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Abstract: A semi-automatic method for the segmentation of the Left Ventricle in 

echocardiography images is presented. The manual segmentation of the left ventricle in all 

image sequences takes a lot of time. The proposed method is based on sparse representation 

and the design of overcomplete dictionaries based on prior knowledge of the intensity 

variation time curves (IVTC). We used the sparse recovery algorithm of orthogonal 

matching pursuit (OMP) to find the sparse coefficients of the IVTC signals. We obtained 

the histogram of non-zero sparse coefficients for all images. The binary images from 

successive frames were constructed via thresholding. In addition, we defined one image 

representing all the frames, dividing all the points of the heart into three groups. One group 

involved the points located inside the cavities in all frames. The second group included the 

points that belonged to the tissue in all frames. Points that in some frames are located inside 

the cavities and in some other frames are located inside the tissue. The results on 2D 

echocardiographic images acquired from both healthy and patient subjects showed good 

agreement with manual tracing and took a short time for the contour, including the whole 

left ventricle. According to the cardiology specialist, the value of ejection fraction is 

correctly calculated, and the error percentages were 0.83 and 2.33 for two healthy data 

samples. The proposed method can be applied to 3D echocardiography images to obtain the 

left ventricular volume. This approach also can be used for other types of medical images. 

 

 

Keywords: Dictionary Design, Echocardiography, Intensity Variation Time Curves (IVTC) 

Signal, Sparse Representation, Temporal Super-Resolution. 

 

 

1 Introduction1 

HE leading cause of mortality globally is 

cardiovascular disease (CVD), taking 

approximately 17.7 million lives in 2015 and 
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demonstrating an alarming rate of 31% of all deaths. 

Coronary heart disease and stroke are ranked as the next 

ones with 7.4 and 6.7 million, respectively. CVD 

accounts for more than 75% of deaths in low- to middle-

income families [1]. The automatic segmentation of the 

Left Ventricle (LV) of the heart from echocardiography 

sequences is an essential tool to evaluate the heart's 

health. The main advantages of echocardiography 

images over other imaging modalities, such as CT, 

MRI, and PET, are its low cost, high imaging speed, 

non-invasiveness, harmlessness, and usage of non-

ionizing radiation. The automation of this procedure is 

agreeable in a clinical setting since it can increase 

patient throughput and decrease the variability between 

operator measurements [2]. However, due to speckle 

noise, non-homogeneities, characteristic artifacts (e.g., 

the appearance of shadows produced by the dense 

muscles, edge dropout caused by motion, and 

attenuation), low signal-to-noise ratio, fast movement 

during systole phase, negligible contrast exhibited 
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between desired regions, along with the rough and 

precise automatic segmentation of left ventricle can 

pose some challenges [3]. A premium has been placed 

on endocardium motion tracking to measure the left 

ventricular areas, and also extract the parameters, such 

as the ejection fraction and cardiac output. The 

application of these measures is of particular interest in 

diagnosing and assessing ischemic heart disease [4]. 

   In this study, a semi-automated segmentation of the 

endocardium in echocardiographic data has been 

proposed. Segmentation methods can be divided into the 

following classes: region growth (e.g., fuzzy 

connectedness [5]), classification (e.g., k-means, 

thresholding), deformable models with (e.g., snake [6], 

level set) procedures [7–9], deformable 

templates [10, 11], active shape models (ASM), active 

appearance models (AAM) [12, 13], active contour 

methods [6,14], Markov random fields [15], hybrid and 

space-frequency methods [16], as well as sparse 

representation and dictionary learning methods [3,17]. 

A dynamical projection model derived from sparse 

representation, and dictionary learning was proposed by 

Huang et al. to track both endocardial and epicardial 

contours in the left ventricle in the sequences of 

echocardiography [3]. A segmentation of the 

endocardium, characterizing 2-D short-axis 

echocardiographic images of rats, was proffered by 

Romero et al. During the classification, the sparse 

representation of feature vectors was applied over 

learned dictionaries [17]. 

