

Iranian Journal of Electrical and Electronic Engineering, Vol. 15, No. 4, December 2019 462

Iranian Journal of Electrical and Electronic Engineering 04 (2019) 462–476

An Efficient LUT Design on FPGA for Memory-Based

Multiplication

C. S. Vinitha* and R. K. Sharma*(C.A.)

Abstract: An efficient Lookup Table (LUT) design for memory-based multiplier is

proposed. This multiplier can be preferred in DSP computation where one of the inputs,

which is filter coefficient to the multiplier, is fixed. In this design, all possible product

terms of input multiplicand with the fixed coefficient are stored directly in memory. In

contrast to an earlier proposition Odd Multiple Storage (OMS), we have proposed utilizing

Even Multiple Storage (EMS) scheme for memory-based multiplication and by doing so we

are able to achieve a less complex and high-speed design. Because of the very simpler
control circuit used in our design, to extract the odd multiples of the product term, we are

also able to achieve a significant reduction in path delay and area complexity. For

validation, the proposed design of the multiplier is coded in VHDL, simulated and

synthesized using Xilinx tool and then implemented in Virtex 7 XC7vx330tffg1157 FPGA.

Various key performance metrics like number of slices, number of slice LUT’s and

maximum combinational path delay is estimated for different input word length. Also, the

performance metrics are compared with the existing OMS design. It is found that the

proposed EMS design occupies nearly 62% less area in terms of number of slices as

compared to the OMS design and the maximum path delay is decreased by 77% for a 64-bit

input. Further, the proposed multipliers are used in Transposed FIR filter and its

performance is compared with the OMS multiplier based filter for various filter orders and

various input lengths.

Keywords: VLSI Design, Memory-Based Architecture, Multiplier, FPGA Design, FIR
Filter, Transposed Structure, Distributed Arithmetic.

1 Introduction1

IGITAL Signal Processing (DSP) is the key
component of the digital revolution engulfing the

world of humanity. It is seen applied in almost all

automated and programmable electrical appliances. The

algorithms used in these DSP systems require extensive

computer-based computation mostly used in real- time

situation [1]. Also, DSP systems are found in portable

and miniature systems which work on limited battery

Iranian Journal of Electrical and Electronic Engineering, 2019.

Paper first received 27 November 2018, revised 08 March 2019, and

accepted 11 March 2019.

* The authors are with the Electronics and Communication

Engineering Department, Ambedkar Institute of Advanced

Communication Technologies and Research (GGSIP University),

Geeta Colony, Delhi, India.

E-mails: csvinitha1972@aiactr.ac.in and rksharma@aiactr.ac.in.

Corresponding Author: R. K. Sharma.

power and hence, these systems should occupy less

silicon area [2]. Thus, DSP system designs are

extremely challenging and constrained with demands

such as; less area-complexity, low power dissipation

and high speed of operation. It is not possible to design

systems that satisfy all the constraints of the application.

Architectural transformation can be done to trade-off

one constraint over another like area over speed and so

on. Certain solutions can be found in [3] which help

reduce the arithmetic complexities of the algorithms so

that the speed, area and power complexity can be
addressed.

 Most of the DSP algorithms use Multiply and

Accumulate (MAC) operator repeatedly [4, 5]. The

conventional logic based multiplier is very complex and

occupy most of the space of a DSP system. Hence in the

past three decades lot of research has been carried out in

decreasing the complexity of the multiplier. As per the

researches, the implementation of multiplier for DSP

D

mailto:csvinitha1972@aiactr.ac.in
mailto:rksharma@aiactr.ac.in

An Efficient LUT Design on FPGA for Memory-Based

… C. S. Vinitha and R. K. Sharma

Iranian Journal of Electrical and Electronic Engineering, Vol. 15, No. 4, December 2019 463

application is broadly classified into three categories:

CORDIC implementation, adder-based implementation

and Memory-based implementation [6-11]. Among

these three, Memory-based implementation is gaining

more popularity due to significant growth in VLSI

memory technology. Semiconductor memory has

become cheaper, faster and is available with less power

consumption because of the continuous improvement in

silicon scaling technology. Owing to advancement in

memory technology [12] and as per application

requirement better memory designs are possible
nowadays and hence, efficient memory-based

multipliers are also not unthinkable. Earlier, memory

used to be a separate section from the processor unit,

but nowadays memory is becoming part of the

processor. This increases the bandwidth of operation

and reduces the power consumption [13]. As per

projections of International Technology Roadmap of

Semiconductors (ITRS), the density of DRAM cells is

increasing steadily as compared to transistors in Micro

Processor Unit (MPU) [12]. Thus, cost of storing one-

bit information in DRAM is far less as compared to
MPU. Hence, Memory- based computing is now being

considered cheaper than the conventional logic-only

arithmetic circuits. In [14], a brief survey report on

memory-based VLSI architectures for digital filters can

be found.

 In DSP algorithms mostly one input to the multiplier,

that is, the coefficients are fixed in nature. This

facilitates the use of memory-based structures in DSP.

Numerous architectures are proposed on the application

of memory-based structures in discrete sinusoidal

transforms and filters [10, 11], [15-40]. There are two
types of memory based computation. One is using

Direct- LUT to compute the multiplication [19-23],

[25-31], [40] and the other is to compute the inner-

product using Distributed Arithmetic (DA) [10],

[16-18], [32-39]. In Direct-LUT-based computation, all

the possible product terms of the input multiplicand

with the fixed coefficients are pre-computed and stored

directly in the LUT and thus multiplication is done [11].

But in DA-based computation, the inner-product of the

N-point vector with the N-bit vector is pre-computed

and stored in LUT [10]. The size of the LUT increases

with the word length of the input if the product term is
directly stored in LUT, whereas if the inner product is

stored, the size increases with the length of the inner-

product.

