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Abstract: An efficient Lookup Table (LUT) design for memory-based multiplier is 

proposed.  This multiplier can be preferred in DSP computation where one of the inputs, 

which is filter coefficient to the multiplier, is fixed. In this design, all possible product 

terms of input multiplicand with the fixed coefficient are stored directly in memory. In 

contrast to an earlier proposition Odd Multiple Storage (OMS), we have proposed utilizing 

Even Multiple Storage (EMS) scheme for memory-based multiplication and by doing so we 

are able to achieve a less complex and high-speed design. Because of the very simpler 
control circuit used in our design, to extract the odd multiples of the product term, we are 

also able to achieve a significant reduction in path delay and area complexity. For 

validation, the proposed design of the multiplier is coded in VHDL, simulated and 

synthesized using Xilinx tool and then implemented in Virtex 7 XC7vx330tffg1157 FPGA. 

Various key performance metrics like number of slices, number of slice LUT’s and 

maximum combinational path delay is estimated for different input word length. Also, the 

performance metrics are compared with the existing OMS design. It is found that the 

proposed EMS design occupies nearly 62% less area in terms of number of slices as 

compared to the OMS design and the maximum path delay is decreased by 77% for a 64-bit 

input. Further, the proposed multipliers are used in Transposed FIR filter and its 

performance is compared with the OMS multiplier based filter for various filter orders and 

various input lengths. 
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1 Introduction1 

IGITAL Signal Processing (DSP) is the key 
component of the digital revolution engulfing the 

world of humanity. It is seen applied in almost all 

automated and programmable electrical appliances. The 

algorithms used in these DSP systems require extensive 

computer-based computation mostly used in real- time 

situation [1]. Also, DSP systems are found in portable 

and miniature systems which work on limited battery 

                                                        
Iranian Journal of Electrical and Electronic Engineering, 2019. 

Paper first received 27 November 2018, revised 08 March 2019, and 

accepted 11 March 2019. 

* The authors are with the Electronics and Communication 

Engineering Department, Ambedkar Institute of Advanced 

Communication Technologies and Research (GGSIP University), 

Geeta Colony, Delhi, India. 

E-mails: csvinitha1972@aiactr.ac.in and rksharma@aiactr.ac.in. 

Corresponding Author: R. K. Sharma. 

power and hence, these systems should occupy less 

silicon area [2]. Thus, DSP system designs are 

extremely challenging and constrained with demands 

such as; less area-complexity, low power dissipation 

and high speed of operation. It is not possible to design 

systems that satisfy all the constraints of the application. 

Architectural transformation can be done to trade-off 

one constraint over another like area over speed and so 

on. Certain solutions can be found in [3] which help 

reduce the arithmetic complexities of the algorithms so 

that the speed, area and power complexity can be 
addressed. 

   Most of the DSP algorithms use Multiply and 

Accumulate (MAC) operator repeatedly [4, 5]. The 

conventional logic based multiplier is very complex and 

occupy most of the space of a DSP system. Hence in the 

past three decades lot of research has been carried out in 

decreasing the complexity of the multiplier. As per the 

researches, the implementation of multiplier for DSP 

D 
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application is broadly classified into three categories: 

CORDIC implementation, adder-based implementation 

and Memory-based implementation [6-11]. Among 

these three, Memory-based implementation is gaining 

more popularity due to significant growth in VLSI 

memory technology. Semiconductor memory has 

become cheaper, faster and is available with less power 

consumption because of the continuous improvement in 

silicon scaling technology. Owing to advancement in 

memory technology [12] and as per application 

requirement better memory designs are possible 
nowadays and hence, efficient memory-based 

multipliers are also not unthinkable. Earlier, memory 

used to be a separate section from the processor unit, 

but nowadays memory is becoming part of the 

processor. This increases the bandwidth of operation 

and reduces the power consumption [13]. As per 

projections of International Technology Roadmap of 

Semiconductors (ITRS), the density of DRAM cells is 

increasing steadily as compared to transistors in Micro 

Processor Unit (MPU) [12]. Thus, cost of storing one-

bit information in DRAM is far less as compared to 
MPU. Hence, Memory- based computing is now being 

considered cheaper than the conventional logic-only 

arithmetic circuits. In [14], a brief survey report on 

memory-based VLSI architectures for digital filters can 

be found. 

   In DSP algorithms mostly one input to the multiplier, 

that is, the coefficients are fixed in nature. This 

facilitates the use of memory-based structures in DSP. 

Numerous architectures are proposed on the application 

of memory-based structures in discrete sinusoidal 

transforms and filters [10, 11], [15-40]. There are two 
types of memory based computation. One is using 

Direct- LUT to compute the multiplication [19-23], 

[25-31], [40] and the other is to compute the inner-

product using Distributed Arithmetic (DA) [10], 

[16-18], [32-39].  In Direct-LUT-based computation, all 

the possible product terms of the input multiplicand 

with the fixed coefficients are pre-computed and stored 

directly in the LUT and thus multiplication is done [11]. 