   This paper presents a new method in the 

representation of sparse signals and the design of 

overcomplete dictionaries based on IVTC signals for the 

segmentation of echocardiographic sequences. The 

study at hand provides an explanatory account of the 

materials and methods, such as the IVTC acquisition, 

the cardiac set description, the sparse reconstruction of 

temporal signals, and endocardium segmentation 

methodology in Section 2. In Section 3, the results of 

the proposed method are presented, and the completion 

of the proposed process is compared with manually 

segmented images by an expert cardiologist. The 

Discussion and conclusion are presented in Section 4. 

 

 

2 Materials and Methods 

   We presented a new method by sparse representation 

and overcomplete dictionaries designing according to 

prior knowledge of the temporal signals (IVTC signals) 

for the segmentation of cavity and tissue of the left 

ventricle in echocardiographic sequences. To do the 

sparse representation and the design of overcomplete 

dictionaries, we first derived temporal information by 

extracting IVTC assessed for each pixel. We used the 

OMP sparse recovery algorithm to find the sparse 

coefficients of the IVTC signals. Greedy algorithms 

iteratively approximated the coefficients and the support 

of the original signal. The method is fast and 

straightforward for the segmentation of 

echocardiography sequences. 

 

2.1 Clinical Image Dataset 

   By using a Vivid3 with a 2 MHz probe, the sequence 

of echocardiography images was obtained. Based on the 

frame rate, the dataset consisted of four-chamber view 

sequences of a set of healthy subjects and those with 

cardiac dysfunction. The frame rate varied between 53 

and 60 frames/sec. In this dataset, about one cardiac 

cycle was recorded for each subject. Fig. 1 shows 

sample frames. For better presentation, this paper 

includes video recordings of all frames for the original 

dataset (videos 1 and 2 show echocardiography images 

of the first healthy and patient subjects). 

   The proposed method, in its initial stage, attempts to 

extract the assessed IVTC (intensity variation time 

curves) in each individual pixel of consecutive 

echocardiographic frames. The so-called curves can be 

characterized by p (x, y, t) corresponding to the pixel in 

position (x, y), with the frame of time t (t =1, …, T), 

where T stands for the overall number of frames. An 

IVTC signal from the fixed coordinate (x, y) of 60 

sequential frames is depicted in Fig. 2 [18, 19]. 

 

2.2 Sparse Representation 

   Sparse representation is an approach to decode data 

structures; it also presents an accurate mathematical 

framework for studying high-dimensional data [20]. As 

regards the challenge of sparse representation images, in

 

 

 

Fig. 1 sample frame from echocardiography images of a healthy subject 
 

(left) and an ischemic patient (right). 

Fig. 2 Intensity variation time curves of a fixed 
 

coordinate (x, y) in all frames [18]. 
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removing noise from images [21], motion detection and 

data segmentation [22, 23], compression [24], image 

super-resolution [25], signal classification [26], face 

recognition [27], texture segmentation and classification 

[28, 29], and object detection [30]. The focal points of 

researchers have been three dimensions of sparse 

representation: pursuit methods to overcome the 

challenge of optimization, such as matching 

pursuit (MP) [31], orthogonal matching pursuit (OMP) 

[32], and basis pursuit [33]; LARS/homotopy 

methods [34]; dictionary design, e.g., the K-SVD 

method [21]; and the applications of the sparse 

representation for different tasks, e.g., denoising, 

coding, signal separation, and image inpainting [35–39]. 

The OMP is a greedy algorithm. The basis of this 

algorithm is identical to the mutual pursuit algorithm; 

however, the difference between OMP and MP 

algorithms is that sparse representation coefficients are 

updated in each step, and the updated coefficient of the 

previous step is changeable [40]. 

 

