

Iranian Journal of Electrical and Electronic Engineering, Vol. 17, No. 3, 2021 1

Iranian Journal of Electrical and Electronic Engineering 03 (2021) 1730

Area Reduction of Combinational Circuits Considering Path

Sensitization

S. Abolmaali*(C.A.)

Abstract: Area reduction of a circuit is a promising solution for decreasing the power

consumption and the chip cost. Timing constraints should be preserved after a delay

increase of resized circuit gates to guarantee proper circuit operation. Sensitization of paths

should also be considered in timing analysis of circuit to prevent pessimistic resizing of

circuit gates. In this work, a greedy area reduction algorithm is proposed which is path-

based and benefits well from viability analysis as the sensitization method. A proper metric

based on viability conditions is presented to guide the algorithm towards selecting useful

circuit nodes to be resized with acceptable performance and area reduction results. Instead

of using gate slacks in resizing the candidate gates, all circuit gates are down-sized first and

then the sizes of circuit gates that violate the circuit timing constraint are increased. This

approach leads to considerable improvement in the complexity and performance of the

proposed method. Results show that area improvement of about 88% is achievable.

Comparison to a pessimistic method also reveals that on average 14.2% growth in area

improvement is obtained by the presented method.

Keywords: Area Reduction, Gate Resizing, Path Sensitization, Timing Analysis, Viability

Analysis.

1 Introduction1

N recent years, due to the widespread use of portable

electronic devices, there has been considerable

research on reducing the chip area and lowering the

power consumption of digital circuits. One acceptable

method attained to fulfill the above requirements is

reducing the size of some circuit gates. This way, in

addition to the decrease in the area of the circuit, gate

capacitances are also reduced which results in lower

power consumption of the circuit. However, a reduction

in the gate size also causes the delay of the gate to be

increased, which can lead to violation of the circuit

timing constraints.

 To prevent this obstacle, timing analysis (path-based

or block-based [1]) should be utilized during the gate

Iranian Journal of Electrical and Electronic Engineering, 2021.
Paper first received 28 November 2019, revised 11 January 2021, and

accepted 15 January 2021.

* The author is with the Electrical and Computer Engineering
Department, Semnan University, Semnan, Iran.

E-mail: shabolmaali@semnan.ac.ir.

Corresponding Author: S. Abolmaali.
https://doi.org/10.22068/IJEEE.17.3.1730

resizing process to prohibit the delays of circuit paths to

become greater than the circuit timing constraints.

Timing analysis should be accompanied by the

sensitization of paths in calculating the path delays. Path

sensitization means the preparation of conditions for a

transition to pass through each gate of the path, from the

start to the end. Not considering the path sensitization

may lead to pessimistic values for circuit delay.

 In the dynamic sensitization method, considering the

gate delays brings more flexibility and accuracy [2]. In

this method, temporal and transitional values on the gate

inputs, which cause temporal sensitization of the gates,

are also considered. Two well-known dynamic

sensitization conditions are viability analysis [2] and

Chen-Du criterion [3]. The exactness of the Chen-Du

sensitization criterion is ascertained, while the viability

analysis estimates the same circuit delay as the Chen-Du

method by not considering the complex gates in the

circuit implementation [3, 4].

 Many existing methods for gate resizing use the

context of slack of gate delays to determine the amount

of delay which can be added to the gate delay by

shrinking the gate size, while the circuit timing

constraints are not violated. The slack of a gate is

I

mailto:shabolmaali@semnan.ac.ir
https://doi.org/10.22068/IJEEE.17.3.1730

Area Reduction of Combinational Circuits Considering Path

… S. Abolmaali

Iranian Journal of Electrical and Electronic Engineering, Vol. 17, No. 3, 2021 2

defined by Maximum Arrival Time (MAT) and Required

Time (RT). The MAT is the delay of the latest signal

which arrives at the gate after the changes in the value

of circuit primary inputs at time 0. The RT is the latest

time at which a signal reaches the gate without

contravening the timing constraints of the circuit. For a

gate g, the slack is defined as RT(g)-MAT(g). A

positive slack means the delay of the gate can be

increased by the value of the slack. Using path-based

timing analysis, the slack of the gate is characterized as

the difference between the timing constraint of the

circuit and the delay of the longest path passing through

the gate.

 To prevent the generation of pessimistic results, path

sensitization should be considered in the slack

calculation [4]. The longest topological path traversing

through a gate might be considerably longer than the

longest sensitizable path (true path) passing through the

gate, which leads to a smaller slack value for the gate.

 There are plenty of works concentrating on optimizing

circuit parameters like area, power, leakage, etc. using

gate resizing. In [5], for a technology mapped circuit (a

well-organized technology mapping procedure is used

to map circuit functions to the library) under timing

constraints, the power consumption is optimized by

employing gate resizing. A discrete, general, restricted

optimization problem model has been utilized to

formulate the problem, and integer linear programming

and the simplex method have been used for solving the

problem by a fast algorithm. Work [6] uses the potential

slack that may potentially be employed for circuit

optimization. The effectiveness of potential slack as a

metric for the performance of the combinational circuit

is confirmed. Several approaches for approximating the

circuit potential slack are explored and an optimal,

polynomial-time procedure is presented. Many

applications are presented for gate placement and

resizing to illustrate the prediction capabilities of

potential slack for circuit performance.

 The authors of [7] provide a method for employing

two supply voltages to improve power consumption in

digital circuits using CMOS components under timing

constraints. The power/delay pattern and the distribution

of timing slack are first analyzed in a technology-

mapped lattice. Then, by comprehensively using the

slacks, timing-constrained enhancement is performed in

a new paradigm. Following this paradigm, the power

reduction is transformed into a maximal-weighted-

independent-set problem that is solvable in polynomial

time on transitive graphs. By inspecting the relationship

between the node delay and slack changes, full

utilization of slacks is investigated.

 Work [8] utilizes a dual-threshold voltage (Vth)

technique for optimizing overall power consumption.

By employing linear programming in the simultaneous

adjustment of Vth and resizing of the gates, it achieves

considerable power improvement under delay

constraints. The optimal slack value is assigned to the

gates by the linear programming procedure with the aid

of power-delay sensitivity. The authors of [9] employ

budget management in improving the power dissipation

of CMOS circuits. Budget management increases delay

gradually within a circuit without disobeying timing

constraints. The considered budget helps in reducing the

area and power consumption of the combinational

circuits. The zero-slack algorithm, that specifies the

slacks in the circuit, is covered and a gate resizing

procedure is introduced that utilizes budget management

in circuit power optimization.

 In [10] the authors state that in physical synthesis,

latch placement is difficult to succeed since passing

through the chip requires several cycles. They introduce

RUMBLE, an enhancing method for the physical

synthesis of latches that improves circuit timing using a

linear timing model by synchronic replacement of

several gates. RUMBLE is an incremental method that

utilizes static timing analysis (for slack calculation) for

optimizing the critical path's timing after gate resizing.

In work [11] placement and gate resizing methods are

combined to multiple-Vth approach by employing slack

distribution management to reduce power consumption.

 Authors of [12] present an efficient method for gate-

version and Vth selection. Their algorithm first generates

a perfect solution. Then, the leakage power is reduced

by utilizing a Lagrangian Relaxation (LR) technique

without violating timing constraints. If the gate-versions

obtained by LR generate negative values for some

slacks, a timing retrieval technique is employed to

produce almost zero positive slack. Article [13]

introduces OWARU, an incremental method for timing-

driven gate allocation. Timing of the critical paths is

optimized by a path smoothing algorithm that is

conscious of the free space of the circuit. The location

of the gates, placed on the critical paths, is changed to

free spaces provided by the smoothed paths. Evaluation

of the resulted delay changes is performed by an

incremental static timing analysis procedure.

 In [14], the authors state that block-based timing

analysis methods have much less execution time in

comparison to path-based ones however with less

accuracy. The work is the modification of a block-based

timing analysis procedure having both proper speed and

perfect accuracy. The slack differences of critical paths

are minimized between path-based and block-based

analyses by considering a weight parameter for each

circuit gate and optimizing these parameters. Although

sophisticated methods are introduced in the above-

mentioned works, however, none of them consider path

sensitization in their works.