 In DA-based computation, offset binary

coding [10, 37] and group distributed [17] technique are

proposed to decrease the size of the memory. Under

Direct-LUT based computation many techniques are

proposed [26-31], [40]. In [26, 28] and [29], authors

have proposed OMS approach, where only the odd

multiple product terms are stored in memory. Thus the

size of the memory is reduced by half. Further,
in [27, 30] another technique namely; Anti-symmetric

Product Coding (APC) has been detailed, where the size

of the LUT is reduced again. Also, it requires less over-

head circuits as compared to the work of [26]. In [29]

authors have combined both OMS and APC technique

and developed an efficient architecture which contains

the advantages of both of the above techniques. In [28]

author has slightly modified the design used in [29] and

used the proposed multiplier in FIR filter and made a

comparison with the conventional and DA based

memory multiplier. Also we find many papers on Finite

Impulse Response (FIR) filters exploiting features of

these memory- based multipliers are published [28],
[32-36]. DA-based multipliers are used in Adaptive FIR

filter to improve its computational efficiency and

decrease its implementation complexity [42-48].

 Because of OMS-based multiplier already existing, we

were curios to try EMS- based multiplier design, not

explored and dealt with up until now. This

communication is nothing but an outcome of the same

curiosity. We could convincingly implement a memory-

based multiplier using EMS-design with a very less

complex logic circuit. Also we could achieve a design

with a very less data path delay as compared to the
previous designs. Even though the work is incremental

to the work in [28], it is also novel and we have proved

here that our proposed EMS multiplier is area-efficient

and high speed design in comparison to OMS design.

The EMS multiplier [41] is used in systolic architecture

for FIR filters to reduce the latency and area of the

filter. We have tried in this communication to modify

the already proposed OMS design with a different

external logic circuit. The modification of the logic and

control circuit in OMS design also resulted in an

efficient multiplier with reduction in area complexity
and data path delay. Hence using our proposed logic and

control circuit, we are able to achieve an efficient EMS

and OMS design for a memory-based multiplier. For

validation of our above stated propositions, we have

done coding of the proposed multipliers in VHDL;

simulated and synthesized them using Xilinx tool and

then finally, implemented them in

Virtex 7 XC7vx330tffg1157 FPGA. Various key

performance metrics like number of slices, number of

slice LUT’s and maximum combinational path delay

has been estimated for different input word length.

 The remainder of this article is organized as follows:
In Section 2, the conventional Memory-based multiplier

is discussed. In Section 3, the proposed EMS-based

LUT multiplier is explained in detail for 4-bit and 8-bit

input. The Synthesis results pertaining to FPGA

implementation and its comparison with OMS

technique [28] are also presented and discussed in

Section 3. In Section 4, the memory–based transposed

FIR filter structure using proposed LUT multiplier has

been detailed out and compared with OMS design based

filter. Finally, in Section 5 the work has been concluded.

2 Conventional Memory-based Multiplier

 In a conventional Memory-based multiplier,

An Efficient LUT Design on FPGA for Memory-Based

… C. S. Vinitha and R. K. Sharma

Iranian Journal of Electrical and Electronic Engineering, Vol. 15, No. 4, December 2019 464

Memory Core

 (2N Words)X

N

(H*X)
WN

Fig. 1 Conventional memory-based multiplier.

Table 1 Conventional LUT multiplier table.

Address Bits
Content of the memory

X3 X2 X1 X0

0 0 0 0 0

0 0 0 1 H
0 0 1 0 2H
0 0 1 1 3H
0 1 0 0 4H
0 1 0 1 5H
0 1 1 0 6H
0 1 1 1 7H
1 0 0 0 8H

1 0 0 1 9H
1 0 1 0 10H
1 0 1 1 11H
1 1 0 0 12H
1 1 0 1 13H
1 1 1 0 14H
1 1 1 1 15H

applicable for fixed coefficient, all the possible product
terms are stored in different locations of the LUT. The

product terms for all the possible combination of input

multiplicand with the fixed coefficient are pre-

calculated and stored in different locations in the

memory. Let us assume that W is the word length of the

fixed coefficient H and N is the word length of the input

multiplicand X. The number of locations occupied by

the memory depends on the size of the input X. For an

N-bit input X, 2N locations are occupied by the product

terms. The contents of the memory for an input word

length of 4-bit and for a fixed coefficient H is given in
Table 1.

 As shown in Fig. 1 the product terms (H*Xi) where i

varies from zero to (N-1) are stored in various locations

of the memory and fetched using input X as the address.

In the next section we explain two new propositions to

decrease the size of the memory and to improve the

complexity of the multiplier.

3 Proposed LUT-based Multiplier for DSP

Computation

 Here two designs are proposed to reduce the

complexity of the LUT-based multiplier. The proposed
designs are named as EMS-LUT multiplier where only

the even product terms are stored in memory and

Modified OMS (MOMS) multiplier where only the odd

product terms are stored in memory. Both of these

techniques reduce the memory size by half. The concept

of storing the product terms in memory is same as that

proposed in [26] and [28]. The changes in our proposed

design are the use of a new logic and the control circuit
to derive their corresponding complement product

terms. However, as will be evident from the following

details, the complexity of logic and the external circuit

used in our proposed design is simpler in comparison

to [28].

3.1 Proposed EMS-LUT based Multiplier for 4-bit

and 8-bit Input.

 In this multiplier, even multiplies of the product terms

are stored in memory. An external combinational logic

circuit is used to derive the odd multiplies of the product
term using the even product term. The working of the

proposed design is explained as follows:

 As discussed in Section 2, all the possible product

terms are stored in memory for a conventional memory-

based multiplier. For an N-bit input, there will be 2N

product terms. Among the 2N product terms, ((2N/2) – 1)

terms correspond to the even multiples of H. In this

multiplier we store only these even product terms and

the term 0. Hence only (2N/2) memory locations are

required to store the product terms thus reducing the

size of the LUT by half.

 The proposed method is explained by considering a 4-
bit input size. From the contents of the conventional

LUT multiplier as shown in Table 1, we can see that

there are seven even product terms (H*(2i)) where i

varies from 1 to 7. These seven even product terms

along with 0 are stored in the memory of the proposed

multiplier. The contents of the proposed LUT multiplier

are shown in Table 2.

An Efficient LUT Design on FPGA for Memory-Based

… C. S. Vinitha and R. K. Sharma

Iranian Journal of Electrical and Electronic Engineering, Vol. 15, No. 4, December 2019 465

Table 2 Proposed EMS-LUT multiplier table.