2.3 Dictionary Design 

   The overcomplete dictionaries can be classified into 

two different methods. The first one is that of learning 

an optimum overcomplete dictionary compiled from a 

specified set of examples, and the other is designating 

the dictionary using a set of identified mathematic 

functions (pre-specified functions). If specific signal 

characteristics are known, a dictionary can, for example, 

be chosen from the Fourier basis or wavelets. We utilize 

the OMP algorithm in designing an overcomplete 

dictionary using pre-specified functions since it is faster 

and more manageable for evaluating the sparse 

representation [18]. One of the fundamental issues for 

representing signals is to choose a dictionary. The 

primary approach is to present a dictionary that is much 

more appropriate to all signals in the issues. For 

example, if the data is echocardiography images, we 

should look for a suitable dictionary for all parts of the 

image. We employ sine and cosine functions, as well as 

four wavelet families based upon the available 

knowledge of the nature of IVTC signals along with the 

cyclic behavior of the heart. The wavelet parts are 

considered in the dictionary because we face minor 

variations and rapid transitions. One of the critical 

issues is the selection of adequate main wavelets. To 

reduce and simplify the complex structure of a 

dictionary, we use orthogonal wavelets. There are a 

variety of orthogonal wavelets, such as Symlet, Coiflets, 

Haar, Daubechies, and discrete Meyer. Four wavelet 

families are designated among the aforementioned 

orthogonal wavelets at our disposal, each with the ideal 

form for the construction of the IVTC: Symlet (sym2), 

Symlet 4 (sym4), Daubechies 4 (db4), and discrete 

Meyer (dmey). Therefore, for a signal characterized by 

the length T, there are T atoms, where T/2 atoms relate 

to the shifted pulse signals convolution with the scaling 

functions, and the other T/2 atoms relate to the functions 

of the wavelet. In total, the number representing each 

column in the wavelet section in the dictionary indicates 

4T for the four wavelet families. 

   As for the section on sine-cosine, it merely is sufficed 

to put forth sine and cosine functions: 
 

   sin   and  cos    

    1, ,      1, ,
2

t tk k
T T

Tk t T

 

 
 

 
 

(1) 

 

   Hence, we have T/2 atoms for the sine section and T/2 

atoms for the cosine section, respectively. Then, for 

IVTC signal with length T, the overcomplete dictionary 

features T rows along with 5T columns—standing for 

atoms—, and the relevant sparse coefficient features 5T 

rows: 
 

   1 5 5 1Y T D T T X T       (2) 

 

where Y is an M×1 signal vector, X represents an N×1 

sparse coefficient vector, and D is an N×M dictionary 

matrix. The sparse coefficients X must be computed by 

a proper sparse recovery algorithm [18]. 

 

2.4 Sparse Reconstruction of Temporal IVTC 

   First, sparse representation coefficients of temporal 

IVTC are computed. Given the sparsity constraint, the 

set of possible signals size can be significantly 

downscaled compared to the primary signal space, given 

the constraint of sparsity. A sample IVTC signal 

obtained from coordinates of (x, y) for t within the 

range 1-60 of an actual echocardiography sequence is 

illustrated In Fig. 3. Applying the sparse representation 

technique, sampling time and sizable storage space can 

be decreased by a wide margin. 

   The optimal local solution in each iteration is sought 

by the greedy strategy to reach the optimal holistic 

solution. IVTC signals are reconstructed by the OMP 

algorithm and designed dictionary. 

   In the second step, the number of sparse coefficients is 

examined from various coordinates, which have 

disparate cardiac textures. These points are located on 

the cardiac muscle, or the ventricle border, or possibly 

in the atrial cavity. Although the number of non-zero 

sparse coefficients for points on the tissue on the 

ventricle boundary and in the cavity is the same, their 

amplitudes are varied. The points on the tissue have 

high amplitudes. The different amplitudes of sparse 

coefficients can be considered a feature to separate the 

cavity and the tissue points. Therefore, a low-value 

threshold is applied to all sparse coefficients to remove 

small coefficients in the cavity. In this way, it is 

possible to obtain a varied property to separate points 

within the cavity and the tissue. A point located on the 

cavity is shown in Fig. 4(a). Fig. 5(a) shows the sparse 

coefficients of the IVTC signal of the mentioned point.
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Fig. 3 A sample IVTC signal for a point on the atrial cavity. 
 

  

(a) (b) 

Fig. 4 a) A point located in the left ventricular cavity and b) on the cardiac muscle. 
 

  

(a) (b) 

  

(c) (d) 

Fig. 5 Sparse coefficients of the IVTC signal of the point shown in Fig.4 that a) was located in the cavity, b) after primary 
 

thresholding, c) was located on the cardiac muscle, and d) after primary thresholding of the pixel located on the cardiac muscle. 