 In article [15] area improvement is strengthened by

timing analysis through the utilization of information

obtained by a sensitization condition in calculating the

gate slacks. The work presents a greedy heuristic for are

improvement by gate sizing. It chooses from a pre-

characterized library of different implementations of

gates. When a gate is slowed down in this work, only

Area Reduction of Combinational Circuits Considering Path

… S. Abolmaali

Iranian Journal of Electrical and Electronic Engineering, Vol. 17, No. 3, 2021 3

the paths passing through that gate are considered and

will be lengthened. However, the lengthened paths may

affect the sensitization conditions of other circuit paths

(as be explained in section 3) which is not taken into

account. The work uses an improved Brand-Iyengar

sensitization criterion [16] which is not exact and is

more useful for its proposed idea in terms of reducing

processing time.

 In [17] for improving the power consumption of a

circuit, the gates placed on noncritical paths are

replaced with the smaller ones. Single and multiple

gates resizing is employed for reducing the power

dissipation. Gates are identified for resizing by a path-

based method that considers false paths in the slack

calculation. The loose sensitization criterion defined in

[3] is used in this paper which is not exact in all cases.

In the slack calculation process, the work slows down

the earliest side-input that has the controlling value by

Δd without changing the falseness of a false path. Then,

it is inferred that all gates in the fan-in cone of the

earliest side-input with controlling value have time

slack smaller than or equal to Δd. Here, sensitization

analysis is not considered for the gates in the cone, and

therefore the slack values of gates are underestimated.

To mitigate the execution time overhead, paths with

lengths greater than a specified value are considered for

computing the gate slacks. R×delay, for 0 ≤ R < 1, is

chosen as the threshold value. Thus, the precision of

their method changes for different values for R. Also, no

execution time is reported in this work.

 Authors in [18] present a clustered voltage scaling

procedure, which is path-based and considers the false

paths in the analysis. The low supply voltage is assigned

to the circuit gates with extreme slack, while the high

supply voltage is considered for the gates placed on the

critical paths. Original Brand-Iyengar sensitization

criterion is used in this work which is not an exact

method. In addition, many of the proposed methods are

related to the clustering for voltage scaling, which

makes their method not to be general. Moreover, the

falseness of paths is not checked after voltage changes

of each gate.

 Authors in [19] suggest an approach at the design

level to compromise reliability and supply voltage. They

enlarge the extent voltage levels under acceptable

timing violation. This is obtained by the methods that

are employed in power-aware slack redistribution that

allows an extended compromise between voltage and

reliability. A design with more graceful fails is obtained

that improves power consumption substantially with a

negligible decrease in the application performance. Path

sensitization is considered to prevent obtaining

pessimistic circuit delays incurred by the existence of

the false paths, which is not accurate. This is done by

using a parameter α in calculating the error rate, which

is acquired by vast simulations.

 The work [20] is an SAT-based method using Timed

Characteristic Functions (TCF) to implicitly calculate

the longest true delay of a circuit. It formulates a large

CNF file for the circuit and its components to find the

circuit delay by decreasing the threshold time T slowly

from an upper bound. Timing analysis is used to obtain

the boundary. The process continues until the

fulfillment of the CNF formula. Also, it uses two

reduction techniques, equivalence reduction and

constant reduction, for simplification of the CNF

formula. It requires a lot of variables to construct the

circuit CNF formula. The situation becomes worse

when both rise and fall transitions are considered.

Considering formulation for TCFs of the whole of the

circuit is not required for obtaining the longest circuit

path and is the major drawback of this work.

 Authors of [21] present a TCF-based timing analysis

method for path-specific timing verification which uses

methods of [20] for circuit timing and logic formulation.

They consider that a circuit and a specific path are given

for timing analysis. They only consider the sub-circuit

in the transitive fan-in cone of the primary output node

of the specified path to be formulated. This way, the

mentioned drawback of [20] is mitigated. For the to-be-

verified paths sharing the same primary output node,

they see the same sub-circuit for analysis. This is useful

when multiple paths can be of interest for verification.

However, in the optimization process, where paths

should be analyzed one-by-one for selecting the gates

for resizing, processing multiple paths is not beneficial.

Besides, when a node delay is changed, this work re-

evaluates its formula from the scratch and does not

reuse the portions which remain unchanged.

 In [22], Adjacency Criticality which is a new

optimization metric is introduced. The work considers

the process variation and the effect of gates lying on the

fan-out cone to define the metric as the probability of

placing the gates on the critical paths of the circuit. To

enhance circuit timing yield, a statistical gate re-sizing

technique is suggested. Statistical static timing analysis

is utilized to evaluate circuit performance. However,

path sensitization is not considered in this work. The

research of [23] proposes a discrete gate sizer based on

Lagrangian relaxation, that is very useful in decreasing

the power consumption, to efficiently reduce the power

and timing of the circuit. The proposed gate sizing

technique is multi-threaded. Concurrent resizing of

circuit gates is aided by the netlist traversal based on the

directed acyclic graph. Static timing analysis is utilized

in this work to update the circuit timings. Nevertheless,

no path sensitization method is used in the timing

analysis procedure.

 All of the above-mentioned works which consider

path sensitization, except the ones that use TCFs, do not

employ an exact sensitization method. Methods

provided in these works are general and work with any

sensitization criterion. None of the researches reviewed

concentrate on the properties of the exact sensitization

methods and their implementation which can be useful

in developing algorithms that are based on applying

Area Reduction of Combinational Circuits Considering Path

… S. Abolmaali

Iranian Journal of Electrical and Electronic Engineering, Vol. 17, No. 3, 2021 4

changes in the circuit and updating timing and

sensitization attributes of the circuit multiple times.

 In this article, a false-path-aware gate resizing

algorithm is proposed which exploits the viability

analysis [2] in timing analysis utilized for assessing

whether the circuit delay meets the required timing

constraints of the circuit. The algorithm uses SAT

solvers for checking the satisfiability of viability

conditions. The proposed method is path-based since

analyzing the viability conditions requires traversing

circuit paths. In the presented algorithm, no slack value

is calculated for circuit gates. Instead, the size of each

circuit gate is decreased at the beginning and then the

sizes of circuit gates that violate the circuit timing

constraint are increased. This approach prevents

redundant repetitions of inner loops of the algorithm

when the gate slacks are utilized. This way, the

performance of the algorithm is enhanced, and scaling

the size of the circuit becomes feasible.

 In addition, when a circuit path is chosen by the

algorithm to provide some gates to be resized, the gate

selection approach has a considerable impact on the

overall reduction of gate sizes and execution time of the

overall algorithm. In this article, a proper metric for gate

selection is proposed which is based on the viability

conditions and the number of paths traversing through

circuit nodes. The proposed algorithm of this work is

incremental. When a gate delay is changed by resizing,

the viability conditions, for those circuit paths which are

analyzed previously and are not affected by this delay

change, are not reprocessed. The major contributions of

this work are:

1. Study of gate delay changes on altering the

viability of circuit paths.

2. Proposing a complete path-based algorithm of gate

resizing which utilizes viability analysis in the

selection of candidate nodes.

3. Decreasing the size of all circuit gates at the

beginning of the proposed method and then

increasing the size of circuit gates that violate the

circuit timing constraint, instead of using gate

slacks.

4. Introducing an incremental algorithm for gate

resizing which uses previously-obtained not-

altered viabilities of circuit paths.

5. Proposing a proper metric, based on viability

conditions, to select the best nodes to become a

candidate for resizing.

 The article organization is as follows. The next section

introduces the viability analysis. Its concept and the

related implementation considerations are explained. In

Section 3, the impact of gate resizing on alteration of

the viability of circuit paths is expressed. Section 4

describes the proposed algorithm of gate resizing which

is equipped with viability. The heuristic metric which

enhances the efficiency of the algorithm is presented. In

Section 5, implementation considerations are pointed to.

Fig. 1 A circuit portion to specify the concept of viability.

Section 6 contains the experimental results of the

execution of the algorithm and discussion on them. The

article is concluded in Section 7, Conclusions and

Future Works.

