addressed 

through single ports and configured as a dual-port 

RAM/ROM. 

   Besides, the n-bit input Look-up table of an FPGA can 

be used for storing the truth table of an n-input function, 

or 2n–bit data consequently. For example, a LUT with 

three inputs can store the truth table of any 3-input 

function or an eight-bit word. 

 Taking the benefit of this architectural flexibility, much 

work may be seen in the domain of memory-

based (Look-up tables (LUT), BRAM) DSP systems 

design, especially the multiplier. 

   The multiplier is a core element of the DSP system, 

and in implementing a memory-based multiplier, it is 

observed that one of the operands is kept constant, 

hence leading the design to constant-coefficient 

multiplication. 

   This paper shows Virtex-7 FPGA’s dual-port ROM-
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based implementation of an 8x8 variable-coefficient 

multiplier that may be used in several simple to 

complex DSP applications. 

   The proposed design’s novelty is to configure the 

block ROM in dual-port mode and hence get a total of 

four partial products in two clock cycles and introduce 

two unconventional adder approaches for partial product 

addition. 

   This approach leads to fully resource utilization and 

the provision of a variable-coefficient multiplier. 

   Besides, the comparison of proposed architecture with 

already existing memory-based implementations is also 

given, and in conclusion, it is shown that the proposed 

work is a novel step towards the efficient memory-based 

implementation of multiplier core. 

   The paper further proceeds as follows. In Section 2, 

previous work done in the domain of memory-based 

multiplier is given, followed by the proposed design in 

Section 3. The FPGA-based implementation and results 

are given in Section 4, and the conclusion and future 

work are reported in Section 5. 

 

2 Previous Works 

   The FPGA-based implementation of a memory-based 

multiplier is possible in two ways 1) using the 

RAM/ROM module, 2) The look-up table-based design. 

   The two common approaches in LUT-based memory 

design are: using Direct-LUT to compute the 

multiplication [4-10] and to compute the inner-product 

using Distributed Arithmetic (DA) [11-15]. 

   In Direct-LUT-based computation, all the possible 

product terms of the input multiplicand with the fixed 

coefficients are pre-computed and stored directly in the 

LUT, and thus, the multiplication is done [16]. 

   In DA-based computation, the N-point vector’s inner-

product with the N-bit vector is pre-computed and 

stored in LUT [11]. 

   LUT’s size increases with the word length of the input 

if the product term is directly stored in LUT, whereas if 

the inner product is stored, the size increases with the 

length of the inner product. 

   As the memory-based multiplier requires an adequate 

amount of memory of size 22L, where L is the word 

length of the operands, most of the work in the research 

leads to the design of a fixed-coefficient multiplier 

(leading to memory reduction from 22L to 2L). 

   One of the earlier techniques to implement fixed- 

coefficient multipliers using Look-up table-based 

memory of FPGA was developed by Xilinx [17]. This 

relies on look-up tables rather than a network of adders 

to perform most of the multiplication. 

   As it is evident that there are sixteen possible results 

when a four-bit number is multiplied by an eight-bit 

fixed number (because there are sixteen different four-

bit numbers). Thus a four-bit variable time eight-bit 

constant multiplier can be implemented by a sixteen-

entry look-up table. Each entry must be twelve-bits (the 

width of the largest possible output). This idea may 

easily be understood as follows: Let the eight-bit 

constant multiplier is 25010 (111110102), and four-bit 

variable multiplicands are 0-15(0000-1111). So the 

LUT entries are shown in Table 1. 

   With the same approach, an eight-bit by eight-bit 

constant multiplier may be built using two of this four-

bit by eight-bit constant multipliers in the configuration 

shown in Fig 1. 

   Besides LUT-based implementation, another way to 

get the same results is to use FPGA’s built-in memory 

(RAM/ROM) modules. 

   In [17] and [19], an eight-bit constant multiplier is 

implemented using the Xilinx 4010 FPGA’s Block- 

ROM. The designed architecture is shown in Fig. 2. 

   As in a 4X8 multiplier, we need a total of 16-LUTS, 

each twelve-bit wide; the same is required for 

RAM/ROM-based multiplier. The output of each 

memory is twelve-bit wide, but to save some of the 

resources, an eight-bit-by twelve-bit adder is used to 

add two outputs and then concatenates the results with 

the remaining for-bits to get the total product sixteen-bit 

wide. 
 