But in DA-based computation, the inner-product of the 

N-point vector with the N-bit vector is pre-computed 

and stored in LUT [10]. The size of the LUT increases 

with the word length of the input if the product term is 
directly stored in LUT, whereas if the inner product is 

stored, the size increases with the length of the inner-

product. 

   In DA-based computation, offset binary 

coding [10, 37] and group distributed [17] technique are 

proposed to decrease the size of the memory. Under 

Direct-LUT based computation many techniques are 

proposed [26-31], [40]. In [26, 28] and [29], authors 

have proposed OMS approach, where only the odd 

multiple product terms are stored in memory. Thus the 

size of the memory is reduced by half. Further, 
in [27, 30] another technique namely; Anti-symmetric 

Product Coding (APC) has been detailed, where the size 

of the LUT is reduced again.  Also, it requires less over-

head circuits as compared to the work of [26]. In [29] 

authors have combined both OMS and APC technique 

and developed an efficient architecture which contains 

the advantages of both of the above techniques.  In [28] 

author has slightly modified the design used in [29] and 

used the proposed multiplier in FIR filter and made a 

comparison with the conventional and DA based 

memory multiplier. Also we find many papers on  Finite 

Impulse Response (FIR) filters exploiting features of 

these memory- based multipliers are published [28], 
[32-36]. DA-based multipliers are used in Adaptive FIR 

filter to improve its computational efficiency and 

decrease its implementation complexity [42-48]. 

   Because of OMS-based multiplier already existing, we 

were curios to try EMS- based multiplier design, not 

explored and dealt with up until now. This 

communication is nothing but an outcome of the same 

curiosity. We could convincingly implement a memory- 

based multiplier using EMS-design with a very less 

complex logic circuit. Also we could achieve a design 

with a very less data path delay as compared to the 
previous designs. Even though the work is incremental 

to the work in [28], it is also novel and we have proved 

here that our proposed EMS multiplier is area-efficient 

and high speed design in comparison to OMS design. 

The EMS multiplier [41] is used in systolic architecture 

for FIR filters to reduce the latency and area of the 

filter. We have tried in this communication to modify 

the already proposed OMS design with a different 

external logic circuit. The modification of the logic and 

control circuit in OMS design also resulted in an 

efficient multiplier with reduction in area complexity 
and data path delay. Hence using our proposed logic and 

control circuit, we are able to achieve an efficient EMS 

and OMS design for a memory-based multiplier.  For 

validation of our above stated propositions, we have 

done coding of the proposed multipliers in VHDL; 

simulated and synthesized them using Xilinx tool and 

then finally, implemented them in 

Virtex 7 XC7vx330tffg1157 FPGA. Various key 

performance metrics like number of slices, number of 

slice LUT’s and maximum combinational path delay 

has been estimated for different input word length. 

   The remainder of this article is organized as follows: 
In Section 2, the conventional Memory-based multiplier 

is discussed. In Section 3, the proposed EMS-based 

LUT multiplier is explained in detail for 4-bit and 8-bit 

input. The Synthesis results pertaining to FPGA 

implementation and its comparison with OMS 

technique [28] are also presented and discussed in 

Section 3. In Section 4, the memory–based transposed 

FIR filter structure using proposed LUT multiplier has 

been detailed out and compared with OMS design based 

filter. Finally, in Section 5 the work has been concluded. 
 

2 Conventional Memory-based Multiplier 

   In a conventional Memory-based multiplier, 
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Fig. 1 Conventional memory-based multiplier. 

 
Table 1 Conventional LUT multiplier table. 

Address Bits 
Content of the memory 

X3 X2 X1 X0 

0 0 0 0 0 

0 0 0 1 H 
0 0 1 0 2H 
0 0 1 1 3H 
0 1 0 0 4H 
0 1 0 1 5H 
0 1 1 0 6H 
0 1 1 1 7H 
1 0 0 0 8H 

1 0 0 1 9H 
1 0 1 0 10H 
1 0 1 1 11H 
1 1 0 0 12H 
1 1 0 1 13H 
1 1 1 0 14H 
1 1 1 1 15H 

 

applicable for fixed coefficient, all the possible product 
terms are stored in different locations of the LUT. The 

product terms for all the possible combination of input 

multiplicand with the fixed coefficient are pre-

calculated and stored in different locations in the 

memory. Let us assume that W is the word length of the 

fixed coefficient H and N is the word length of the input 

multiplicand X. The number of locations occupied by 

the memory depends on the size of the input X. For an 

N-bit input X, 2N locations are occupied by the product 

terms. The contents of the memory for an input word 

length of 4-bit and for a fixed coefficient H is given in 
Table 1. 