2 Viability Analysis

 This section specifies the viability analysis and

important considerations of its implementation.

2.1 Viability Concept

 The AND gate g in Fig. 1 with inputs a and b, along

with a circuit path denoted by the dashed line, are used

to illustrate the main concept of the viability analysis.

Assume tar is the time that a transition through the

depicted path arrives a (online input to g). Consider by

static sensitization, b (side input to g) takes the stable

value 0 (i.e., controlling value of g at t = ∞). In this

case, the transition on a is blocked since g is not

sensitized. Now consider b has initial value 1 and at the

time tar + 1 it gets value 0. In this situation, non-

controlling value 1 is present on input b at the time the

transition on a reaches g, and thus, g can temporarily be

sensitized. Here, input b is considered as the late side

input. It is stated in [24] that according to the viability

concept, the sensitizing condition of a gate can be

changed by a late side input to the gate.

 The viable paths concept is introduced in [2]. Given

an input vector v, they allow a gate to transmit a

transition from one of its inputs. The path that the

transition traverses is begun from a circuit primary input

and ends at the gate’s online input. Those paths which

terminated at the side inputs of the gate are considered.

Work of [2] states that under an input vector v, a path P

containing the nodes {f0, ..., fm} is viable if and only if

for each gate fi and each side input h ≠ fi−1 to fi, either:

1. h is set to its sensitizing (not blocking) value by

v, or

2. h terminates a viable path under v with a delay

longer or equal than the delay of the partial path

{f0, …, fi−1}.

2.2 Viability Function

 A Boolean function is utilized to define the generic

viability analysis that checks a number of

conditions [2]. For path P, the viability function ψp is

formulated as:

1

 i

m
f

P P

i

 


 (1)

a

b

Area Reduction of Combinational Circuits Considering Path

… S. Abolmaali

Iranian Journal of Electrical and Electronic Engineering, Vol. 17, No. 3, 2021 5

1,

1

(())i if gi
P U

U g Ui

f
S

f

  







  (2)

,

,
g t

g t

P

P

 


 

(3)

where the addition (multiplication) performs the logical

OR (AND) operation. Equation (1) necessitates the

viability of all path nodes for the viability of the path.

 All situations that make node fi of P viable are stated

in (2). The subset of the side inputs of fi having

controlling value is denoted by U in this equation. Other

side inputs are included in SU. Term ψg,t in (3) states that

for making fi viable, the list of partial paths terminating

at g should contain at least one viable path whose length

is greater than the length of partial path {f0, …, fi−1}. In

this formula, the set of terminating paths at g that have

not smaller delay than t is denoted by ,g t .

 In addition,
1

i
U

i

f
S

f 




 means that the side inputs in SU

have sensitizing (non-controlling) value, and thus, has

no impact on the viability formula of the node. At last,

considering Ssi be the set of side inputs of fi, ΣU implies

that all the subsets of Ssi should participate in the

evaluation. For input vector v, the necessary and

sufficient condition for path P = {f0, …, fm} to be viable

is ψP(v) = 1.

2.3 Dynamic Programming Approach for

Implementing the Viability Function

 From the available search procedures usable in

obtaining the longest circuit path, the best-first

method [25] benefits from a priority queue to store the

partial sensitizable paths. The queue ordering is based

on the delay of the longest partial path extension, or the

potential full length of the partial path that is called the

esperance. In the best-first method, the search process is

ended by arriving at an output node. This is because if

such a path with greater delay exists, in the best-first

search procedure it should be recognized earlier. The

number of paths examined by the best-first procedure is

K·D in which the number of false paths is denoted by K,

and D is the circuit graph diameter [25]. In contrast, an

exponential number of paths are processed under the

depth-first method to find the longest circuit path.

 For a circuit path, all partial paths which terminate at

the nodes of the path may contribute to the viability of

the path [2]. This requires a recursive analysis of partial

paths toward the input pins of the circuit, which may

cause the same partial path to be traced multiple times

in the analysis.

 Besides, the best-first search method finds all side

paths longer than a candidate path before the candidate

path. Therefore, the recursive trace of all paths which

terminate at the side inputs of g is not required. The

viability function can be implemented by utilizing a

dynamic programming procedure to benefit well from

the advantages of the best-first method, which results in

lower computations [2].

3 Gate Resizing and Changes in the Viability of

Circuit Paths

 When the delay of a gate is changed, some false paths

may become true and some true paths may become

false. First, more about sensitization conditions of

viability is described. Exact algorithms, i.e. viability

analysis and Chen-Du criterion, consider the floating

mode analysis. In this mode, the initial value of each

circuit node is considered as unknown. After the

primary inputs receive an input vector, each node

experiences a single transition to a known value that

remains on the node [3]. In Fig. 2, obtained from [26],

the illustration of viability conditions using floating

mode analysis is presented.

 The waveforms are related to the input pins of a

circuit gate. The upper one is for the online input of the

gate and the others are related to the side inputs. The

dashed line shows the stable time of the online input.

Either non-controlling (nc) or controlling (c) values can

be observed on the side inputs. The shaded area points

out that the signal has an unknown value and it may be

unstable (varies in time). To satisfy the viability

conditions, the side inputs should either have the non-

controlling value or be stabilized later than the transition

on the online input. It can be seen, from the two

waveforms at the bottom of the figure, that the stable

value of the late side inputs is not important (can be

either controlling or non-controlling value).

 The impact of a gate delay change on the sensitization

of circuit paths is explained through the simple circuit in

Fig. 3. The circuit has two primary inputs PI1 and PI2,

and a primary output PO. The name and delay of circuit

gates in picoseconds (ps) are written below them. The

same delay value is considered for both rise and fall

Fig. 2 Illustration of viability conditions using floating mode

analysis [26].

Fig. 3 Impact of a gate delay change on the sensitization of

circuit paths.

c

nc

0/1

nc

P1

PO
g3, 20

g2, 12.5→25

w2

w1

g1, 20
PI2

PI1

Area Reduction of Combinational Circuits Considering Path

… S. Abolmaali

Iranian Journal of Electrical and Electronic Engineering, Vol. 17, No. 3, 2021 6

transitions in the gates. The gate g2 is the one that is

supposed to be down-sized. Two paths P1 and P2,

denoted by dashed lines, are considered to be analyzed.

First, g2 is considered to have the delay value 12.5 ps,

and PI1 to have a transition to 1 at time 0. In this case,

for P1 to be viable, PI2 should have value 1 for

allowing g1 to be sensitized. Consequently, w1 has

value 1 at time 20 ps, and w2 has value 0 at time

12.5 ps. Therefore, the transition on w1 cannot proceed

since the side input w2 has a stable controlling value at

time 20 ps. Changing PI2 to have value 0 does not lead

to sensitizing P1, too. Thus P1 is a false path. However,

if the delay of g2 becomes 25 ps (by down-sizing), w2

acts as a late side input for w1, and therefore P1 is

sensitized. Thus, increasing the delay of a gate can

provide the condition for a line to acts as a viable late

side input for a path gate, and for a false path to

becoming true.

 Now consider g2 to have delay value 12.5 ps and PI2

to have a transition to 0 at time 0. The rising transition

appears on w2 at time 12.5 ps. Since PI2 has a falling

transition, and if PI1 has value 1, the falling transition

on w1 happens at time 20 (later than transition on w2).

Thus, w1 acts as a viable late side input for w2, and P2

is a true path. However, if the delay of g2 increases to

25 ps, when the rising transition appears on the online

input of g3 at time 25 ps, the side input has had value 0

for the last 5 ps and g3 cannot be sensitized. In this case,

where PI2 has a falling transition, P2 cannot be

sensitized in another way and therefore it becomes a

false path. Thus, down-sizing a gate may cause a true

path to becoming false.

 From the above examples, it may be concluded that

increasing the delay of a circuit gate may not change the

viability of a path, and a true path may remain true.

These paths may provide new late side input for circuit

gates on false paths not containing the resized gate, and

cause these false paths to becoming true (first example).

On the other hand, when a circuit gate is down-sized,

true paths that pass through the gate may become false

since the delays of these true paths are increased and

these true paths may become longer than the viable

paths terminating at the late side inputs (second

example).