Table 1 LUT values for a constant multiplier (25010). 

MP* MC* PR* 12-bit-value stored in LUT 

250 

0 (0000) 0 LUT0=000000000000 

1 (0001) 250 LUT1=000011111010 

2 (0010) 500 LUT2=000111110100 

3 (0011) 750 LUT3=001011101110 

4 (0100) 1000 LUT4=001111101000 

5 (0101) 1250 LUT5=010011100010 

6 (0110) 1500 LUT6=010111011100 

7 (0111) 1750 LUT7=011011010110 

8 (1000) 2000 LUT8=011111010000 

9 (1001) 2250 LUT9=100011001010 

10(1010) 2500 LUT10=100111000100 

11(1011) 2750 LUT11=101010111110 

12(1100) 3000 LUT12= 101110111000 

13(1101) 3250 LUT13=110010110010 

14(1110) 3500 LUT14=1101101011100 

15(1111) 3750 LUT15= 111010100110 

*MP = Multiplier, *MC = Multiplicand, *PR = Product value. 
 

LUTB-

ADDER

LUT A-

8-Bit Data

4-Bit 4-Bit

12 Bit 8 Bit

12 Bit

4 Bit

 
Fig. 1 Basic LUT-based constant multiplier [18]. 
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Fig. 2 Basic architecture of an eight-bit constant multiplier using 
 

memory [19]. 

Fig. 3 Dual-port ROM  based implementation of N-bit-by-N-bit 
 

multiplier [4]. 

 

   If one of the two operands is fixed, a significant 

reduction in the memory size from 22L to 2L is obtained. 

This idea is reflected in [4], where the dual-port ROM is 

used to replace two constant multipliers (any N-bit 

multiplier may be designed using two N/2-bit-by-N/2 

multipliers and then adding the partial products to get 

the N-bit multiplier). 

   Fig. 3 shows an N-bit-by-N-bit memory-based 

implementation [4]. 

   The work given in [6] shows more efficient memory-

based systolic array implementation of the unified 

architecture of DCT/DST/IDCT/IDST, using dual-port 

ROMs and appropriate hardware sharing methods. 

   In design (Fig. 4), the conventional constant multiplier 

is replaced with two dual-port ROMs, each of size of 

22L/2. 

   In contrast to the efficient utilization of selected 

FPGA’s resources, a plausible work also reports an 

optimized design with algorithm optimization. 

   For example, in DA-based computation, offset binary 

coding [11, 15], and group distributed technique [13] 

are proposed to decrease the size of the memory. 

Whereas under Direct-LUT based computation, many 

techniques that are proposed are given in [10, 20, 21]. 

   Furthermore, in [10, 22], authors have proposed the 

OMS approach, where only the odd multiple product 

terms are stored in memory. Thus the size of the 

memory is reduced by half. Similarly, in [23, 24], 

another technique, namely, Anti-symmetric Product 

Coding (APC), has been detailed, where the size of the 

LUT is reduced again. Also, it requires fewer overhead 

circuits as compared to the work of [10]. 

   In [25], authors have combined both OMS and APC 

techniques and developed an efficient architecture that 

contains the advantages of both of the above techniques. 

   In the most recent work reported in [26], two 
 

Multiplier #1

a Constant

Multiplier # 2

Constant b

c d
PE

Replaced by

2
L/2 

Word 

Dual-Port ROM

c

d

a b

2
L/2 

Word 

Dual-Port ROM

 
Fig. 4 A reduced word-length multiplier replaced by a dual- 
 

port ROM [6]. 

 

memory-based multipliers are proposed and 

implemented on Vertex 7 XC7vx330tffg1157 FPGA. 

The first technique is EMS-LUT based multiplier, 

where even multiplies of the product terms are stored in 

memory (a single-port ROM to store the pre-calculated 

even terms of the product value of four-bit input), where 

an external combinational logic circuit is used to derive 

the odd multiplies of the product term. The second 

approach, Modified OMS-based multiplier, is the 

variant of already existing OMS multiplier design [21] 

in which some changes are brought in the external 

control circuit used to derive the even product terms. 

   All the research in one way or another covers a
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Fig. 5 The conventional multiplication method. Fig. 6 Division of product into various parts. 
 