   As shown in Fig. 1 the product terms (H*Xi) where i 

varies from zero to (N-1) are stored in various locations 

of the memory and fetched using input X as the address. 

In the next section we explain two new propositions to 

decrease the size of the memory and to improve the 

complexity of the multiplier. 

 

3 Proposed LUT-based Multiplier for DSP 

Computation 

   Here two designs are proposed to reduce the 

complexity of the LUT-based multiplier. The proposed 
designs are named as EMS-LUT multiplier where only 

the even product terms are stored in memory and 

Modified OMS (MOMS) multiplier where only the odd 

product terms are stored in memory. Both of these 

techniques reduce the memory size by half. The concept 

of storing the product terms in memory is same as that 

proposed in [26] and [28]. The changes in our proposed 

design are the use of a new logic and the control circuit 
to derive their corresponding complement product 

terms. However, as will be evident from the following 

details, the complexity of logic and the external circuit 

used in our proposed design is simpler in comparison 

to [28]. 

 

3.1 Proposed EMS-LUT based Multiplier for 4-bit 

and 8-bit Input. 

   In this multiplier, even multiplies of the product terms 

are stored in memory. An external combinational logic 

circuit is used to derive the odd multiplies of the product 
term using the even product term. The working of the 

proposed design is explained as follows: 

   As discussed in Section 2, all the possible product 

terms are stored in memory for a conventional memory-

based multiplier. For an N-bit input, there will be 2N 

product terms. Among the 2N product terms, ((2N/2) – 1) 

terms correspond to the even multiples of H. In this 

multiplier we store only these even product terms and 

the term 0. Hence only (2N/2) memory locations are 

required to store the product terms thus reducing the 

size of the LUT by half. 

   The proposed method is explained by considering a 4-
bit input size. From the contents of the conventional 

LUT multiplier as shown in Table 1, we can see that 

there are seven even product terms (H*(2i)) where i 

varies from 1 to 7. These seven even product terms 

along with 0 are stored in the memory of the proposed 

multiplier. The contents of the proposed LUT multiplier 

are shown in Table 2. 
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Table 2 Proposed EMS-LUT multiplier table. 

Address for EMSLUT 
Content of the memory 

Input 
Product value 

X3X2X1 X3X2X1X0 

000 0 0000 0 
  0001 H 

001 2H 0010 2H 

  0011 3H 
010 4H 0100 4H 

  0101 5H 
011 6H 0110 6H 

  0111 7H 
100 8H 1000 8H 

  1001 9H 
101 10H 1010 10H 

  1011 11H 

110 12H 1100 12H 
  1101 13H 

111 14H 1110 14H 
  1111 15H 
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D
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Adder

X(3)

X(2)

X(1)

X(0)
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m(6)

m(7)

1H

Output of Multiplier

3 to 8 Decoder
8 x (W+4)

Memory array

 
Fig. 2 Proposed EMS-LUT multiplier for 4-bit input. 

 

   For deriving the odd product terms we require the 

following external circuitry: 

 A memory with 2N/2 memory locations with each 

location of width (W+N), where W is the width of 

the fixed coefficient and N is the width of the 

input. 

 A 3-to-8 decoder to address the eight memory 

locations of the memory. 

 An adder circuit to derive the odd product term 

using the even product term fetched from the 
memory. 

 A 2 to 1 multiplexer (mux) to do selection among 

the even and odd product terms and pass it to the 

output. 

   The block diagram of the proposed EMS-LUT 

multiplier for 4-bit input is shown in Fig. 2.  Initially, 

the pre-calculated even product terms including 0 are 

stored in the memory. The three Most Significant Bits 

(MSB) [X3 X2 X1] of the input are applied as input to a 3 

to 8 decoder. The 8 output lines of the decoder are used 

as address to fetch the product terms from the memory. 
For example, for the input combination [0 0 1] of the 

decoder, the output line m (1) of the decoder will be 

active and the product term (2H) is fetched out. 

Similarly, for the combination [0 1 0] the output line 

m (2) of the decoder will be active and the product term 

(4H) is fetched out. Likewise, it goes on and on for the 

last 3-bit combination [1 1 1] product term (14H) is 

fetched out. The output from the memory is fed directly 

to input line s1 of the 2-to-1 multiplexer. The output 

from the memory is added with (1H) in an adder circuit 

and the output of the adder gives the odd multiple of the 
product term. The output of the adder is directly 

connected to the input line s2 of the 2-to-1 multiplexer. 

The control line c of the multiplexer is directly 

connected to the Least Significant Bit (LSB) [X0] of the 

input data X. Hence when the control line is 0, the mux 

selects the input s1 and when the control line is 1, it 

selects the input s2.Thus when the input bit X0 equals 0, 

even product term is available at the output of the 

multiplier and when X0 equals 1, odd product term is 

available at the output of the multiplier.  The enable line 

of the mux, which is not required in this design, is 

grounded. For example, when the X input equals 
[0 0 1 0], because of the first three bit equal to [0 0 1], 
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Fig. 3 Proposed EMS-LUT multiplier for 8-bit input. 