4 Proposed Algorithm of Gate Resizing Equipped

with Viability

 In this section, the general algorithm for gate resizing

is presented which uses viability in timing analysis

required for the investigation of sensitization state of

circuit paths after resizing of circuit gates.

 The feasibility of this algorithm for large circuits is

also discussed. Related pseudo-code is depicted in

Fig. 4, Algorithm 1. It should be explained here that as

stated in subsection 2.3, since the viability of a path is

dependent on the viability of other circuit paths, the

proposed algorithm is path-based in which many circuit

paths are traversed.

 In this algorithm first, the longest true path of the

circuit is attained by considering viability analysis to

obtain the timing constraint of the circuit. Then, the size

of all circuit gates is down-sized. After that, the

proposed metric of this work (introduced in subsection

4.2.1) is calculated for each circuit node. In the next

step, a set of starting partial paths is prepared to be

extended and analyzed. After that, the main loop of the

algorithm is started. In this loop, a partial path is

analyzed under viability conditions and if the evaluation

is satisfiable, the path is extended. If a path under

analysis reaches a primary output, some candidate nodes

of it are up-sized to fulfill the circuit timing constraint.

Then the circuit is updated according to the changes

made in the gate delays. If the delay of an obtained

complete true path is not greater than the circuit timing

constraint, the loop is terminated. The longest true path

of the circuit after gate resizing is attained again using

viability analysis to be compared with the circuit timing

constraint.

4.1 Obtaining the Timing Constraint of the Circuit

 The algorithm is started by extracting the graph of

circuit structure, which results in graph C. Circuit gates

and the connections between them are modeled by

graph nodes and edges, respectively. Since viability

conditions are stated by CNF formulas, at the next step

the CNF formulas for each node of C are created

according to their related gate types. These formulas are

used during the execution of the algorithm repeatedly.

 As stated in subsection 2.3, paths that are analyzed

under viability conditions are ordered by their

esperances (esperance is the potential full length of

path). Using the Maximum Remaining Time (MRT) is

one reasonable approach to obtain the esperance. An

MRT value is assigned for each circuit node. It is

specified as the delay of the longest extension path from

the circuit node to a primary output node. Step 3 of the

algorithm calculates the MRT value for each circuit

node. This process is performed by a backward block-

based timing analysis from the primary output nodes of

the circuit. Path sensitization is not considered here to

accelerate the algorithm execution.

 In step 4, delay of the longest true path of the circuit,

DLTP, is obtained by implementing the viability function

using the dynamic programming approach explained in

subsection 2.3. This value is assumed as the timing

constraint of the circuit.

4.2 Required Pre-Processing

 To perform gate resizing, one approach is the

utilization of gate slacks. Positive slack means the delay

of the gate can be increased (the size of the gate can be

decreased) while the timing constraints are not violated.

However, the approach used in this work for gate

Area Reduction of Combinational Circuits Considering Path

… S. Abolmaali

Iranian Journal of Electrical and Electronic Engineering, Vol. 17, No. 3, 2021 7

Algorithm 1

1. make the graph of circuit, C

2. create CNF formula for each node of C

3. call calculate_remaining_times_of_all_nodes(C)

4. DLTP = find_longest_true_path_of_circuit(C)

5. double the delay of all nodes of C

6. call calculate_remaining_times_of_all_nodes(C)

7. calculate the proposed metric for all nodes of C

8. call fill_frontier_by_paths_contains_transitions_on_primary_input_nodes(C, frontier)

9. while frontier is not empty do

9.1. pick up cur_path from frontier

9.2. psi = evaluate_viability_of_path_if_needed(cur_path, should_be_added)

9.3. if psi is true then

9.3.1. if should_be_added is true then

9.3.1.1. add cur_path to tvp_vector of last node of cur_path

9.3.2. if cur_path terminates at a primary output then

9.3.2.1. if Dcur_path ≤ DLTP then

9.3.2.1.1. break

9.3.2.2. up-size sufficient available nodes in cur_path to satisfy timing constraint DLTP

9.3.2.3. update tvp_vector of each node of C

9.3.2.4. update remaining times of nodes of C if required

9.3.2.5. update esperances of paths in tvp_vector of nodes of C

9.3.2.6. call fill_frontier_by_paths_contains_transitions_on_primary_input_nodes(C, frontier)

9.3.2.7. continue

9.3.3. for each fon from nodes on fan-out of last node of cur_path do

9.3.3.1. extension_path = {cur_path, fon}

9.3.3.2. add extension_path to frontier

9.4. else

9.4.1. remove cur_path // this path is useless

10. D'LTP = find_longest_true_path_of_circuit(C)

11. Compare DLTP and D'LTP

Fig. 4 General algorithm for gate resizing benefits from viability in the required timing analysis.

resizing is not based on the slack values. The reason is

explained briefly. When a true path shorter than the

timing constraint of the circuit is found, some path

gates, from several candidate path gates, can be down-

sized according to their slacks. Note that several

selection combinations from candidate gates might

exist.

 After the down-sizing of the gates, as explained in

Section 3, new paths may become true which were false

before the down-sizing of the gates. The length of one

or more of these paths might be longer than the timing

constraint of the circuit. Therefore, the gate resizing

algorithm should cancel the performed resizing, which

can introduce heavy overhead since the information

related to the gate delays and the viability of analyzed

paths should be modified. In addition, the algorithm

should find another gate resizing solution, either by

modifying the resizing performed in the previous step,

or by selecting another combination of path gates from

available candidate gates, which satisfies the timing

constraint. This process is very complex and if the

newly made decision leads to timing constraint violation

again, the process may need to be repeated several times

which has a large execution overhead.

 Instead, in this work, the size of each node of C is

halved at the beginning, and then the sizes of some

nodes are doubled every time a timing constraint

violation occurs during the execution of the algorithm.

Doubling the size of nodes is terminated when a viable

path with a delay lower than or equal to DLTP is found.

Although there is no guarantee that the performed

resizing is the optimum one, every time a true path is

encountered, examining several solutions to fulfill the

circuit timing constraint is omitted. Note that in the gate

resizing procedure, the amount of decrease in the size of

gates is not unlimited. In many previous works,

doubling the gate delays is selected as the constraint,

which is also used in this work.

 In step 5 of the proposed algorithm, the delays of all

nodes of C are doubled due to the above explanation.

Since the gate delays are changed, it is required to re-

calculate the remaining times of gates that are used in

the viability analysis. This is performed in step 6 of the

algorithm.

 When a complete viable path is obtained by the

algorithm which has a delay greater than DLTP, it

provides some candidate gates for resizing which their

sizes are not fixed yet. These nodes are named available

nodes in this article. Among them, some nodes may be

selected that after being resized they can fulfill the

Area Reduction of Combinational Circuits Considering Path

… S. Abolmaali

Iranian Journal of Electrical and Electronic Engineering, Vol. 17, No. 3, 2021 8

timing constraint. In this article, two approaches are

utilized for node selection. The first one, MIN_ORDER,

selects available gates in their order of appearance in the

path. This is the preliminary method to be used for

comparison to the proposed method of this article.

4.2.1 Proposed Metric

 The introduced metric of this work is based on the

viability conditions and the number of paths traversing

through the node, which is an important factor in the

efficiency of the proposed metric. Changing the delays

of some available nodes alters the viability of paths

traversing through these nodes. Therefore, selecting

some available nodes which changing their delays leads

to maximum or minimum changes in the viabilities of

the traversing paths can have influences on the

performance or quality of the algorithm, and thus can be

used as a selection metric. Keeping this in mind, from

the available nodes, a subset that fulfills circuit timing

constraint DLTP should be selected and all of its nodes

should be resized. Indeed, the simultaneous selection of

multiple nodes is considered. After changing the node

delays, the viability value of some circuit nodes is

changed. Maximizing or minimizing the aggregate of

these viability value changes can be used as a heuristic

for the node selection process.