   M3 M2 M1 M0  

 X  N3 N2 N1 N0  

A   M3N0 M2N0 M1N0 M0N0 pP1 
  M3N1 M2N1 M1N1 M0N1 X pP2 

 M3N2 M2N2 M1N2 M0N2 X X pP3 

M3N3 M2N3 M1N3 M0N3 X X X pP4 
 

   M7 M6 M5 M4  

 X  N3 N2 N1 N0  

B   M7N0 M6N0 M5N0 M4N0 pP1 
  M7N1 M6N1 M5N1 M4N1 X pP2 

 M7N2 M6N2 M5N2 M4N2 X X pP3 

M7N3 M6N3 M5N3 M4N3 X X X pP4 
 

  

Fig. 7 Product of [3:0] bits of multiplier with [3:0] bits of the 
 

multiplicand. 

Fig. 8 Product of [3:0] bits of multiplier with [7:4] bits of the 
 

multiplicand. 
 

   M3 M2 M1 M0  
 X  N7 N6 N5 N4  

C   M3N4 M2N4 M1N4 M0N4 pP1 

  M3N5 M2N5 M1N5 M0N5 X pP2 
 M3N6 M2N6 M1N6 M0N6 X X pP3 

M3N7 M2N7 M1N7 M0N7 X X X pP4 
 

   M7 M6 M5 M4  
 X  N7 N6 N5 N4  

D   M7N4 M6N4 M5N4 M4N4 pP1 

  M7N5 M6N5 M5N5 M4N5 X pP2 
 M7N6 M6N6 M5N6 M4N6 X X pP3 

M7N7 M6N7 M5N7 M4N7 X X X pP4 
 

  

Fig. 9 Product of [7:4] bits of multiplier with [3:0] bits of the 
 

multiplicand. 

Fig. 10 Product of [7:4] bits of multiplier with [7:4] bits of the 
 

multiplicand. 
 

constant-coefficient multiplier and indicate that the 

design complexity and hardware requirement increases 

with an increase in the word length of a multiplier (or 

keeping it variable as original). 

   To get out of this limitation and effectively utilizing 

the available resources, this paper shows Virtex-7 

XC7vx330tffg1157 FPGA’s dual-port ROM-based 

implementation of an 8x8 unsigned integral multiplier 

that may be used in several simple to complex DSP 

applications. 

 

3 Proposed Design 

   In a memory-based multiplier, pre-calculated product 

values are easy to obtain within the minimal processing 

time, as they are stored at particular addresses masked 

with operands [27]. 

   In general, an individual memory module is needed to 

store the data values obtained by multiplying a constant 

operand (multiplier) with several other operands 

(multiplicands) depending on the word length. 

   For understanding the concept, lets us take a 2x2 

multiplier. Here the word length (in bits) of both 

operands is 2, and possible two-bit values in decimals 

are 0, 1, 2, and 3. 

   This detail shows that a total of 2n operands are 

possible with n-bit wide data. Hence, for an operand of 

the same length, the total number of memory modules 

needed to store the product values are 22n with an 

individual size be as a 2nx2n array leading the product 

length to NxN bit wide [5]. 

   As the word length increases, the required memory 

also increases in proportion. Therefore, for area-

efficient implementation, it is needed to cut down 

memory need to some extent and get required functional 

verifications possible with distributed arithmetic and 

efficient utilization of available resources. 

   Taking the benefit of these two techniques, in our 

design, we have used only a single block ROM module 

in its dual-port configuration along with some 

intermediate addition. The multiplier and multiplicand 

size is set to 8x8 that in the conventional approach leads 

to 65025 memory modules each of size 8x8 array with 

sixteen-bit long product value or a total of 127 Kb 

memories as an individual. 

   The design strategies of this work are taken from the 

concept of a conventional array multiplier. For a simple 

2x2 multiplier, the concept is as follows. 

   Let M, N be two-bit operand, leading M0, N0 as LSB 

and M1, N1 be MSB bits of multiplicand and multiplier 

consecutively. PP1 and PP2 are two partial products as 

an intermediate stage, and these partial products PP1 

and PP2 are then added to get the final result. 

   It may be observed that in the case of two-bit 

operands, we need one full-adder cascaded to one-half 

adders for summing PP1 and PP2. 