 

The X-axis represents the number of dictionary columns 

(Atom numbers), and the Y-axis shows the values of the 

sparse coefficients. The maximum absolute value of the 

sparse coefficients in this example is 0.14. Fig. 5(b) 

illustrates the pixel coefficients after the initial 

thresholding; the number of non-zero coefficients is 8. 

A point located on cardiac muscle is shown in Fig. 4(b). 

Fig. 5(c) illustrates the sparse coefficients of the just 

mentioned point; the maximum absolute value of the 

sparse coefficients is 3.5. Fig. 5(d) shows the pixel 

coefficients after the initial thresholding; the number of 

non-zero coefficients is 25. In the same way, the 

number of non-zero coefficients of a point located on 

the ventricle border is 15. 



Feasibility Study of Echocardiographic Images Segmentation 

 
… S. Fouladifard et al. 

 

Iranian Journal of Electrical and Electronic Engineering, Vol. 18, No. 2, 2022 5 

 

2.5 Endocardium Segmentation 

   The number of non-zero sparse coefficients for the 

points located on the tissue on the ventricle boundary 

and in the cavity are the same. Therefore, the histogram 

of the number of pixels with the same number of non-

zero sparse coefficients is plotted (Fig. 6(a)). After 

applying the initial thresholding, the histogram of the 

number of pixels of non-zero sparse coefficients is 

drawn. This histogram is used to obtain an acceptable 

threshold for the segmentation of these points, located 

on the cardiac muscle, the cavities border, and in the 

cavities. Fig. 6(c) illustrates the histogram from the 

healthy subject with the axes X and Y, featuring the 

number of non-zero coefficients and the number of 

pixels, respectively. Thresholds are determined based on 

the histogram diagram, and they are different values for 

different datasets. Two thresholds are experimentally 

determined to separate the points located on the muscle 

and in the cavity. If it is supposed to divide the 

histogram diagram into five parts (Fig. 6(c)), the first 

part shows the points located in the cavity, and the last 

one indicates the points located on the muscle in the 

successive frames. Thus, the number of remaining 

sparse coefficients relates to the points where their 

location is changed by changing the frames. Therefore, 

all IVTC signals could be divided into three parts based 

on the sparse representation method. 

   After the initial thresholding, a figure created by 

echocardiography sequence is displayed in which the 

intensities of each pixel rather than their sparse 

coefficients are considered. After that, the image is 

called “The number of sparse coefficients”. The number 

of sparse coefficients images of a healthy subject is 

shown in Fig. 7(a). This image represents all the 

consecutive frames; the points located on the muscles 

are indicated by white pixels (one point), the points 

located in the cavities are shown by black pixels (zero 

points), and gray points correspond to the pixels, which 

in some frames are located inside the muscles, and in 

the other frames contained cavities (e.g., pixels 

surrounded heart valve or ventricle borders). 

   Since thresholding is applied to IVTC signals, the 

points located on the muscles and in cavities (white and 

black pixels) are fixed on the successive frames. The 

remaining points are shown with values of their initial 

brightness intensity. Therefore, another threshold is set 

on the pixel values over the grayscale range by which 

the remaining points become binary. In the end, the 

consecutive images are obtained in binary form. The 

availability for fast and reliable segmentation is 

demonstrated by the proposed method results. The block 

diagram from the proposed method is exhibited in 

Fig. 8. 

 

3 Results 

   Using a Vivid3 ultrasound imaging system to feature a 

frame rate of ∼60 Hz, 2D echocardiographic sequences 

are obtained from patient and healthy subjects, each 

sequence spanning a cardiac cycle. The discriminating 

sparse representation method is explored in the images 

of endocardium and echocardiography using 

experimental analyses. 

   The number of non-zero sparse coefficients for points 

located on the tissue on the ventricle boundary and in 

the cavity are the same; the bar histogram for the

 

  

(a) (b) 

  

(c) (d) 

Fig. 6 Histogram diagram for echocardiogram sequences of a) healthy subject, b) patient subject before applying initial thresholding, 
 

c) healthy subject, and d) patient subject after applying initial thresholding. 
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(a) (b) 

Fig. 7 The number of sparse coefficient’s image of a) healthy subject and b) patient subject. 
 

 

Fig. 8 Block diagram of the proposed method. 