 

the address line m(1) of the memory is activated and the 

product term (2H) from the memory is selected and fed 

to the input line  s1 of the mux. Since, the LSB bit of the 

input X is 0 for this particular combination of X, the 

input line s1 is selected by the mux and transferred to 

the output of the multiplier. The odd product term is 

selected as follows. For example, if the input data X is 

equal to [0 0 1 1], then, because the first three bits are 

[0 0 1], the output line m (1) of the decoder is activated 
which then selects the product term (2H) from the 

memory. Since the LSB of the input X is equal to 1, the 

input line s2 is selected by the mux. As the input line s2 

is connected to the output of the adder, the odd product 

term for this case which is [3H] is selected by the mux 

and transferred at the output of the multiplier. Similarly, 

for the input combination [1 1 1 0] the even product 

term (14H) is transferred at the output and for the input 

combination [1 1 1 1] the odd product term is selected 

and transferred at the output. Thus, for all the possible 

input combinations their corresponding product terms 
are selected and transferred to the output of the EMS-

LUT multiplier. 

   Using Dual Port Memory array and two section of 

external control circuit we can multiply 8-bit input with 

W-bit coefficient. Here we use two adders and two mux 

one each to derive the MSB (M1) and LSB (M2) part of 

the product term. Finally, a shift adder is used in which 

the MSB part of the product term is shifted left by four 

bits and then added with the LSB part of the product 

term. Thus the final product term is derived from the 

shift adder. The self-explanatory illustration of EMS- 

LUT Multiplier for the 8-bit input is given in Fig. 3. 

 

3.2 Proposed Modified OMS-based Multiplier for 4-

bit and 8-bit Input 

   Here we propose a new logic for the already existing 
OMS multiplier [28] design. Since it is the modification 

of the OMS-LUT multiplier proposed earlier, we are 

naming it MOMS-LUT multiplier. As compared to the 

proposed EMS-LUT multiplier, there is variation in the 

external control circuit used to derive the even product 

terms. The proposed design of MOMS-LUT based 

multiplier is explained as in Table 3. 

   As discussed in the previous section, let H be the fixed 

coefficient and X be the input multiplicand. Let N be the 

word length of the input X. Hence there will be 2N 

possible values of input and accordingly 2N product 
terms. Among the 2N product terms, (2N/2) terms 

correspond to the odd multiples of H. In this design we 

store only these odd product terms. Hence only (2N/2) 

memory locations are required to store the product 

terms. Thus the size of the LUT is reduced by half. 

   In the following, the proposed method is explained by 
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Table 3 Proposed modified OMS-LUT multiplier table. 

Address for OMSLUT 
Content of the memory 

Input 
Product value 

X3X2X1 X3X2X1X0 

  0000 0 
0001 H 0001 H 

  0010 2H 

0011 3H 0011 3H 
  0100 4H 

0101 5H 0101 5H 
  0110 6H 

0111 7H 0111 7H 
  1000 8H 

1001 9H 1001 9H 
  1010 10H 

1011 11H 1011 11H 

  1100 12H 
1101 13H 1101 13H 

  1110 14H 
1111 15H 1111 15H 
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S2

D

C ENB

MultiplexerSubtract
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X(3)

X(2)

X(1)

X(0)

m(0)
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m(2)
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m(5)

m(6)

m(7)

1H
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3 to 8 Decoder
8 x (W+4)

Memory array

 
Fig. 4 Proposed modified OMS-LUT multiplier for 4-bit input. 

 

considering a 4-bit input. From Table 1, we can see that 

there are eight odd product terms (H*(2i-1)) where i 

varies from 1 to 8. These eight odd product terms are 

stored in the memory of the proposed multiplier. The 

contents of the proposed LUT multiplier are shown in 

Table 3. 

   For deriving the even multiplies of the product term 

we require the following external circuitry: 

 A memory with 2N/2 memory locations with each 

location of width (W+N), where W is the width of 
the fixed coefficient and N is the width of the 

input. 

 A 3-to-8 decoder to address the eight memory 

locations of the memory. 

 A Subtractor circuit to derive the even product term 

using the odd product term fetched from the 

memory. 

 A 2 to 1 multiplexer (mux) to do selection among 

the even and odd product terms and pass it to the 

output. 

   The proposed multiplier for 4-bit input is shown in 

Fig. 4. For an input size of 4-bit, how the MOMS-LUT 

multiplier design works is explained in the following.  

Initially, the entire odd product terms are stored in the 

memory. The three MSB’S [X3 X2 X1] of the input are 

applied to the 3 to 8 decoder. The 8 output lines of the 

decoder are used as address to fetch the product terms 

from the memory. For example, for the input 

combination [0 0 1] of the decoder, the output line m (1) 

will be active and the product term (3H) is fetched out. 