Address for EMSLUT
Content of the memory

Input
Product value

X3X2X1 X3X2X1X0

000 0 0000 0
 0001 H

001 2H 0010 2H

 0011 3H
010 4H 0100 4H

 0101 5H
011 6H 0110 6H

 0111 7H
100 8H 1000 8H

 1001 9H
101 10H 1010 10H

 1011 11H

110 12H 1100 12H
 1101 13H

111 14H 1110 14H
 1111 15H

S1

S2

D

C ENB

Multiplexer

Adder

X(3)

X(2)

X(1)

X(0)

m(0)

m(1)

m(2)

m(3)

m(4)

m(5)

m(6)

m(7)

1H

Output of Multiplier

3 to 8 Decoder
8 x (W+4)

Memory array

Fig. 2 Proposed EMS-LUT multiplier for 4-bit input.

 For deriving the odd product terms we require the

following external circuitry:

 A memory with 2N/2 memory locations with each

location of width (W+N), where W is the width of

the fixed coefficient and N is the width of the

input.

 A 3-to-8 decoder to address the eight memory

locations of the memory.

 An adder circuit to derive the odd product term

using the even product term fetched from the
memory.

 A 2 to 1 multiplexer (mux) to do selection among

the even and odd product terms and pass it to the

output.

 The block diagram of the proposed EMS-LUT

multiplier for 4-bit input is shown in Fig. 2. Initially,

the pre-calculated even product terms including 0 are

stored in the memory. The three Most Significant Bits

(MSB) [X3 X2 X1] of the input are applied as input to a 3

to 8 decoder. The 8 output lines of the decoder are used

as address to fetch the product terms from the memory.
For example, for the input combination [0 0 1] of the

decoder, the output line m (1) of the decoder will be

active and the product term (2H) is fetched out.

Similarly, for the combination [0 1 0] the output line

m (2) of the decoder will be active and the product term

(4H) is fetched out. Likewise, it goes on and on for the

last 3-bit combination [1 1 1] product term (14H) is

fetched out. The output from the memory is fed directly

to input line s1 of the 2-to-1 multiplexer. The output

from the memory is added with (1H) in an adder circuit

and the output of the adder gives the odd multiple of the
product term. The output of the adder is directly

connected to the input line s2 of the 2-to-1 multiplexer.

The control line c of the multiplexer is directly

connected to the Least Significant Bit (LSB) [X0] of the

input data X. Hence when the control line is 0, the mux

selects the input s1 and when the control line is 1, it

selects the input s2.Thus when the input bit X0 equals 0,

even product term is available at the output of the

multiplier and when X0 equals 1, odd product term is

available at the output of the multiplier. The enable line

of the mux, which is not required in this design, is

grounded. For example, when the X input equals
[0 0 1 0], because of the first three bit equal to [0 0 1],

An Efficient LUT Design on FPGA for Memory-Based

… C. S. Vinitha and R. K. Sharma

Iranian Journal of Electrical and Electronic Engineering, Vol. 15, No. 4, December 2019 466

3 to 8 Decoder

8 x (W+4)

Dual Port

Memory

Array

3 to 8 Decoder

Adder Adder

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

Shift Adder

x(7)

x(6)

x(5)

x(4)

x(3)

x(2)

x(1)

x(0)

m10

m11

m12

m13

m14

m15

m16

m17

m00

m01

m02

m03

m04

m05

m06

m07

M1 M2
IH IH

O/P of Multiplier

Fig. 3 Proposed EMS-LUT multiplier for 8-bit input.

the address line m(1) of the memory is activated and the

product term (2H) from the memory is selected and fed

to the input line s1 of the mux. Since, the LSB bit of the

input X is 0 for this particular combination of X, the

input line s1 is selected by the mux and transferred to

the output of the multiplier. The odd product term is

selected as follows. For example, if the input data X is

equal to [0 0 1 1], then, because the first three bits are

[0 0 1], the output line m (1) of the decoder is activated
which then selects the product term (2H) from the

memory. Since the LSB of the input X is equal to 1, the

input line s2 is selected by the mux. As the input line s2

is connected to the output of the adder, the odd product

term for this case which is [3H] is selected by the mux

and transferred at the output of the multiplier. Similarly,

for the input combination [1 1 1 0] the even product

term (14H) is transferred at the output and for the input

combination [1 1 1 1] the odd product term is selected

and transferred at the output. Thus, for all the possible

input combinations their corresponding product terms
are selected and transferred to the output of the EMS-

LUT multiplier.

 Using Dual Port Memory array and two section of

external control circuit we can multiply 8-bit input with

W-bit coefficient. Here we use two adders and two mux

one each to derive the MSB (M1) and LSB (M2) part of

the product term. Finally, a shift adder is used in which

the MSB part of the product term is shifted left by four

bits and then added with the LSB part of the product

term. Thus the final product term is derived from the

shift adder. The self-explanatory illustration of EMS-

LUT Multiplier for the 8-bit input is given in Fig. 3.

3.2 Proposed Modified OMS-based Multiplier for 4-

bit and 8-bit Input

 Here we propose a new logic for the already existing
OMS multiplier [28] design. Since it is the modification

of the OMS-LUT multiplier proposed earlier, we are

naming it MOMS-LUT multiplier. As compared to the

proposed EMS-LUT multiplier, there is variation in the

external control circuit used to derive the even product

terms. The proposed design of MOMS-LUT based

multiplier is explained as in Table 3.

 As discussed in the previous section, let H be the fixed

coefficient and X be the input multiplicand. Let N be the

word length of the input X. Hence there will be 2N

possible values of input and accordingly 2N product
terms. Among the 2N product terms, (2N/2) terms

correspond to the odd multiples of H. In this design we

store only these odd product terms. Hence only (2N/2)

memory locations are required to store the product

terms. Thus the size of the LUT is reduced by half.

 In the following, the proposed method is explained by

An Efficient LUT Design on FPGA for Memory-Based

… C. S. Vinitha and R. K. Sharma

Iranian Journal of Electrical and Electronic Engineering, Vol. 15, No. 4, December 2019 467

Table 3 Proposed modified OMS-LUT multiplier table.