 However, the above-mentioned approach imposes a

heavy overhead. First, a viability analysis should be

performed on a part of circuit paths to reflect the applied

delay changes. This process is time-consuming by itself

since it is path-based and needs several calls to the SAT

solver. In addition, this process should be repeated for

all subsets of available nodes that satisfy DLTP. For

example, to select 5 nodes from 10 available nodes, the

number of total subsets becomes 252 which requires a

long processing time. Besides, after examining a subset,

the viability information of the processed paths that are

stored in circuit nodes should be removed before

processing another subset, which is time-consuming.

 Therefore, a greedy approach is employed in this work

for node selection. Among the available nodes, the node

having the maximum value of the proposed metric

(MPROPOSED_MAX) or the minimum value (MPROPOSED_MIN)

is selected first. The proposed metric is a combination

of viability conditions and the number of partial paths

ending to and originating from the circuit nodes.

Modifying the delay of such gate may cause

considerable changes in the sensitization of circuit paths

and thus selecting such an important gate is reasonable.

 One approach, to include the viability conditions in

the selection of the best available node, can be

considering the viabilities of all paths traversing through

each available node. In this approach, the viabilities of

all circuit paths should be attained. Then, the sum of

viabilities of paths traversing through each circuit node

should be obtained. As is obvious, this is a very time-

consuming procedure and it should be noted that this

procedure is performed during the execution of the

general algorithm. Therefore, a heuristic method is

required for estimating the viabilities of all paths

passing through each circuit node.

 The heuristic is defined based on the viability

conditions introduced in subsection 2.1. Each side input

si of a circuit gate g on the path P should have either

non-controlling value (condition 1), or should be at the

tail of one or more viable partial path which has delay

not shorter than the partial path of P that terminates in

online input oi of g (condition 2).

 Signal probability is used in this work for evaluating

condition 1 for g. The signal probability is the

probability of a circuit signal to have logical value 1

under all input vectors. Since examining the circuit

under all input vectors is impossible for large circuits, a

probability-based method is used. In this method, a

probability relation is introduced for the signal on the

output pin of each gate type. Consider
1

 and
2
 are

the signal probabilities of input pins of a two-input gate.

The signal probabilities
S

 for different gate types are

depicted in Table 1.

 To obtain the signal probability for each gate g, a

breadth-first traverse of the circuit graph C is

performed. For primary input nodes,
S

 is set to 0.5

which means that the probability of a primary input to

have a value 0 or 1 is equal. For the other nodes of C,

formulas in Table 1 are used during the traverse of C.

Note that in a circuit structure,
S

’s of the gates are

dependent to each other. However, for the sake of

simplicity, considering node dependencies and

conditional probabilities is ignored in this work. It

should be noted that setting only stable value 1 is

analyzed in this work and the transient signal values are

not considered.

 The obtained
S

’s are used to determine the

probability of a circuit line being 0 or 1. In other words,

they are used to attain the probability of a circuit line,

which feeds a circuit gate, having a non-controlling

value that is utilizable in condition 1 of the viability.

 Several approaches can be employed in evaluating

condition 2 of viability, which are listed below:

Using a simplified version of viability analysis: in this

approach, still, the dynamic programming

implementation of viability analysis, presented in

subsection 2.3, is utilized. However, instead of checking

the satisfiability of complex CNF files, signal

probabilities are used for checking the possibility of

Table 1 Signal probability
S

for different gate types.

Gate

Type S

Gate

Type S

Buffer 1
 Inverter 11

AND 1 2 NAND 1 21 

OR    1 21 1 1   NOR    1 21 1 

Area Reduction of Combinational Circuits Considering Path

… S. Abolmaali

Iranian Journal of Electrical and Electronic Engineering, Vol. 17, No. 3, 2021 9

setting a side input to the non-controlling value. Since

all partial paths of the circuit should be analyzed in this

approach, this method is very time-consuming.

Using MATs: instead of traversing all partial paths of

the circuit, one heuristic is employing MATs of nodes.

MATs of online and side input nodes of a circuit node

are used instead of delays of the online and side partial

path in condition 2. The reason is that if the MAT of a

side input is greater than the MAT of the online input,

then with a high probability the side input is visited

earlier in viability analysis through a partial path longer

than the partial path terminating at the online input.

Using the average value of delays of partial paths

terminating at circuit node: This approach is similar

to the above one, except that the average value of delays

of partial paths terminating at the side and online inputs

of a circuit node are used instead of MAT values.

Using aggregate of the lengths of paths traversing

through circuit node: In this approach, for each circuit

node, the aggregate value of the lengths of paths

(instead of the number of paths mentioned previously)

traversing through the node is used.

Using aggregate sensitization probabilities of paths

traversing through circuit node: This approach is

similar to the above one, except that the aggregate

sensitization probabilities of paths are used instead of

the aggregate lengths. Sensitization probabilities of

paths are obtained by considering only static

sensitization. The probabilities of setting the non-

controlling value on side inputs are attained by signal

probabilities.

 Other similar approaches may be proposed. A

comprehensive investigation of using the above

approaches as heuristic methods for the algorithm was

performed. Results showed that maximizing or

minimizing of the metrics proposed in the above

approaches does not outperform the efficiency of the

approach presented in this work.

 The proposed metric of this work for circuit node g is

formulated as:

 1 2g PPo

oi si oi

m N N K N


 
    
 
 (4)

   1 S PPiN si N oi  (5)

       

 

2 1 S PPi

PPi

N si MAT si AD oi

N sd

   



(6)

 As explained in the previous paragraph, considering

metrics only based on viability conditions is not

beneficial. Thus, a combination of viability conditions

and the number of paths traversing through circuit nodes

is employed.

 In the above formula,
1 2N N is calculated for

each online input oi of g and each side input si of the

considered oi.  S si is the probability of si having

value 1. The above formula is written for gate types

with a non-controlling value 1. For the other gate types,

 1 S si is used in calculating
1N .  PPiN oi and

 PPiN si denote the number of partial paths terminate

at oi and si, respectively. In calculating
2N , the term

 1 S si is the probability of si having value 0. For

the gate types with non-controlling value 0, the term

 S si is used instead.

  PPiAD oi represents the average value of delays of

partial paths terminating at oi. The term NPPo is the

number of partial paths originate from g. Parameter K is

the number of times parameter NPPi is summed in

calculating mg for each fan-in node of g. For example,

for the first fan-in fi1 of a gate with three fan-in nodes,

NPPi is summed two times in
1N where fi1 is as oi, and

two times in
2N where fi1 acts as si, one time for fi2

and one time for fi3. Therefore, K is 4 for 3-inputs gate

types. For 2- and 4-inputs gate types, K is 2 and 6,

respectively. The reason for using parameter K is to

count NPPi only one time in the formula of mg for each

fan-in node of g.

 The total number of complete paths traversing through

g, and through all fan-in nodes fi, is obtained by:

   
fi

CP PPi PPoN g N fi N
 

  
 
 (7)

 Considering viability conditions in this formula results

in the formula for mg. Formula (5) is related to condition

1 of viability, i.e. setting non-controlling value on si.

Formula (6) incorporates condition 2 of viability in the

metric. It relates to the case that si has a controlling

value (term1 ()S si), and there exists a side path

longer than the online partial path

(MAT(si) > ADPPi(oi)).

 For checking the existence of a longer side path, MAT

is used for si since the longest partial path terminates at

si is the most useful one. In addition, ADPPi(oi) is used

for oi here because the metric mg is unique for all paths

traversing through g. Moreover, NPPi for oi is included

in (5) since when the non-controlling value places on si,

the number of paths traversing through si is not

important. However, when the length of side paths and

online paths is compared in (6), NPPi(si) becomes more

important. Using NPPi(si) in (5) or NPPi(oi) in (6)

degrades the efficiency of mg, according to the

simulations performed on the considered benchmarks.

For gate types with only one fan-in node, formula (7) is

used directly for obtaining mg instead of (4) since the

viability conditions are not applicable in this case.

4.2.2 Frontier Queue

 After performing the required pre-processing

computation, the main path-based procedure of

Algorithm 1 is started (line 8 in Fig. 4). This procedure

Area Reduction of Combinational Circuits Considering Path

… S. Abolmaali

Iranian Journal of Electrical and Electronic Engineering, Vol. 17, No. 3, 2021 10

is based on the dynamic programming method presented

in subsection 2.3. The object named frontier is a priority

queue containing partial paths and is used in the best-

first procedure utilized in the dynamic programming

method. Partial paths are ordered in the frontier based

on their esperances. First, for each primary input node a

partial path, containing only that node, is created and

inserted in the frontier (line 8). The number of these

partial paths is double the number of primary input

nodes. One path for rising and one path for falling

transition on each primary input node are considered.