 

  

Fig. 9 Frame 10 of patient images (left) and frame 25 of patient images (right), the points in tissues and cavities (white and black 
 

pixels) are fixed on the successive frames. 

 

number of pixels is shown in Fig. 6(b). Therefore, a 

value of a low threshold is applied to all sparse 

coefficients for eliminating small coefficients always 

present in the cavity. The number of non-zero sparse 

coefficients is different. In this way, it is possible to 

obtain an additional property to separate points within 

the cavity and the tissue. 

   Two thresholds are determined to separate the points 

located on the muscle from the ones in the cavity. 

Fig. 6(d) shows the histogram diagram for 

echocardiogram sequences of a patient (subject) after 

applying the initial thresholding to divide the histogram 

diagram into five parts. The first part shows the points 

in the cavity, and the last part reveals the points inside 

the muscle. 

   The number of sparse coefficient images of a 

patient (subject) is shown in Fig. 7(b), representing all 

the consecutive frames. Fig. 9 shows frames 10 and 25
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Fig. 10 Setting another threshold on the gray levels of 

pixels. 

(a) (b) 

Fig. 11 A binary image a) of the proposed method of a healthy subject and 
 

b) obtained by setting the threshold to an image of frame 21.  

 

  

(a) (b) 

Fig. 12 Correct detection of left ventricular borders by active contour without edges method, images related to a a) healthy subject 
 

and b) patient subject. 

 

of the patient sample images once the thresholding of 

the points in muscles and cavities (white and black 

pixels) are fixed on the successive frames. The 

remaining points are shown with values of their initial 

brightness intensity. Afterward, another threshold is set 

on the pixel values over the grayscale range by which 

the remaining points become binary (Fig. 10). 

   Finally, the consecutive images become binary by the 

proposed method. Fig. 11(a) shows a binary image of 

the healthy sample subject. Video 3 shows the binary 

images of the first healthy subject obtained from the 

following proposed method; also, Video 4 shows the 

binary images of the first patient subject. According to 

the comparison results of sparse representation 

segmentation made by applying a threshold on original 

clinical data (frame 21), some tissues of the right side of 

the left ventricle and muscles around the valves are 

missing (Fig. 11(b)). 

 

3.1  Measuring Left Ventricular Ejection Fraction 

   Left ventricular volumes and ejection fraction are 

challenging to be assessed by 2D echocardiography; and 

yet well established as functional parameters. Two-

dimensional echocardiography has evolved into a 

significant and relatively facile method to be used. To 

evaluate the performance of the proposed method, the 

surface area of the left ventricular is obtained and an 

active contour without edges method is used [6]. The 

end-diastolic and end-systolic frames (when the mitral 

valve was closed) are considered for computing the 

ejection fraction. 

   Firstly, the initialization is performed in the first 

frame, and then the left ventricle surface area is 

automatically obtained in the remaining frames. Fig. 12 

shows examples of images of patients and healthy 

subjects. The left ventricle borders are successfully 

detected. The proposed method is compared with the 

contour, carefully tracked boundaries of left ventricular 

manual tracings by an echocardiography expert. 

Videos 5 and 6 show the left ventricular surface changes 

in the first healthy and patient subjects obtained from 

the proposed method. 

   The proposed method is compared with those of 

active contour and level set. The active contour method 

is applied to the initial healthy data. As illustrated in 

Fig. 13, by changing the control parameters and 

increasing the iteration number, the contour is stopped 

in the initial frames and does not cover the left ventricle. 

Further, an optimal value for left ventricle tracking is 

achieved using the level set method; the difference with 

the proposed method is that it took a long time for the 

contour to cover the whole left ventricle (Fig. 14). 

Videos 7 and 8 shows the left ventricular surface 

changes of the left ventricle obtained by the level set in 

the first and second healthy subject, respectively. 
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Fig. 13 The active contour method was 

applied to the initial healthy subject; the 

contour was stopped in the initial frames. 

(a) (b) 

Fig. 14 Detection of left ventricular borders by level set method, images related to a 

a) First healthy subject and b) Second healthy subject. 

 

  

(a) (b) 

Fig. 15 Diagram of left ventricular surface changes in a) healthy subject and b) patient subject. 
 