Address for OMSLUT
Content of the memory

Input
Product value

X3X2X1 X3X2X1X0

 0000 0
0001 H 0001 H

 0010 2H

0011 3H 0011 3H
 0100 4H

0101 5H 0101 5H
 0110 6H

0111 7H 0111 7H
 1000 8H

1001 9H 1001 9H
 1010 10H

1011 11H 1011 11H

 1100 12H
1101 13H 1101 13H

 1110 14H
1111 15H 1111 15H

S1

S2

D

C ENB

MultiplexerSubtract

or

X(3)

X(2)

X(1)

X(0)

m(0)

m(1)

m(2)

m(3)

m(4)

m(5)

m(6)

m(7)

1H

Output of Multiplier

3 to 8 Decoder
8 x (W+4)

Memory array

Fig. 4 Proposed modified OMS-LUT multiplier for 4-bit input.

considering a 4-bit input. From Table 1, we can see that

there are eight odd product terms (H*(2i-1)) where i

varies from 1 to 8. These eight odd product terms are

stored in the memory of the proposed multiplier. The

contents of the proposed LUT multiplier are shown in

Table 3.

 For deriving the even multiplies of the product term

we require the following external circuitry:

 A memory with 2N/2 memory locations with each

location of width (W+N), where W is the width of
the fixed coefficient and N is the width of the

input.

 A 3-to-8 decoder to address the eight memory

locations of the memory.

 A Subtractor circuit to derive the even product term

using the odd product term fetched from the

memory.

 A 2 to 1 multiplexer (mux) to do selection among

the even and odd product terms and pass it to the

output.

 The proposed multiplier for 4-bit input is shown in

Fig. 4. For an input size of 4-bit, how the MOMS-LUT

multiplier design works is explained in the following.

Initially, the entire odd product terms are stored in the

memory. The three MSB’S [X3 X2 X1] of the input are

applied to the 3 to 8 decoder. The 8 output lines of the

decoder are used as address to fetch the product terms

from the memory. For example, for the input

combination [0 0 1] of the decoder, the output line m (1)

will be active and the product term (3H) is fetched out.

Similarly, for the combination [0 1 0] product term (5H)
is fetched out. Likewise, it goes on and for the last 3-bit

combination [1 1 1] for which the product term (15H) is

fetched out. The output from the memory is fed directly

to input line s2 of the 2-to-1 multiplexer. The output

from the memory is fed to a subtractor where (1H) is

subtracted from the output of the memory and the

output of the subtractor gives the even product term.

The output of the subtractor is directly connected to the

input line s1 of the 2-to-1 multiplexer. The control line c

of the multiplexer is connected to the LSB [X0] of the

input data X. Hence when the control line is 0, the mux

An Efficient LUT Design on FPGA for Memory-Based

… C. S. Vinitha and R. K. Sharma

Iranian Journal of Electrical and Electronic Engineering, Vol. 15, No. 4, December 2019 468

3 to 8 Decoder

8 x (W+4)

Dual Port

Memory

Array

3 to 8 Decoder

Subtractor Subtractor

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

Shift Adder

x(7)

x(6)

x(5)

x(4)

x(3)

x(2)

x(1)

x(0)

m10

m11

m12

m13

m14

m15

m16

m17

m00

m01

m02

m03

m04

m05

m06

m07

M1 M2
IH IH

O/P of Multiplier

Fig. 5 Proposed modified OMS-LUT multiplier for 8-bit input.

selects the input s1 and when the control line is 1, it

selects the input s2.Thus when the input bit X0 equals 0,

even product term is available at the output of the

multiplier and when X0 equals 1, odd product term is

available at the output of the multiplier. The enable line
of the mux is grounded. For example, when the X input

equals [0 0 1 1], because of the first three bit equal to

[0 0 1], the address line m(1) of the memory is activated

and the product term (3H) from the memory is selected

and fed to the input line s2 of the mux. Since, the LSB

bit of the input X is 1 for this particular combination of

X, the input line s2 is selected by the mux and

transferred to the output of the multiplier. The even

product term is selected as follows. For example, if the

input data X is equal to [0 0 1 0], then, because the first

three bits are [0 0 1], the output line m (1) of the
decoder is activated which then selects the product term

(3H) from the memory. Since the LSB of the input X is

equal to 0, the input line s1 is selected by the mux. As

the input line s1 is connected to the output of the

subtractor, the even product term for this case which is

[2H] is transferred at the output of the multiplier.

Similarly, for the input combination [1 1 1 1] the odd

product term (15H) is transferred at the output and for

the input combination [1 1 1 0] the even product term is

selected and transferred at the output. Thus, for all the

possible input combinations their corresponding product

terms are selected and transferred to the output of the

MOMS-LUT multiplier.

 Using Dual Port Memory array and two section of

external control circuit we can multiply 8-bit input with
L-bit coefficient. Here we use two subtractors and two

mux one each to derive the MSB (M1) and LSB (M2)

part of the product term. Finally, a shift adder is used in

which the MSB part of the product term is shifted left

by four bits and then added with the LSB part of the

product term. Thus the final product term is derived

from the shift adder. The block diagram of MOMS-

LUT Multiplier for the 8-bit input is given very clearly

in Fig. 5.

3.3 LUT-based Multiplier for Higher Order Input

Multiplicand

 The LUT-based multiplier for the higher order inputs

is synthesized using parallel realization of lower order

multipliers. For example the multiplier for a 32-bit input

is designed using a parallel realization of two 16-bit

multipliers. Further this 16-bit multiplier is realized

using two 8-bit multiplier and the 8-bit multiplier using

two 4-bit multiplier. The block diagram of a 32-bit

multiplier and 16-bit multiplier is given in Fig. 6.

An Efficient LUT Design on FPGA for Memory-Based

… C. S. Vinitha and R. K. Sharma

Iranian Journal of Electrical and Electronic Engineering, Vol. 15, No. 4, December 2019 469

X(31 TO 16) BITS X(15 TO 0) BITS

16-BIT LUT

MULTIPLIER

16-BIT LUT

MULTIPLIER

SHIFT ADDER

OUTPUT OF A 32-BIT

MULTIPLIER

 32-bit Input(X)

X(15 TO 8) BITS X(7 TO 0) BITS

8-BIT LUT

MULTIPLIER

8-BIT LUT

MULTIPLIER

SHIFT ADDER

OUTPUT OF A 16-BIT

MULTIPLIER

16-bit Input(X)

Fig. 6 Block diagram of 32-bit and 16-bit LUT-based multiplier.