4.3 Main Loop of the Algorithm

 Then, the main loop of the algorithm starts. The

procedure is repeated while the frontier is not empty.

First, a partial path cur_path is picked up from the

frontier. Note that this partial path has the greatest

esperance among the partial paths in the frontier. Then,

the viability of cur_path is analyzed, if it is required,

and the result is stored in variable psi. As stated

previously, after changing the delays of some circuit

nodes, it is required to analyze the viability of

previously analyzed paths again. If the delay changes do

not affect the viability of a path, the previously obtained

viability information is preserved.

 For each circuit node, a vector named tvp_vector is

considered which contains the viable paths terminating

at the node. Also, when delay changes are performed in

line 9.3.2.2 of Algorithm 1, tvp_vector’s of all affected

nodes are updated in line 9.3.2.3 to reflect the delay

changes. This concept is explained later in this section.

 In function evaluate_viability_of_path_if_needed,

tvp_vector of the last node of cur_path is searched. If

cur_path exists in the vector, the should_be_added

variable is set to ‘false’ and the function returns the

value ‘true’. Otherwise, the value of psi is obtained by

performing viability analysis on cur_path, and the value

of should_be_added is set to ‘true’. If the psi value is

‘true’, the process of cur_path should be continued.

Otherwise, the partial path cur_path is a false path and

should be discarded (line 9.4.1).

 For psi having value ‘true’, if should_be_added is

‘true’, cur_path should be inserted in tvp_vector of the

last node of cur_path. After that, it is checked if

cur_path terminates at a primary output node (cur_path

is a complete path). If so, a sequence of activities is

performed. The immediate condition which is checked

is whether the delay of cur_path, Dcur_path, is less than or

equal to the timing constraint DLTP. If it is, no further

resizing process is required and the main ‘while’ loop of

the algorithm is terminated. Otherwise, the nodes of

cur_path are analyzed to be resized.

 A sufficient number of available nodes is up-sized in

this step under the constraint of DLTP. One of the node

selection approaches (subsection 4.2) is used here to

select enough number of nodes from the available

nodes. The pseudo-code in Fig. 5 is a general code that

chooses a sufficient number of path nodes based on the

maximum metric value of a selected approach. The code

for approaches that use the minimum values of the

related metrics is very similar.

 The function in this figure takes path p and chooses

the available nodes based on metric param. path_delay

is the delay of p. Initially, the function places all

available nodes of p in available_nodes_list. If the list is

not empty a loop for selecting the best nodes is started

in line 4. Node max_cn, obtained by those lines of the

algorithm labeled by prefix 4.2, has the maximum

parameter value max_param among the available nodes.

After it, the delay of max_cn is decreased and thus

path_delay is also decreased. max_cn is removed from

available_nodes_list then by setting one of its attributes

to ‘true’. If the current value of path_delay is not greater

than DLTP, or no available node remains, the loop is

terminated.

 After performing delay changes, the tvp_vector of all

circuit nodes are processed. If a path in tvp_vector of a

circuit node has one or more nodes that their sizes are

fixed in the previous step, it is removed from the vector.

The reason is that by altering the delay of a path, a true

path may become false, and thus, it has no place in

tvp_vector.

 Since delays of some circuit nodes are changed and

consequently delays of several paths may be altered, the

viability analysis of the circuit paths should be

performed again from the beginning. It is required that

the remaining times of the circuit nodes to be updated

(line 9.3.2.4). In addition, the esperances of paths in

tvp_vector of circuit nodes should be updated in the

next step. The reason is that if cur_path is one of the

paths in this vector and the object of this path is used

instead of cur_path, its esperance should be updated by

new changes in the node delays to allow correct

extension of the path.

 Because the delays of some nodes are changed, it

seems that before beginning the next iteration of the

Function general_function_for_upsizing_available_nodes(p)

1. path_delay = p.delay

2. add all available nodes of path p to available_nodes_list

3. if available_nodes_list is empty then

3.1. return

4. while (true)

4.1. max_param = 0.0

4.2. for each node cn in available_nodes_list do

4.2.1. if cn.param > max_param then

4.2.1.1. max_param = cn.param

4.2.1.2. max_cn = cn

4.3. path_delay = path_delay – max_cn.delay_change

4.4. max_cn.delay_change = 0.0

4.5. max_cn.node_delay_fixed = true

4.6. remove max_cn from available_nodes_list

4.7. if path_delay ≤ DLTP or available_nodes_list is empty

then

4.7.1. break

Fig. 5 General code which up-sizes a sufficient number of

available nodes.

Area Reduction of Combinational Circuits Considering Path

… S. Abolmaali

Iranian Journal of Electrical and Electronic Engineering, Vol. 17, No. 3, 2021 11

main algorithm, it is required to update the MAT and

ADPPi of circuit nodes since they are used in calculating

the metric mg (Formulas (4) and (6)). However, after

running several simulations on the considered

benchmarks, it concluded that updating the mentioned

parameters degrades the efficiency of the proposed

method. Therefore, it is sufficient to calculate the MAT

and ADPPi parameters for circuit nodes only once and at

the beginning of the algorithm.

 Now that updating the circuit elements is completed

after delay changes, the exhaustive viability analysis

should be performed from the beginning again. First, the

function in line 8 of the algorithm is re-called to fill the

frontier by proper preliminary paths. All partial paths

that are remained in the frontier from previous steps of

the algorithm (before delay changes) are removed at the

beginning of this function. Then, the ‘continue’

instruction repeats the while loop in line 9 from the

beginning, allowing the algorithm to be executed for the

new version of the circuit.

 If cur_path, which is true, is not terminated at a

primary output node (line 9.3.3), it should be extended

through the fan-out nodes of its last node. Each fan-out

node fon of the last node of cur_path is added to the last

node of cur_path to create a new extension_path. Each

created path is inserted into the frontier to be processed

in the next iterations of the algorithm.

 After processing several partial and complete paths in

the main loop of the algorithm, delays of complete paths

become less than or equal to DLTP. In this situation, the

loop is terminated which means that the length of all

remaining paths is not greater than the timing constraint.

After it, in line 10, the longest true path of the circuit

and its delay, D'LTP, are obtained again. D'LTP is

compared to DLTP to ensure fulfilling the circuit timing

constraint.

5 Implementation Considerations

 The mentioned algorithm is implemented in C++.

Both rise and fall transitions on input and output lines of

circuit gates are considered. For gate delay, arrival time,

remaining time, and esperance of each circuit node,

separate values for rising and falling transitions are

utilized. Besides, for each circuit node, two different

tvp_vectors for the mentioned transition types are

considered, which is not stated in the algorithm for

abbreviation.

 A lookup-based method is utilized to obtain gate

delays by the Spice simulations with the aid of linear

regression. NanGate45 Open Cell library [27] is

employed in the simulations. Gate type, the capacitive

load on the gate output pin, the input pin which a

transition places on it, slope delay of transition on the

input pin, and the transition kind are the parameters that

index the lookup tables. Considering linear regression

and not considering the other circuital parameters for

obtaining the gate delays lead to the introduction of

errors in the delay values. Anyhow, the introduced

errors are negligible.

 From the available gate types in the above-mentioned

library, gate types inverter and buffer, in addition to

AND, OR, NAND, and NOR types with 2, 3, and 4

input pins are considered. The test circuits are first

synthesized by considering these gate types before

being used in the proposed algorithm.

 It should be mentioned that the load capacitances of

circuit gates are changed by gate resizing which itself

alters the gate delays. However, to prevent the algorithm

to become more complicated, this change is ignored. In

addition, using signal probabilities, as stated in

subsection 4.2.1, does not mean that the statistical

method, like the researches in [28, 29], is utilized here.

All delay values in this work are deterministic and

process variation is not considered in this article.