Similarly, for the combination [0 1 0] product term (5H) 
is fetched out. Likewise, it goes on and for the last 3-bit 

combination [1 1 1] for which the product term (15H) is 

fetched out. The output from the memory is fed directly 

to input line s2 of the 2-to-1 multiplexer. The output 

from the memory is fed to a subtractor where (1H) is 

subtracted from the output of the memory and the 

output of the subtractor gives the even product term. 

The output of the subtractor is directly connected to the 

input line s1 of the 2-to-1 multiplexer. The control line c 

of the multiplexer is connected to the LSB [X0] of the 

input data X. Hence when the control line is 0, the mux  
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Fig. 5 Proposed modified OMS-LUT multiplier for 8-bit input. 

 

selects the input s1 and when the control line is 1, it 

selects the input s2.Thus when the input bit X0 equals 0, 

even product term is available at the output of the 

multiplier and when X0 equals 1, odd product term is 

available at the output of the multiplier.  The enable line 
of the mux is grounded. For example, when the X input 

equals [0 0 1 1], because of the first three bit equal to 

[0 0 1], the address line m(1) of the memory is activated 

and the product term (3H) from the memory is selected 

and fed to the input line s2 of the mux. Since, the LSB 

bit of the input X is 1 for this particular combination of 

X, the input line s2 is selected by the mux and 

transferred to the output of the multiplier. The even 

product term is selected as follows. For example, if the 

input data X is equal to [0 0 1 0], then, because the first 

three bits are [0 0 1], the output line m (1) of the 
decoder is activated which then selects the product term 

(3H) from the memory. Since the LSB of the input X is 

equal to 0, the input line s1 is selected by the mux. As 

the input line s1 is connected to the output of the 

subtractor, the even product term for this case which is 

[2H] is transferred at the output of the multiplier. 

Similarly, for the input combination [1 1 1 1] the odd 

product term (15H) is transferred at the output and for 

the input combination [1 1 1 0] the even product term is 

selected and transferred at the output. Thus, for all the 

possible input combinations their corresponding product 

terms are selected and transferred to the output of the 

MOMS-LUT multiplier. 

   Using Dual Port Memory array and two section of 

external control circuit we can multiply 8-bit input with 
L-bit coefficient. Here we use two subtractors and two 

mux one each to derive the MSB (M1) and LSB (M2) 

part of the product term. Finally, a shift adder is used in 

which the MSB part of the product term is shifted left 

by four bits and then added with the LSB part of the 

product term. Thus the final product term is derived 

from the shift adder. The block diagram of MOMS- 

LUT Multiplier for the 8-bit input is given very clearly 

in Fig. 5. 

 

3.3 LUT-based Multiplier for Higher Order Input 

Multiplicand 

   The LUT-based multiplier for the higher order inputs 

is synthesized using parallel realization of lower order 

multipliers. For example the multiplier for a 32-bit input 

is designed using a parallel realization of two 16-bit 

multipliers. Further this 16-bit multiplier is realized 

using two 8-bit multiplier and the 8-bit multiplier using 

two 4-bit multiplier. The block diagram of a 32-bit 

multiplier and 16-bit multiplier is given in Fig. 6. 
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Fig. 6 Block diagram of 32-bit and 16-bit LUT-based multiplier. 

 
Table 4 Comparison of hardware parameters of conventional and proposed multipliers for various input lengths. 

Description 

Length of the input 

8-bit 16-bit 32-bit 64-bit 

No. of 
slices 

No. of slice 
LUT’s 

No. of 
slices 

No. of slice 
LUT’s 

No. of 
slices 

No. of slice 
LUT’s 

No. of 
slices 

No. of slice 
LUT’s 

Conventional 
memory-based design 

11 24 23 48 48 96 96 192 

Both MOMS & EMS 
design 

04 09 09 18 15 36 34 72 

 
Table 5 Comparison of hardware utilisation parameters of the multiplier for various input lengths. 

Description 

Length of the input 

8-bit 16-bit 32-bit 64-bit 

No. of 
slices 

No. of slice 
LUT’s 

No. of 
slices 

No. of slice 
LUT’s 

No. of 
slices 

No. of slice 
LUT’s 

No. of 
slices 

No. of slice 
LUT’s 

Conventional 
memory-based design 

11 24 23 48 48 96 96 192 

OMS design [28] 10 30 19 59 36 119 90 240 
Both MOMS & EMS 
design 

04 09 09 18 15 36 34 72 

 

3.4 Complexity Analysis of the Proposed LUT-based 

Multiplier 

   The conventional LUT-based multiplier for 8-bit input 

and for a W-bit coefficient requires one dual-port 

memory with 16 memory locations of size (W+4), two 

(4:16) decoders and one shift-adder of size (W+8) bit. 