Table 4 Comparison of hardware parameters of conventional and proposed multipliers for various input lengths.

Description

Length of the input

8-bit 16-bit 32-bit 64-bit

No. of
slices

No. of slice
LUT’s

No. of
slices

No. of slice
LUT’s

No. of
slices

No. of slice
LUT’s

No. of
slices

No. of slice
LUT’s

Conventional
memory-based design

11 24 23 48 48 96 96 192

Both MOMS & EMS
design

04 09 09 18 15 36 34 72

Table 5 Comparison of hardware utilisation parameters of the multiplier for various input lengths.

Description

Length of the input

8-bit 16-bit 32-bit 64-bit

No. of
slices

No. of slice
LUT’s

No. of
slices

No. of slice
LUT’s

No. of
slices

No. of slice
LUT’s

No. of
slices

No. of slice
LUT’s

Conventional
memory-based design

11 24 23 48 48 96 96 192

OMS design [28] 10 30 19 59 36 119 90 240
Both MOMS & EMS
design

04 09 09 18 15 36 34 72

3.4 Complexity Analysis of the Proposed LUT-based

Multiplier

 The conventional LUT-based multiplier for 8-bit input

and for a W-bit coefficient requires one dual-port

memory with 16 memory locations of size (W+4), two

(4:16) decoders and one shift-adder of size (W+8) bit.

The proposed multipliers require one dual-port memory

with 8 memory locations of size (W+4), two (3:8)

decoders, two ((W+8)/2) bit adder in case of EMS

design or two ((W+8)/2) bit subtractors in case of

MOMS design, two (2 to 1) mux and one shift-adder of

size (W+8) bit. The conventional LUT-based multiplier

and the proposed multipliers are coded in VHDL and
synthesised using Xilinx tool and implemented in

Virtex 7 XC7vx330tffg1157 FPGA. The comparison of

the hardware utilised by the conventional multiplier and

the proposed multiplier for various input word length is

given in Table 4.

 From the Table 4 we can conclude that as the word

length of the input increases, the design-complexity of

the proposed multipliers are consuming less hardware

compared to the conventional LUT-based multiplier.
For an input size of 64-bit the percentage of area saving

in terms of the number of slices in the case of proposed

multipliers as compared to the conventional multiplier is

62%.

3.5 Novelty and Comparison of the Proposed EMS

and MOMS Multiplier with OMS Multiplier

 The proposed multipliers are designed for various

input lengths and simulated, synthesized and

implemented using Xilinx tool. The OMS design

proposed in [28] is also simulated and implemented on
the same platform and the performance characteristics

are compared in the following Table 5.

 In OMS design proposed in [28] author has stored the

odd product term in memory thereby reducing the

memory size by half. But the external over-heads

required for deriving the even product terms for a 4-bit

input multiplicand are:

An Efficient LUT Design on FPGA for Memory-Based

… C. S. Vinitha and R. K. Sharma

Iranian Journal of Electrical and Electronic Engineering, Vol. 15, No. 4, December 2019 470

 A memory with 2N/2 memory locations with each

location of width (W+N), where W is the width of

the fixed coefficient and N is the width of the

input.

 A 4 to 3 encoder.

 A 3 to 8 decoder.

 A barrel shifter whose size depends on the word

length of the memory output.

 A control circuit to control the number of shifts in

the barrel shifter.
 A reset circuit to reset the output when the product

term is equal to zero. But in our work we have stored

the even product terms in the memory in the case of

EMS design and odd product terms in the case of

MOMS design to decrease the size of the memory. In

the case of EMS design we have stored the even product

term and the product term zero also. In MOMS design

the product term 0 is derived from the odd product term

[1H] stored in the memory. So there is no need of reset

circuit to derive the output when the input is zero. Also,

the odd product terms and the even product terms as per
design are derived with a different logic which requires

less external over-head as compared to OMS

design [28], which consist of a 3-to-8 decoder, a 2-to-1

mux and an adder/ subtractor whose width depends on

the word length of the memory output. In order to

compare the performance and hardware utilisation of

our design and the OMS-LUT design, we faithfully

coded both the design in VHDL and implemented in

Xilinx Virtex7 FPGA under same place-and-route

conditions and using same user constraints and under

same operating conditions which can be selected in the

Xilinx tool. The hardware utilisation parameters like

number of CLB slices, number of slice LUT’s are

compared for both the designs for various input word

length. The comparison of the hardware utilisation

parameters for different input lengths is given in

Table 5. Also the area-efficiency of the proposed

multiplier with the OMS design is also tabulated in
Table 6 for different input size.

 Similarly, the comparison of Maximum combinational

path delay of both the design is given in Table.7. We are

able to achieve very less path delay in our design since

the input has to go through less number of logic circuits

before reaching the output point. The input data passes

through a decoder followed by memory, adder and a

multiplexer. But in the design of [28], the data passes

through encoder followed by decoder, memory, barrel

shifter which has to wait for a control circuit to control

the shifting of the barrel shifter, and a reset circuit to
reset the output. Since the higher order input length

multipliers are realised in parallel, the path delay

remains same for all input lengths.

 The complexity of the multipliers is compared at logic

gate level also. All the three design require same

capacity multiplier as we are storing only half of the

Table 6 Area-efficiency of the proposed multiplier.

Description

Length of the input

8-bit 16-bit 32-bit 64-bit

No. of
slices

No. of
slices

No. of
slices

No. of
slices

OMS design [28] 10 19 36 90
Both MOMS & EMS
design

04 09 15 34

Saving of area [%] 60 53 58 62

Table 7 Comparison of path delay for both the designs.