Moreover, the impact of the proposed approaches and

methods on the circuit power consumption is not studied

in this manuscript.

6 Experimental Results

 A machine containing an Intel Xeon CPU (5680 at

3.33GHz) and 8GB of RAM, with the Linux operating

system, is utilized to obtain the outcomes. ISCAS’85

benchmark circuits are used to compare the results of

running the proposed algorithm when different metrics

MIN_ORDER, MPROPOSED_MAX, and MPROPOSED_MIN are

employed. To have a comparison with another method,

the results obtained by using the Brand-Iyengar

sensitization method are also included. It should be

mentioned that finding several sensitizable paths by the

Brand-Iyengar method is also path-based.

For MPROPOSED_MAX and MPROPOSED_MIN methods, lines 1

through 8 of the algorithm in Fig. 4, except the lines 3

and 4, are related to the required pre-processing before

the beginning of the main loop of the algorithm in line

9. This pre-processing takes less than 1 second for all

benchmark circuits and thus is not reported in the

results.

 Table 2 shows the area improvements of different

methods in percent for the considered circuits. Columns

3 through 6 are results for Brand-Iyengar (identified by

Br_Iy in the table), MIN_ORDER, MPROPOSED_MIN, and

Table 2 Area improvements of different methods.

Circuit
of

Gates

Br_Iy

[%]

MIN_ORD

[%]

MPR_MIN

[%]

MPR_MAX

[%]

c499 426 17.6 25.5 24.0 31.8

c880 294 68.2 77.9 79.5 80.1

c1355 436 22.9 25.9 27.1 28.0

c1908 320 46.1 67.9 67.3 68.8

c2670 518 65.3 74.4 74.9 82.8

c3540 635 52.3 57.6 58.1 67.3

c5315 1324 67.1 73.9 71.4 82.0

c6288 1472 43.7 52.5 49.2 58.7

c7552 1639 76.5 81.9 78.5 88.0

Average 51.1 59.7 58.9 65.3

Area Reduction of Combinational Circuits Considering Path

… S. Abolmaali

Iranian Journal of Electrical and Electronic Engineering, Vol. 17, No. 3, 2021 12

MPROPOSED_MAX methods, respectively. It is obvious from

the table that the results of any of the proposed methods

outperform the Brand-Iyengar results. For the c1908

circuit, MPROPOSED_MAX even obtains 22.6% more area

improvement in comparison to the Brand-Iyengar. The

reason is that the Brand-Iyengar sensitization criterion is

not exact and results in pessimistic outcomes. Indeed, it

finds more sensitizable paths which leads to more

candidate nodes for up-sizing.

 Also, it is apparent from the table that the

MPROPOSED_MAX method attains the best results for area

improvement for all benchmark circuits. Therefore,

maximizing the proposed metric mg (subsection 4.2.1)

leads to better area improvement in comparison to

minimizing the mentioned metric. MPROPOSED_MIN results

are worse than MIN_ORDER results in more than half of the

cases. For the c7552 circuit, the percentage reaches 88%

for MPROPOSED_MAX which is considerable. On average,

8.6%, 7.8%, and 14.2% growth in area improvement is

achieved relative to the Brand-Iyengar method, for

MIN_ORDER, MPROPOSED_MIN, and MPROPOSED_MAX methods,

respectively. In addition, MPROPOSED_MAX has 5.6% more

growth in area improvement in comparison to

MIN_ORDER.

 Fig. 6 presents the number of true paths found by each

method. It can be deduced that the Brand-Iyengar finds

almost always the most number of true paths, while

MPROPOSED_MAX finds the least number of true paths in

most cases.

 The number of nodes that are down-sized by each

method is depicted in Fig. 7. It is apparent that

MPROPOSED_MAX always obtains the most number of

down-sized nodes, while Brand-Iyengar down-sizes the

Fig. 6 Number of true paths found by each method.

Fig. 7 Number of nodes down-sized by each method.

least number of nodes in most cases. The number of

found true paths and the number of down-sized nodes

cannot lonely determine the total area improvement.

The number of down-sized nodes in each path and the

amount of change in the size of each down-sized node

are also important. However, from the last two figures,

it is deduced that Brand-Iyengar which finds the most

number of true paths, leaves the least number of nodes

for down-sizing. For MPROPOSED_MAX, it is completely

different. These results agree with the results of Table 2.

 Fig. 8 shows the execution time of each method in

seconds for all benchmark circuits. The values are

tractable and are less than 80 minutes. The figure states

that for the first six circuits, Brand-Iyengar has lesser

execution time, in comparison to MIN_ORDER and

MPROPOSED_MAX. The reason is that Brand-Iyengar

sensitization conditions are simpler than the viability

conditions, and consequently, SAT solving of the

Brand-Iyengar conditions is performed with more

speed.

 However, for the last three circuits, which have more

circuit nodes and therefore more circuit paths, Brand-

Iyengar has greater execution time. The reason can be

explained by the results of Fig. 6. The figure points out

that the Brand-Iyengar method finds more true paths. To

find more true paths, it is required to analyze more false

and true partial paths. Also, when a true path is found in

the proposed algorithm, a sequence of time-consuming

processing is performed for up-sizing some candidate

nodes and for updating the circuit for the next algorithm

iteration.

 Therefore, although the SAT solving for Brand-

Iyengar is faster, finding more true paths by this

criterion leads to analyzing more partial paths and to

more processing for updating the circuit elements,

which results in longer execution time. Fig. 8 also states

that MPROPOSED_MAX has more execution time in the first

six circuits, in comparison to Brand-Iyengar and

MIN_ORDER. However, for the last three circuits, which

have more circuit paths, MPROPOSED_MAX has better

performance. The reason, according to Fig. 6, is that the

number of analyzed true paths in this method is

considerably smaller than the other methods.

 For example, for c5315, the execution time of

Fig. 8 Execution time of each method.

Area Reduction of Combinational Circuits Considering Path

… S. Abolmaali

Iranian Journal of Electrical and Electronic Engineering, Vol. 17, No. 3, 2021 13

MPROPOSED_MAX is 202 seconds which is less than one

half of the execution time for MIN_ORDER (412 seconds),

and less than one-fourth of the execution time for

Brand-Iyengar (822 seconds). For c7552, the execution

times are 290, 643 (less than one half), and 1959 (less

than one-sixth) seconds, for MPROPOSED_MAX, MIN_ORDER,

and Brand-Iyengar, respectively. The average execution

times of benchmark circuits for the considered methods

are 1243.6, 1136.5, 1119.1, and 1112.5 seconds for

Brand-Iyengar, MIN_ORDER, MPROPOSED_MIN, and

MPROPOSED_MAX, respectively.

 Since the proposed method uses a heuristic approach

by utilizing a metric to select more useful nodes for

resizing among the candidate nodes, there is no

guaranty that the proposed method always selects the

best nodes for resizing. However, considering viability

analysis in timing analysis, along with the

MPROPOSED_MIN metric, leads to better overall area

reduction.

7 Conclusions and Future Works

 This article has proposed an incremental path-based

algorithm for area reduction of digital circuits. The

article has shown that considering exact path

sensitization by using viability analysis has led to better

area reduction, in comparison to using a non-exact

criterion. Decreasing the size of all circuit gates at the

beginning of processing, instead of using gate slacks,

has resulted in tractable execution time for the presented

path-based method. Utilizing the proposed metric in the

presented heuristic approach has led to better average

performance and area improvement in comparison to a

non-exact sensitization criterion. In the future, area

reduction by the proposed method in the presence of

process variation can be investigated.

References

[1] C. Visweswariah, K. Ravindran, K. Kalafala,

S. G. Walker, S. Narayan, D. K. Beece, J. Piaget,

N. Venkateswaran, and J. G. Hemmett, “First-order

incremental block-based statistical timing analysis,”

IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, Vol. 25, No. 10,

pp. 2170–2180, 2006.

[2] P. C. McGeer and R. K. Brayton, “Efficient

algorithms for computing the longest viable path in a

combinational network,” in Proceedings of the 26th

ACM/IEEE Design Automation Conference,

pp. 561–567, 1989.