The proposed multipliers require one dual-port memory 

with 8 memory locations of size (W+4), two (3:8) 

decoders, two ((W+8)/2) bit adder in case of EMS 

design or two ((W+8)/2) bit subtractors in case of 

MOMS design, two (2 to 1) mux and one shift-adder of 

size (W+8) bit. The conventional LUT-based multiplier 

and the proposed multipliers are coded in VHDL and 
synthesised using Xilinx tool and implemented in 

Virtex 7 XC7vx330tffg1157 FPGA. The comparison of 

the hardware utilised by the conventional multiplier and 

the proposed multiplier for various input word length is 

given in Table 4. 

   From the Table 4 we can conclude that as the word 

length of the input increases, the design-complexity of 

the proposed multipliers are consuming less hardware 

compared to the conventional LUT-based multiplier. 
For an input size of 64-bit the percentage of area saving 

in terms of the number of slices in the case of proposed 

multipliers as compared to the conventional multiplier is 

62%. 

 

3.5 Novelty and Comparison of the Proposed EMS 

and MOMS Multiplier with OMS Multiplier 

   The proposed multipliers are designed for various 

input lengths and simulated, synthesized and 

implemented using Xilinx tool. The OMS design 

proposed in [28] is also simulated and implemented on 
the same platform and the performance characteristics 

are compared in the following Table 5.  

   In OMS design proposed in [28] author has stored the 

odd product term in memory thereby reducing the 

memory size by half. But the external over-heads 

required for deriving the even product terms for a 4-bit 

input multiplicand are: 
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  A memory with 2N/2 memory locations with each 

location of width (W+N), where W is the width of 

the fixed coefficient and N is the width of the 

input. 

 A 4 to 3 encoder. 

 A 3 to 8 decoder. 

 A barrel shifter whose size depends on the word 

length of the memory output. 

 A control circuit to control the number of shifts in 

the barrel shifter. 
   A reset circuit to reset the output when the product 

term is equal to zero. But in our work we have stored 

the even product terms in the memory in the case of 

EMS design and odd product terms in the case of 

MOMS design to decrease the size of the memory. In 

the case of EMS design we have stored the even product 

term and the product term zero also. In MOMS design 

the product term 0 is derived from the odd product term 

[1H] stored in the memory. So there is no need of reset 

circuit to derive the output when the input is zero.  Also, 

the odd product terms and the even product terms as per 
design  are derived with a different logic which requires 

less external over-head as compared to OMS 

design [28], which consist of a 3-to-8 decoder, a 2-to-1 

mux and an adder/ subtractor whose width depends on 

the word length of the memory output. In order to 

compare the performance and hardware utilisation of 

our design and the OMS-LUT design, we faithfully 

coded both the design in VHDL and implemented in 

Xilinx Virtex7 FPGA under same place-and-route 

conditions and using same user constraints and under 

same operating conditions which can be selected in the 

Xilinx tool. The hardware utilisation parameters like 

number of CLB slices, number of slice LUT’s are 

compared for both the designs for various input word 

length. The comparison of the hardware utilisation 

parameters for different input lengths is given in 

Table 5. Also the area-efficiency of the proposed 

multiplier with the OMS design is also tabulated in 
Table 6 for different input size. 

   Similarly, the comparison of Maximum combinational 

path delay of both the design is given in Table.7. We are 

able to achieve very less path delay in our design since 

the input has to go through less number of logic circuits 

before reaching the output point. The input data passes 

through a decoder followed by memory, adder and a 

multiplexer. But in the design of [28], the data passes 

through encoder followed by decoder, memory, barrel 

shifter which has to wait for a control circuit to control 

the shifting of the barrel shifter, and a reset circuit to 
reset the output.  Since the higher order input length 

multipliers are realised in parallel, the path delay 

remains same for all input lengths. 

   The complexity of the multipliers is compared at logic 

gate level also. All the three design require same 

capacity multiplier as we are storing only half of the 

 
Table 6 Area-efficiency of the proposed multiplier. 

Description 

Length of the input 

8-bit 16-bit 32-bit 64-bit 

No. of 
slices 

No. of 
slices 

No. of 
slices 

No. of 
slices 

OMS design [28] 10 19 36 90 
Both MOMS & EMS 
design 

04 09 15 34 

Saving of area [%] 60 53 58 62 

 
Table 7 Comparison of path delay for both the designs. 