Description Both MOMS & EMS design [ns] OMS [ns] [28]

Maximum combinational path delay 0.339 1.495

Table 8 Hardware complexities of proposed EMS-design, proposed modified OMS-design, conventional design, OMS-design [28]

based multiplier [word-length of the fixed coefficient-W, word length of the input-8]

Designs Conventional design OMS design [28]

This work

Proposed EMS design
Proposed modified
OMS design

Memory 16[W+4] bit memory 8[W+4] bit memory 8[W+4] bit memory 8[W+4] bit memory
Decoder 2[4:16] decoder 2[3:8] decoder 2[3:8] decoder 2[3:8] decoder
Encoder Not required 2[4 to 3] encoder Not required Not required
Adder/
Subtractor

[W+8] bit adder [W+8] bit adder [W+8] bit adder
2([W+8]/2) bit adder

W+8] bit adder
2([W+8]/2) bit adder

Multiplexer Not required Not required 2 [2 to 1] mux 2 [2 to 1] mux
NOR gates Not required 2([W+4]-2 bit) NOR gates Not required Not required

AOI gates Not required 2([W+4]-2 bit) AOI gates Not required Not required
Control ckts Not required 2[2 input] NOR gates

2[2 input] OR gates
Not required Not required

An Efficient LUT Design on FPGA for Memory-Based

… C. S. Vinitha and R. K. Sharma

Iranian Journal of Electrical and Electronic Engineering, Vol. 15, No. 4, December 2019 471

Fig. 7 Device utilization summary of OMS multiplier with 64-bit input.

Fig. 8 Device utilization summary of EMS multiplier with 64-bit input.

product terms in memory. The variation comes in the

external combinational circuit required in the different

designs. Hardware complexity of the conventional

LUT-based multiplier and the proposed designs and the
OMS design of [28] are given in Table 8. For

supporting our result, the device utilisation summary

report of the tool is shown in Figs. 7 and 8 for OMS and

EMS multiplier with 64-bit input.

 Hence on comparison we can conclude that by storing

either the even or odd product terms we are reducing the

size of the memory by half which we achieved as that of

the design proposed in [28]. But the over-head circuits

used by our design to derive the odd or even multiplies
is simpler which is obvious in the hardware utilisation

result given by the tool. Also the maximum path delay

of our design is very less as compared to the design

proposed in [28]. As the length of the input increases,

our design gives a better area-efficient memory-based

An Efficient LUT Design on FPGA for Memory-Based

… C. S. Vinitha and R. K. Sharma

Iranian Journal of Electrical and Electronic Engineering, Vol. 15, No. 4, December 2019 472

multiplier.

 Thus the newness in the proposed LUT Design on

FPGA for Memory-Based multiplication is as follows:

1. The memory space required to store the product

terms in the case of memory-based multiplier is

reduced to half by storing only the even product

terms.

2. Proposed a simpler external circuit to derive the odd

product terms.

3. The proposed multiplier when implemented in

FPGA gives an area and speed efficient design.
4. The hardware complexity when compared with the

already proposed memory-based multiplier is very

less, which is well summarised in Table 6. Thus the

memory-based multiplier design proposed by us

proves an area-efficient design.

5. The maximum combinational path delay between

the input and the output is very less because of the

simpler external combinational circuit. As

compared with the already proposed memory-based

multiplier, the maximum path delay is decreased by

77%.
 In the next section we demonstrate that by

employment of the proposed LUT-based multiplier of

this communication in the place of conventional

memory-based multiplier of the FIR filter, the area-

complexity of the filter can be improved without

affecting the performance of the filter.

4 Memory-based FIR Filter Structure Using the

Proposed EMS-based LUT Multiplier

 Transposed FIR filter structure is considered because

of the self-pipelined structure, that is, it has an optimum
critical path which is equal to one multiplier and one

adder time without adding any extra delay elements [3].

The modified transposed structure of FIR filter

replacing each multiplier by a conventional LUT- based

multiplier is given in Fig. 9. Conventional LUT-based

multiplier consists of a dual core memory to store the

product terms followed by shift adder to add the MSB

and LSB part of the product term. Also the proposed

designs of LUT-based multiplier best suits to this

structure. Each adder operation is separated by delay

elements in this structure and this type of structure is

suitable to FPGA or ASIC implementation.

 For an N-tap filter there will be N multipliers and

(N-1) adders. In N multipliers constant coefficients are

multiplied with the input data. In transposed form, the

input data is common to all the N multipliers. Hence

switching power is decreased. In Memory-based filter

Structure, the N multipliers are replaced by the proposed
EMS-based-LUT multiplier. Since the input data is

common to all the multipliers, a common decoder

circuit is used to address the entire N- Memory array,

which is the part of the LUT-multiplier. The proposed

EMS-based filter structure is shown in Fig. 10. For

example, we have considered the input data length equal

to 8-bit and the fixed coefficient word equal to W-bit.

Two decoders D1 and D2 are used to decode the MSB

[X7 X6 X5 X4] and LSB [X3 X2 X1 X0] part of the input

data and address the dual product terms stored in the N

dual core memories. The even product terms M1 and M2
fetched from the memory is fed to the adder-1 and

adder-2 to derive the odd product terms. Both even and

odd product terms are fed as inputs to mux-1 and

mux-2. Mux M1 and M2 with the help of the select line

which is connected to X4 and X0 bit of the input data

respectively will select the corresponding product term

and pass it on to the shift adder circuit. Shift adder shifts

the MSB (M1) product term left by 4-bits and adds the

result with the LSB (M2) product term. The output of

the LUT multiplier is further delayed in delay block (D)

and added in the adder (A) cell of the filter. The output
of the filter is available after a latency of three clock

pulses which are equal to one memory fetch cycle, one

shift-add operation and the last equal to the adder

operation of the filter. The actual output is available

after (N+2) cycles because the output from first (N-1)

cycles does not have the contributions from all the filter

coefficients.

LUT Multiplier LUT Multiplier LUT Multiplier LUT Multiplier LUT Multiplier

h(n-1) x(n) h(n-2)x(n) h(n-3)x(n) h(1)x(n) h(0)x(n)

x(n)

y(n)
D D D D

+ + + +

Fig. 9 Modified transposed FIR filter structure.