   If this concept is extended to an 8x8 multiplier, we 

need eight partial products PP1, PP2… PP8, and one 9-

input 15-bit adder to add PP1-PP8; hence the circuit 

becomes a bit complex. 

   The same result may be obtained if we reduce the 

operand length from 8x8 to 4x4 and then perform some 

intermediate arithmetic [20]. Hence, the ROM size 

necessary to replace a multiplier can be further reduced 

at the cost of an extra adder [4]. Let us divide the 

multiplier and multiplicand, as shown in Fig.6. 

   A total of 4–4x4 multiplications would be performed 

in between the operand, as codded above. If A, B, C, 

and D show those multiplications, then individual may
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Table 2 Memory configuration of BROM. 

 Op1 1 2 3 ….. 13 14 15 

Op2  0 1 2 3 ….. 13 14 15 

0 0 0 0 0 ….. 0 0 0 

1 0 1 2 3 ….. 13 14 15 
2 0 2 4 6 ….. 26 28 30 

3 0 3 6 9 ….. 39 42 45 

4 0 4 8 12 ….. 52 56 60 
5 0 5 10 15 ….. 65 70 75 

…. …. …. …. …. …. ….. ….. …. 

11 0 11 22 33 ….. 143 154 165 
12 0 12 24 36 ….. 156 168 180 

13 0 13 26 39 ….. 169 182 195 

14 0 14 28 42 ….. 182 196 210 
15 0 15 30 45 ….. 195 210 225 

 

Dual Port 

ROM

Adder 

Adder 

If (en=1) 

add=A

else C

 A

 

B

 D C

A

D

D

E

R

Product

clk en

If (en=1) 

add=B

else D

 

PORT A

PORT B

Address A

Address B

Dout A

Dout B

Clk

 
Fig. 11 General dual-port ROM configuration. Fig. 12 Proposed architecture of memory-based multiplier. 

 

be written as given in Figs. 7-10. 

   In dual-port block ROM, product values of a 4x4 

multiplier as 16x16 array of eight-bit word length are 

pre-stored; this leads to 0.25 Kb of total memory. 

   Table 2 show the memory configuration for dual-port 

block ROM, where Op1 and Op2 show two 

operands (multiplier, multiplicand). 

   In general (Fig. 11), two addresses, each N bit wide, 

may be given as an input to BROM with a standard 

clock, and two outputs may be achieved. 

   In our proposed design (Fig. 12), the address values 

are created as per partial product generation, as shown 

in Figs. 7-10. 

   Two outputs are possible to achieve in a single time, 

so enable pin is used to select the two addresses 

amongst the four. Each address is 8-bit wide (four bits 

from the multiplier and four from multiplicand) and is 

given at port: Address A and Address B consecutively, 

and we get two pre-calculated product values at ports 

Dout A and Dout B. 

   As we deal with the synchronized clock approach, two 

clock cycles are required to get the output port’s 

data (Fig. 13). 

   At the first clock cycle, addresses are given at address 

ports, and on the second, the data is taken at the output 

and at the same time (at second clock cycle), the 

addresses of ports are replaced with the new values, and 

finally, at third cycle, two other outputs are taken. 

   The partial products generated are then added after 

shifting the values for a particular number of bits. We 

need three adders for summing product A with B, C 

with D, and a final summation of those intermediated 

generated values. 

   Three approaches for partial product addition are 

followed separately to find out efficient implementation. 

   In the first design, a 3-input look-up table-based 

adder (Fig. 14) is used that obeys the conventional serial 

adder approach. 

   Three input look-up tables are defined as truth table 

given in Table 3 for sum out and carry out accordingly. 

   In the second implementation, the carry-look ahead 

adder is selected to sum the partial products, and in the 

third and final approach, FPGA’s built-in arithmetic 

core is instantiated to perform the required arithmetic. 

 

4 FPGA-Based Implementation and Results 

   The dual-port ROM-based proposed multiplier’s 

architecture is implemented using Xilinx Virtex 7 

XC7vx330tffg1157 FPGA and ISE 14.2 tool. 

   Lacking in finding a variable coefficient memory-

based multiplier, this design is compared with an eight-

bit constant-coefficient multiplier reported in [26]. 