Description Both MOMS & EMS design [ns] OMS [ns] [28] 

Maximum combinational path delay 0.339 1.495 

 
Table 8 Hardware complexities of proposed EMS-design, proposed modified OMS-design, conventional design, OMS-design [28] 

based multiplier [word-length of the fixed coefficient-W, word length of the input-8] 

Designs Conventional design OMS design [28] 

This work 

Proposed EMS design 
Proposed modified 
OMS design 

Memory 16[W+4] bit memory 8[W+4] bit memory 8[W+4] bit memory 8[W+4] bit memory 
Decoder 2[4:16] decoder 2[3:8] decoder 2[3:8] decoder 2[3:8] decoder 
Encoder Not required 2[4 to 3] encoder Not required Not required 
Adder/ 
Subtractor 

[W+8] bit adder [W+8] bit adder [W+8] bit adder 
2([W+8]/2) bit adder 

W+8] bit adder 
2([W+8]/2) bit adder 

Multiplexer Not required Not required 2 [2 to 1] mux 2 [2 to 1] mux 
NOR gates Not required 2([W+4]-2 bit) NOR gates Not required Not required 

AOI gates Not required 2([W+4]-2 bit) AOI gates Not required Not required 
Control ckts Not required 2[2 input] NOR gates 

2[2 input] OR gates 
Not required Not required 
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Fig. 7 Device utilization summary of OMS multiplier with 64-bit input. 

 

 
Fig. 8 Device utilization summary of EMS multiplier with 64-bit input. 

 

product terms in memory. The variation comes in the 

external combinational circuit required in the different 

designs. Hardware complexity of the conventional 

LUT-based multiplier and the proposed designs and the 
OMS design of [28] are given in Table 8.  For 

supporting our result, the device utilisation summary 

report of the tool is shown in Figs. 7 and 8 for OMS and 

EMS multiplier with 64-bit input. 

   Hence on comparison we can conclude that by storing 

either the even or odd product terms we are reducing the 

size of the memory by half which we achieved as that of 

the design proposed in [28]. But the over-head circuits 

used by our design to derive the odd or even multiplies 
is simpler which is obvious in the hardware utilisation 

result given by the tool. Also the maximum path delay 

of our design is very less as compared to the design 

proposed in [28]. As the length of the input increases, 

our design gives a better area-efficient memory-based 
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multiplier. 

   Thus the newness in the proposed LUT Design on 

FPGA for Memory-Based multiplication is as follows: 

1. The memory space required to store the product 

terms in the case of memory-based multiplier is 

reduced to half  by storing only the even product 

terms. 

2. Proposed a simpler external circuit to derive the odd 

product terms. 

3. The proposed multiplier when implemented in 

FPGA gives an area and speed efficient design. 
4. The hardware complexity when compared with the 

already proposed memory-based multiplier is very 

less, which is well summarised in Table 6. Thus the 

memory-based multiplier design proposed by us 

proves an area-efficient design. 

5. The maximum combinational path delay between 

the input and the output is very less because of the 

simpler external combinational circuit. As 

compared with the already proposed memory-based 

multiplier, the maximum path delay is decreased by 

77%. 
   In the next section we demonstrate that by 

employment of the proposed LUT-based multiplier of 

this communication in the place of conventional 

memory-based multiplier of the FIR filter, the area-

complexity of the filter can be improved without 

affecting the performance of the filter.  

 

4 Memory-based FIR Filter Structure Using the 

Proposed EMS-based LUT Multiplier 

   Transposed FIR filter structure is considered because 

of the self-pipelined structure, that is, it has an optimum 
critical path which is equal to one multiplier and one 

adder time without adding any extra delay elements [3]. 

The modified transposed structure of FIR filter 

replacing each multiplier by a conventional LUT- based 

multiplier is given in Fig. 9. Conventional LUT-based 

multiplier consists of a dual core memory to store the 

product terms followed by shift adder to add the MSB 

and LSB part of the product term. Also the proposed 

designs of LUT-based multiplier best suits to this 

structure. Each adder operation is separated by delay 

elements in this structure and this type of structure is 

suitable to FPGA or ASIC implementation. 

   For an N-tap filter there will be N multipliers and 

(N-1) adders. In N multipliers constant coefficients are 

multiplied with the input data. In transposed form, the 

input data is common to all the N multipliers. Hence 

switching power is decreased. In Memory-based filter 

Structure, the N multipliers are replaced by the proposed 
EMS-based-LUT multiplier. Since the input data is 

common to all the multipliers, a common decoder 

circuit is used to address the entire N- Memory array, 

which is the part of the LUT-multiplier. The proposed 

EMS-based filter structure is shown in Fig. 10. For 

example, we have considered the input data length equal 

to 8-bit and the fixed coefficient word equal to W-bit.  