An Efficient LUT Design on FPGA for Memory-Based

… C. S. Vinitha and R. K. Sharma

Iranian Journal of Electrical and Electronic Engineering, Vol. 15, No. 4, December 2019 473

X(7) X(6) X(5) X(4) To control line of Mux 1 X(0) X(1) X(2) X(3)To control line of Mux 2

3 to 8 Decoder

D1

3 to 8 Decoder

D2

X(n) X(n)

Dual core

Memory

h(N-1)

M1 M2

Dual core

Memory

h(N-2)

M1 M2

Dual core

Memory

h(1)

M1 M2

Dual core

Memory

h(0)

M1 M2

X1(0to8) X0(0to8)

1H

ADD

ER

ADD

ER

ADD

ER

ADD

ER

ADD

ER

ADD

ER

ADD

ER

ADD

ER

1H 1H 1H

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

Mux1 Mux2 Mux1 Mux1 Mux1Mux2 Mux2 Mux2

Shift Adder Shift Adder Shift Adder Shift Adder

D A A A
--------- O/P of Filter

M1 M2 M1 M1 M1M2 M2 M2

D

Enable line of Mux is

grounded

Fig. 10 Transposed FIR filter structure using the proposed EMS-LUT multiplier.

 Similarly we can design filter using MOMS-LUT

multiplier. The variation will be there in the product

term (odd product terms) stored in the memory and in

the place of adder, subtractor is used to derive the even

product terms and the order of inputs applied to the mux

will vary. But the latency and throughput of both the

filter remains same. Both the filter structure and the
OMS-LUT filter proposed in [28] are simulated and

implement in FPGA and their hardware complexity and

the maximum frequency of operation of the filter are

compared.

 The comparison of the hardware utilisation parameters

for input word length 8 for different order of the filter is

given in Table 9. Similarly, the comparison of

Maximum frequency of operation for different word

length and different order of filter is given in detail in

Table 10. From Table 9, we can see that the number of

slices and the number of slice LUT’s require to

implement both EMS and MOMS based filter is very
less compared to the OMS based filter. From Table 10,

we can infer that the maximum frequency of operation

is higher for all filter orders and for various input data

length for the proposed design. Since the FIR filter

considered for implementation is a pipelined structure,

apart from the initial latency of the filter which will be

same for our design and the OMS design, the proposed

filter works at a higher throughput rate compared to the

OMS design.

5 Conclusion

 Two new techniques are proposed namely, EMS-LUT

multiplier and MOMS-LUT multiplier in contrast to an

already existing technique OMS-LUT multiplier to

reduce the area complexity and the path delay of a

Memory-based multiplier. In both the techniques the

size of the LUT is reduced by half. Also the complexity

of the multiplier is reduced because of simpler logical

circuits utilized to derive the odd product term in case of

EMS and even product term in case of MOMS design.

The proposed design is then tested with Xilinx tool and
implemented in FPGA of type

Virtex 7 XC7vx330tffg1157. For a 64-bit input we are

An Efficient LUT Design on FPGA for Memory-Based

… C. S. Vinitha and R. K. Sharma

Iranian Journal of Electrical and Electronic Engineering, Vol. 15, No. 4, December 2019 474

Table 9 Comparison of hardware utilisation parameters for the input word.

Order of the filter

Proposed design
Area in terms of

OMS-LUT design [28]
Area in terms of

No. of slices No. of slice LUT’s No. of slices No. of slice LUT’s

16 100 267 122 203
32 228 695 307 892

64 973 2915 986 3015

Table 10 Comparison of Fmax for different input word length and different filter order.

Order of the filter

Proposed design
Freq. [MHz]

Input word size

OMS-LUT design [28]
Freq. [MHz]

Input word size

No. of slices No. of slice LUT’s No. of slices No. of slice LUT’s

[4] [8] [4] [8]

16 433.46 357.52 327.22 200.60
32 304.87 303.85 191.31 254.38
64 228.93 198.49 206.44 173.82

able to achieve an area efficiency of 62% and maximum
path delay efficiency of 77% in comparison to [28].

This proposed multiplier is then used in FIR filters and

the complexity reduction in filter is verified. The

maximum frequency of operation of the filter achieved

is also higher in proposed multiplier design-based filter.

The hardware utilised, as external control circuit for an

N-th order filter by our proposed design are,

N(2([W+8]/2))-bit adders, N(2(2 to 1)) mux. The

hardware utilised by the OMS design [28] are

N(2(4 to 3)) encoder, N(2(W+4))-bit NOR gates,

N(2(W+4)-bit AOI gates, N(2(2-bit)) NOR gates,

N(2(2-bit)) OR gates apart from dual core memory,
decoder and shift adder which is used by both the

designs. For a 32-order filter, filtering an input with a

word length of 8, the area efficiency achieved using our

multiplier is 26%. For any DSP application we require

higher order filter and for better performance the word

length of the input should be high. For higher order

filtering with larger input length, our proposed filter is a

better alternative compared to other optimised design

proposed till now under memory-based filters.

References

[1] S. M. Kuo, Real-time digital signal processing:

implementations and applications. Hoboken, NJ:

John Wiley, 2006.

[2] S. Sheng, A. Chandrakasan, and R. W. Brodersen,

“A portable multimediaterminal,”

IEEE Communications Magazine, Vol. 30, No. 12,

pp. 64–75, 1992.

[3] K. K. Parhi, VLSI digital signal processing systems:
design and implementation. New York: John Wiley

& Sons Inc., 1999.

[4] S. K. Mitra, Digital signal processing: a computer

based approach. boston: McGraw-Hill, 2006.

[5] J. G. Proakis and D. G. Manolakis, Digital signal
processing: principles, algorithms and applications.

Upper Saddle River, NJ: Prentice-Hall, 1996.

[6] M. D. Macleod and A. G. Dempster, “Multiplierless

FIR filter design algorithms,” IEEE Signal

Processing Letters, Vol. 12, No. 3, pp. 186–189,

2005.

[7] D. L. Maskell, J. Leiwo, and J. C. Patra, “The

design of multiplierless FIR filters with a minimum

adder step and reduced hardware complexity,” in

IEEE International Symposium on Circuits and

Systems, 2006.

[8] Y. H. Hu, “CORDIC-based VLSI architectures for
digital signal processing,” IEEE Signal Processing

Magazine, Vol.9, No.3, pp.16–35, 1992.

[9] M. Kuhlmann and K. K. Parhi, “A high-speed

CORDIC algorithm and architecture for DSP

applications,” in IEEE Workshop on Signal

Processing Systems, pp. 732–741, 1999.

[10] S. A. White, “Applications of the distributed

arithmetic to digital signal processing: A tutorial

review,” IEEE ASSP Magazine, Vol. 6, No. 3, pp. 5–

19, 1989.