[3] H. C. Chen and D. C. Du, “Path sensitization in

critical path problem (logic circuit design),” IEEE

Transactions on Computer-Aided Design of

Integrated Circuits and Systems, Vol. 12, No. 2,

pp. 196–207, 1993.

[4] H. R. Lin and T. T. Hwang, “On determining

sensitization criterion in an iterative gate sizing

process,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, Vol. 18,

No. 2, pp. 231–238, 1999.

[5] P. Girard, C. Landrault, S. Pravossoudovitch, and

D. Severac, “A gate resizing technique for high

reduction in power consumption,” in Proceedings of

1997 International Symposium on Low Power

Electronics and Design, pp. 281–286, 1997.

[6] C. Chen, X. Yang, and M. Sarrafzadeh, “Potential

slack: an effective metric of combinational circuit

performance,” in IEEE/ACM International

Conference on Computer Aided Design, pp. 198–

201, 2000.

[7] C. Chen, A. Srivastava, and M. Sarrafzadeh, “On

gate level power optimization using dual-supply

voltages,” IEEE Transactions on Very Large Scale

Integration Systems, Vol. 9, No. 5, pp. 616–629,

2001.

[8] D. Nguyen, A. Davare, M. Orshansky, D. Chinnery,

B. Thompson, and K. Keutzer, “Minimization of

dynamic and static power through joint assignment

of threshold voltages and sizing optimization,” in

Proceedings of the 2003 International Symposium

on Low Power Electronics and Design, pp. 158–163,

2003.

[9] K. Banovic and H. Abdulhamid, “Algorithms for

budget management with gate-sizing and other low-

power applications,” in 2006 IEEE International

Conference on Electro/Information Technology,

pp. 290–294, 2006.

[10] D. A. Papa, T. Luo, M. D. Moffitt, C. N. Sze, Z. Li,

G. J. Nam, C. J. Alpert, and I. L. Markov,

“RUMBLE: An incremental timing-driven physical-

synthesis optimization algorithm,” IEEE

Transactions on Computer-Aided Design of

Integrated Circuits and Systems, Vol. 27, No. 12,

pp. 2156–2168, 2008.

[11] T. Luo, D. Newmark, and D. Z. Pan, “Total power

optimization combining placement, sizing and multi-

Vt through slack distribution management,” in Asia

and South Pacific Design Automation Conference,

pp. 352–357, 2008.

[12] G. Flach, T. Reimann, G. Posser, M. Johann, and

R. Reis, “Effective method for simultaneous gate

sizing and Vth assignment using Lagrangian

relaxation,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, Vol. 33,

No. 4, pp. 546–557, 2014.

Area Reduction of Combinational Circuits Considering Path

… S. Abolmaali

Iranian Journal of Electrical and Electronic Engineering, Vol. 17, No. 3, 2021 14

[13] J. Jung, G. J. Nam, L. N. Reddy, I. H. R. Jiang, and

Y. Shin, “OWARU: Free space-aware timing-driven

incremental placement with critical path

smoothing,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, Vol. 37,

No. 9, pp. 1825–1838, 2017.

[14] F. Peng, C. Yan, C. Feng, J. Zheng, S. G. Wang, D.

Zhou, and X. Zeng, “A general graph based

pessimism reduction framework for design

optimization of timing closure,” in 2018 55th

ACM/ESDA/IEEE Design Automation Conference

(DAC), pp. 1–6, 2018.

[15] H. C. Chen, S. Cheng, Y. C. Hsu, and D. H. C. Du,

“A path sensitization approach to area reduction,” in

Proceedings of 1993 IEEE International Conference

on Computer Design ICCD’93, pp. 73–76, 1993.

[16] D. Brand and V. S. Iyengar, “Timing analysis using

functional analysis,” IEEE Transactions on

Computers, Vol. 37, No. 10, pp. 1309–1314, 1988.

[17] H. R. Lin and T. T. Hwang, “Power reduction by

gate sizing with path-oriented slack calculation,” in

Proceedings of ASP-DAC’95, pp. 7–12, 1995.

[18] J. Y. Jou and D. S. Chou, “Sensitisable-path-

oriented clustered voltage scaling technique for low

power,” IEE Proceedings-Computers and Digital

Techniques, Vol. 145, No. 4, pp. 301–307, 1998.

[19] A. B. Kahng, S. Kang, R. Kumar, and J. Sartori,

“Slack redistribution for graceful degradation under

voltage overscaling,” in 15th Asia and South Pacific

Design Automation Conference (ASP-DAC),

pp. 825–831, 2010.

[20] Y. T. Chung and J. H. R. Jiang, “Functional timing

analysis made fast and general,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits

and Systems, Vol. 32, No. 9, pp. 1421–1434, 2013.

[21] C. N. Lai and J. H. R. Jiang, “Path-specific

functional timing verification under floating and

transition modes of operation,” in Proceedings of the

54th Annual Design Automation Conference, p. 38,

2017.

[22] S. M. Ebrahimipour, B. Ghavami, and M. Raji,

“Adjacency criticality: a simple yet effective metric

for statistical timing yield optimisation of digital

integrated circuits,” IET Circuits, Devices &

Systems, Vol. 13, No. 7, pp. 979–987, 2019.

[23] A. Sharma, D. Chinnery, T. Reimann, S. Bhardwaj,

and C. Chu, “Fast Lagrangian relaxation based

multi-threaded gate sizing using simple timing

calibrations,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems,

Vol. 39, No. 7, pp. 1456–1469, 2019.

[24] J. Jung and T. Kim, “Statistical viability analysis

for detecting false paths under delay variation,”

IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, Vol. 32, No. 1,

pp. 111–123, 2012.

[25] J. Benkoski, E. Vanden Meersch, L. Claesen, and

H. De Man, “Efficient algorithms for solving the

false path problem in timing verification,” in IEEE

International Conference on Computer-Aided

Design, Washington, DC, 1987.

[26] L. Guerra e Silva, J. Marques-Silva, L. M. Silveira,

and K. Sakallah, “Satisfiability models and

algorithms for circuit delay computation,” ACM

Transactions on Design Automation of Electronic

Systems, Vol. 7, No. 1, pp. 137–158, 2002.

[27] Nangate—The standard cell library optimization

company, 2016. [Online]. Available:

http://www.nangate.com.

[28] S. Abolmaali, N. Mansouri-Ghiasi, M. Kamal,

A. Afzali-Kusha, and M. Pedram, “Efficient critical

path identification based on viability analysis

method considering process variations,” IEEE

Transactions on Very Large Scale Integration

Systems, Vol. 25, No. 9, pp. 2668–2672, 2017.

[29] S. Abolmaali, M. Kamal, A. Afzali-Kusha, and

M. Pedram, “An efficient false path-aware heuristic

critical path selection method with high coverage of

the process variation space,” ACM Transactions on

Design Automation of Electronic Systems, Vol. 23,

No. 3, p. 32, 2018.

S. Abolmaali was born in Semnan, Iran,

on August 21st 1980. He received the

B.Sc. in 2004, the M.Sc. degree in 2007,

and the Ph.D. degree in 2018 all in

Computer Engineering from the

University of Tehran, Tehran. He is

currently the Assistant Professor with the

Electrical and Computer Engineering

Department of the Semnan University,

Iran. His current research interests include statistical static

timing analysis, approximate computing, digital circuit testing,

hardware/software co-design, and low-power design.

© 2021 by the authors. Licensee IUST, Tehran, Iran. This article is an open access article distributed under the

terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)

license (https://creativecommons.org/licenses/by-nc/4.0/).

http://www.nangate.com/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

	1 Introduction
	2 Viability Analysis
	2.1 Viability Concept
	2.2 Viability Function
	2.3 Dynamic Programming Approach for Implementing the Viability Function

	3 Gate Resizing and Changes in the Viability of Circuit Paths
	4 Proposed Algorithm of Gate Resizing Equipped with Viability
	4.1 Obtaining the Timing Constraint of the Circuit
	4.2 Required Pre-Processing
	4.2.1 Proposed Metric
	4.2.2 Frontier Queue

	4.3 Main Loop of the Algorithm

	5 Implementation Considerations
	6 Experimental Results
	7 Conclusions and Future Works
	References