   To make comparison easy, some prevalent factors are 

considered; those may give a good analysis of 

consumed resources and efficiency of the system 

performance. 

   For example, the consumed slice count that contains 

logic elements (the look-up tables) used for the control 

circuitry and distributed arithmetic in a memory-based 

system design tells about FPGA area consumption. The 

block ROM is for storing the pre-calculated product 

values, multiplexers, adder/subtractors, decoders, and 

the most important performance parameters, the 

observed delay, and the maximum achieved frequency. 

Table 4 shows the proposed design’s implementation 

results with three different adder approaches, and the 

two memory-based constant-coefficient designs 

reported in [26]. 

   As the constant-coefficient multiplier obviously would 

result in less resource utilization than a variable-

coefficient multiplier, a one-to-one comparison cannot
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Fig. 13 Timing diagram of block ROM. 
Table 3 Truth table for sum and carryout. 

Cin X Y S Cout 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 
 

Fig. 14 Series configuration for n-bit LUT-based adder. 

 
Table 4 FPGA-based results of proposed and conventional design. 

Fact: 
Prop: LUT-based 

design 

Prop: CLA-based 

design 

Prop: built-in adder-

based design 
EMS [26] MOMS [26] 

Slice 61 60 33 4 4 

Add/Sub 0 0 
1: 12 bit add: 

2: 8 bit add: 

1:[W+8] bit add: 

2:[w+8/2] add: 

1:[W+8] bit add: 

2:[w+8/2] sub 

RAM 1:8[256] 1:8[256] 1:8[256] 1:8[w+4]  1:8[w+4] 

Deco 0 0 0 2:[3:8] 2[3:8] 

Mult: 4:[2 to1]  4:[2 to 1]  4[2 to1]  2:[2 to 1]  2[2 to 1]  

Delay 8.183 1.800 1.356 0.339  0.339  

Freq. 122.206 555.41 737.456 2949 2949  

 

be carried out. Alternatively, some analysis may be built 

based on some ratio between two implementation 

alternatives. Like, the number of slices in the proposed 

built-in adder-based design is 33 that is 8(4) times in 

EMS and MOMS-based design, hence approximately 

showing the same number if EMS and MOMS are 

designed for an 8x8 variable–coefficient multiplier. 

   Another factor to compare is the number or arithmetic 

primitives consumption. It is evident that the proposed 

LUT-based and CLA-based design even do not require 

any adder or subtractor hence needing no built-in 

IPCore for arithmetic. 

   The most crucial factor to consider is the amount of 

memory consumption. In our proposed design, only a 

single ROM of size 8x256 is required, whereas EMS 

and MOMS require 8xw+4 memory for a constant- 

coefficient multiplier that obviously will be 8(8xw+4) in 

case of a variable-coefficient multiplier. This analysis 

shows the proposed design to be very good in less 

consumed memory resources. 

   Similarly, no decoder is required in the proposed 

design, whereas the need is evident in EMS and 

MOMS-based design. 

   The number of multiplexers in the proposed designs is 

twice to that of their counterpart but still reflects a less 

number (that is probably four times greater in variable-

coefficient multiplier). 

   As the speed is related to word length and overall 

circuit complexity, so the achieved frequency 

(reciprocal to delay observed) of our proposed design is 

far lesser than the work reported in [26], but once the 

conventional constant-coefficient based implementation 

is translated to a variable-co-efficient multiplier a 

sufficient reduction in achieved frequency would be 

observed. 
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5 Conclusion and Future Work 

   This work shows a dual-port Rom based area 

optimized implementation of an 8x8 multiplier using 

Virtex 7 XC7vx330tffg1157 FPGA and ISE 14.2 tool. 

   As it is already discussed, in all the implementations 

in memory-based multiplier design, one of the operand 

values is kept constant, resulting in some application 

limitations. Keeping this into view, our proposed design 

may be used in most of the DSP systems, needing 

variable coefficient multipliers, especially in image 

processing or in the domain of adaptive signal 

processing. 

   Besides, if one needs optimized area implementation 

and good achieved frequency, the carry-look ahead 

adder performs very well for intermediate addition. 

   Hence in the future, the feasibility of using dual-port 

ROM and carry-look ahead adder in more complex DSP 

system designs will be seen and implemented. 
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