Two decoders D1 and D2 are used to decode the MSB 

[X7 X6 X5 X4] and LSB [X3 X2 X1 X0] part of the input 

data and address the dual product terms stored in the N 

dual core memories. The even product terms M1 and M2 
fetched from the memory is fed to the adder-1 and 

adder-2 to derive the odd product terms. Both even and 

odd product terms are fed as inputs to mux-1 and 

mux-2. Mux M1 and M2 with the help of the select line 

which is connected to X4 and X0 bit of the input data 

respectively will select the corresponding product term 

and pass it on to the shift adder circuit. Shift adder shifts 

the MSB (M1) product term left by 4-bits and adds the 

result with the LSB (M2) product term.  The output of 

the LUT multiplier is further delayed in delay block (D) 

and added in the adder (A) cell of the filter. The output 
of the filter is available after a latency of three clock 

pulses which are equal to one memory fetch cycle, one 

shift-add operation and the last equal to the adder 

operation of the filter. The actual output is available 

after (N+2) cycles because the output from first (N-1) 

cycles does not have the contributions from all the filter 

coefficients. 

 

LUT Multiplier LUT Multiplier LUT Multiplier LUT Multiplier LUT Multiplier

h(n-1) x(n) h(n-2)x(n) h(n-3)x(n) h(1)x(n) h(0)x(n)

x(n)

y(n)
D D D D

--------

--------

+ + + +
 

Fig. 9 Modified transposed FIR filter structure. 
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Fig. 10 Transposed FIR filter structure using the proposed EMS-LUT multiplier. 

 

   Similarly we can design filter using MOMS-LUT 

multiplier. The variation will be there in the product 

term (odd product terms) stored in the memory and in 

the place of adder, subtractor is used to derive the even 

product terms and the order of inputs applied to the mux 

will vary. But the latency and throughput of both the 

filter remains same. Both the filter structure and the 
OMS-LUT filter proposed in [28] are simulated and 

implement in FPGA and their hardware complexity and 

the maximum frequency of operation of the filter are 

compared. 

   The comparison of the hardware utilisation parameters 

for input word length 8 for different order of the filter is 

given in Table 9. Similarly, the comparison of 

Maximum frequency of operation for different word 

length and different order of filter is given in detail in 

Table 10. From Table 9, we can see that the number of 

slices and the number of slice LUT’s require to 

implement both EMS and MOMS based filter is very 
less compared to the OMS based filter. From Table 10, 

we can infer that the maximum frequency of operation 

is higher for all filter orders and for various input data 

length for the proposed design. Since the FIR filter 

considered for implementation is a pipelined structure, 

apart from the initial latency of the filter which will be 

same for our design and the OMS design, the proposed 

filter works at a higher throughput rate compared to the 

OMS design. 
 

5 Conclusion 

   Two new techniques are proposed namely, EMS-LUT 

multiplier and MOMS-LUT multiplier in contrast to an 

already existing technique OMS-LUT multiplier to 

reduce the area complexity and the path delay of a 

Memory-based multiplier. In both the techniques the 

size of the LUT is reduced by half. Also the complexity 

of the multiplier is reduced because of simpler logical 

circuits utilized to derive the odd product term in case of 

EMS and even product term in case of MOMS design. 

The proposed design is then tested with Xilinx tool and 
implemented in FPGA of type 

Virtex 7 XC7vx330tffg1157. For a 64-bit input we are 
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Table 9 Comparison of hardware utilisation parameters for the input word. 

Order of the filter 

Proposed design 
Area in terms of 

OMS-LUT design [28] 
Area in terms of 

No. of slices No. of slice LUT’s No. of slices No. of slice LUT’s 

16 100 267 122 203 
32 228 695 307 892 

64 973 2915 986 3015 

 
Table 10 Comparison of Fmax for different input word length and different filter order. 

Order of the filter 

Proposed design 
Freq. [MHz] 

Input word size 

OMS-LUT design [28] 
Freq. [MHz] 

Input word size 

No. of slices No. of slice LUT’s No. of slices No. of slice LUT’s 

[4] [8] [4] [8] 

16 433.46 357.52 327.22 200.60 
32 304.87 303.85 191.31 254.38 
64 228.93 198.49 206.44 173.82 

 

able to achieve an area efficiency of 62% and maximum 
path delay efficiency of 77% in comparison to [28]. 

This proposed multiplier is then used in FIR filters and 

the complexity reduction in filter is verified. The 

maximum frequency of operation of the filter achieved 

is also higher in proposed multiplier design-based filter. 

The hardware utilised, as external control circuit for an 

N-th order filter by our proposed design are, 

N(2([W+8]/2))-bit adders, N(2(2 to 1)) mux. The 

hardware utilised by the OMS design [28] are 

N(2(4 to 3)) encoder, N(2(W+4))-bit NOR gates, 

N(2(W+4)-bit AOI gates, N(2(2-bit)) NOR gates, 

N(2(2-bit)) OR gates apart from dual core memory, 
decoder and shift adder which is used by both the 

designs. For a 32-order filter, filtering an input with a 

word length of 8, the area efficiency achieved using our 

multiplier is 26%. For any DSP application we require 

higher order filter and for better performance the word 

length of the input should be high. For higher order 

filtering with larger input length, our proposed filter is a 

better alternative compared to other optimised design 

proposed till now under memory-based filters. 
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