   

(a) (b) (c) 

Fig. 16 a) Illustrates sample clinical frames of the second healthy subject. The surface of the left ventricle: obtained b) by the 

proposed method, and c) manual tracing by an expert. 
 

   Fig. 15 shows the left ventricular surface changes in 

patient and healthy subjects. Axes X and Y indicate the 

number of frames and surface changes of the left 

ventricle, respectively. Changes in the left ventricular 

are significantly higher in healthy subjects compared to 

the patient subjects. 
 

3.2  Manual Segmentation and Validation 

Processes 

   LV borders can be extracted using a sparse 

representation method and quantify ejection fraction 

with good agreement with manual tracing. The 2D 

frames from ED and ES images are taken, and the left 

ventricular endocardial border is manually segmented 

by an expert cardiologist. This manually segmented 

border is used as ground truth to evaluate the 

segmentation of the left ventricular obtained using the 

proposed semi-automatic method. The reference contour 

and semi-automatically segmented contour are 

compared using values of ejection fraction described 

below. The ejection fraction manually obtained by the 

physician on the left ventricle level is evaluated. There 

is an insignificant difference between the ejection 

fraction obtained by the proposed method and the 

contour of the left ventricle as determined by the 

physician (manual tracings). Table 1 shows the 

percentages of the ejection fraction obtained by the 

proposed method, level set, Otsu, active contour, and 

the physician for two healthy data samples; the error 

percentages were 0.83 and 2.33. Fig. 16(a) illustrates 

sample clinical frames of the second healthy subject.
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Table 1 The percentages of the ejection fraction obtained by the proposed method, level set, Otsu and the physician, and percent 

error for two healthy subjects. 

Otsu + Active contour 

/ Percent error 

level set / 

Percent error 

Proposed method (Sparse representation + 

Active contour without edges) / Percent error 

Manual 

tracking 
Ejection fraction 

45.97 / 13.34 51.43 / 3.05 53.49 / 0.83 53.05 First healthy subject 
37.21/ 40.82 43.32 / 31.1 61.41 / 2.33 62.88 Second healthy subject 

 

Fig. 16 shows the surface of the left ventricle obtained 

using the proposed method (right) and manual tracing 

by an expert (left). Video 9 shows original 

echocardiography images of the second healthy subject, 

video 10 shows the left ventricular surface changes in 

the second healthy subject obtained by the proposed 

method, and videos 11 and 12 show the left ventricular 

surface changes in the first and second healthy subjects 

obtained through the manual tracing. According to the 

cardiology specialist, the value of ejection fraction is 

correctly calculated, and the proposed method may be 

considered novel to obtain ejection fraction. 

 

4 Discussion and Conclusion 

   This paper presents essential aspects of sparse 

representation and dictionary design in the segmentation 

of echocardiographic image sequences of humans. The 

proposed method is based on sparse representation and 

design of over-complete dictionaries based on prior 

knowledge of the IVTC temporal signals. Our method 

achieves the segmentations comparable with manual 

tracings by experts in echocardiography on healthy and 

patient data alike. The extrapolations from the ejection 

fraction calculated from the segmentation results are 

entirely compatible with manual results. Nevertheless, a 

limitation arises as there are only two manual tracing 

results earmarked for healthy data sets. The availability 

of manual patient results obtained independently from 

patients may bear a more comprehensive testimony to 

the method's validity. Furthermore, the technique has 

only been tested on small datasets. Prospective studies 

are expected to aim at working out a solution to the 

existing constraints and promoting its application to 

further modalities and acquisition settings. 

   In this article, the OMP greedy algorithm is used due 

to its simplicity and speed. It is possible to use an 

optimized algorithm to reconstruct the sparse 

coefficients. Furthermore, the trained dictionaries can be 

used instead of designing overcomplete dictionaries 

using the pre-specified functions. The histogram of non-

zero points of sparse coefficients can be compared with 

more data samples related to healthy individuals or 

patients. The probability distribution parameters can be 

obtained with a higher number of datasets. The 

proposed method can be applied in combination with 

other techniques of echocardiography images diagnosis 

to obtain highly accurate computation of the parameters. 

Besides, the proposed method can be applied to 3D 

echocardiography images to get the left ventricular 

volume. Our approach also may be used for other 

imaging modalities, such as MRI or CT. 
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