[11] H. R. Lee, C. W. Jen, and C. M. Liu, “On the
design automation of the memory-based VLSI

architectures for FIR filters,” IEEE Transactions on

Consumer Electronics, Vol. 39, No. 3, pp. 619–629,

1993.

[12] K. Itoh, S. I. Kimura, and T.Sakata, “VLSI memory

technology: Current status and future trends,” in

IEEE European Conference on Solid-State Circuits

(ESSCIRC'99), pp. 3–10,1999.

[13] D. G. Elliott, M. Stumm, W. M. Snelgrove,

C. Cojocaru, and R. Mckenzie, “Computational

RAM: Implementing processors in memory,” IEEE
Transactions on Design & Test of Computers,

Vol. 16, No. 1, pp. 32–41, 1999.

An Efficient LUT Design on FPGA for Memory-Based

… C. S. Vinitha and R. K. Sharma

Iranian Journal of Electrical and Electronic Engineering, Vol. 15, No. 4, December 2019 475

[14] C. S. Vinitha and R. K. Sharma, “Memory-based
VLSI architectures for digital filters: A survey,” in

IEEE International Conference (UPCON-2016),

pp. 98–101, 2016.

[15] M. Z. Zhang and V. K. Asari, “A fully pipelined

multiplier-less architecture for 2-D convolution with

quadrant symmetric kernels,” in IEEE Asia Pacific

Conference on Circuits and Systems (APCCAS),

pp. 1559–1562, 2006.

[16] Y. H. Chan and W. C. Siu, “On the realization of

discrete cosine transform using the distributed

arithmetic,” IEEE Transactions on Circuits and

Systems I, Fundamental theory and applications,
Vol. 39, No. 9, pp.705–712, 1992.

[17] H. C. Chen, J. I. Guo, T. S. Chang, and C. W. Jen,

“A memory-efficient realization of cyclic

convolution and its application to discrete cosine

transform,” IEEE Transactions on Circuits and

Systems for Video Technology, Vol. 15, No. 3,

pp. 445–453, 2005.

[18] P. K. Meher, “Unified systolic-like architecture for

DCT and DST using distributed arithmetic,” IEEE

Transactions on Circuits and Systems I: Regular

Papers, Vol. 53, No. 5, pp. 2656–2663, 2006.

[19] J. I. Guo, C. M. Liu, and C. W. Jen, “The efficient

memory-based VLSI array design for DFT and

DCT,” IEEE Transactions on Circuits and Systems

II-Analog and Digital Signal Processing, Vol. 39,

No. 10, pp. 723–733, 1992.

[20] D. F. Chiper, “A systolic array algorithm for an

efficient unified memory-based implementation of

the inverse discrete cosine transform,” in

Proceedings 1999 International Conference on

Image Processing (Cat. 99CH36348), pp. 764–768,

1999.

[21] D. F. Chiper, M. N. S. Swamy, M. O. Ahmad, and
T. Stouraitis, “Systolic algorithms and a memory-

based design approach for a unified architecture for

the computation of DCT/DST/IDCT/IDST,” IEEE

Transactions on Circuits and Systems I: Regular

Papers, Vol. 52, No. 6, pp. 1125–1137, 2005.

[22] P. K. Meher and M. N. S. Swamy, “New systolic

algorithm and array architecture for prime-length

discrete sine transform,” IEEE Transactions on

Circuits and Systems II: Express Briefs, Vol. 54,

No. 3, pp. 262–266, 2007.

[23] P. K. Meher, J. C. Patra, and M. N. S. Swamy,
“High-throughput memory-based architecture for

DHT using a new convolutional formulation,” IEEE

Transactions on Circuits and Systems II: Express

Briefs, Vol. 54, No. 7, pp.606–610, 2007.

[24] P. K. Meher, “Memory-based hardware for

resource-constraint digital signal processing

systems,” in Proceedings of IEEE 6th International

Conference on Information, Communications &

Signal, pp. 1–4, 2007.

[25] P. K. Meher, “Low-latency hardware-efficient
memory-based design for large-order FIR digital

filters,” in Proceedings of IEEE International

Conference on Information, Communications &

Signal, 2007.

[26] P. K. Meher, “New approach to LUT

implementation and accumulation for memory-based

multiplication,” in IEEE International Symposium

on Circuits and Systems (ISCAS’09), pp. 453–456,

2009.

[27] P. K. Meher, “New look-up-table optimizations for

memory-based multiplication,” in Proceedings of

IEEE International Symposium on Integrated
Circuits (ISIC'09), pp. 663–666, 2009.

[28] P. K. Meher, “New approach to look-up-table

design and memory-based realization of FIR digital

filter,” IEEE Transactions on Circuits and Systems

I: Regular Papers, Vol. 57, No. 3, pp. 592-603,

2010.

[29] P. K Meher, “LUT optimization for memory-based

computation,” IEEE Transactions on Circuits and

Systems II: Express Briefs, Vol. 57, No. 4, pp. 285–

289, 2010.

[30] P.K. Meher, “Memory-based computation of inner-
product for digital signal processing applications,”

in IEEE International Symposium on. Electronic

System Design (ISED), pp. 95–100, 2010.

[31] P. K. Meher, “Novel input coding technique for

high-precision LUT-based multiplication for DSP

applications,” in IEEE. Conference on VLSI System

on Chip (VLSI-SoC), pp. 201–206, 2010.

[32] M. Mehendale, S. D. Sherlekar, and G. Venkatesh,

“Area-delay trade-off in distributed arithmetic based

implementation of FIR filters,” in Proceedings

Tenth International Conference on VLSI Design,

pp. 124–129, 1997.

[33] H. Yoo and D. V. Anderson, “Hardware-efficient

distributed arithmetic architecture for high-order

digital filters,” in IEEE International Conference on

Acoustics, Speech, and Signal Processing

(ICASSP’05), No. 5, pp. 125–128, 2005.

[34] D. J. Allred, H. Yoo, V. Krishnan, W. Huang, and

D. V. Anderson, “LMS adaptive filters using

distributed arithmetic for high throughput,” IEEE

Transactions on Circuits and Systems I: Regular

Papers, Vol. 52, No. 7, pp. 1327–1337, 2005.

[35] S. S. Jeng, H. C. Lin, and S. M. Chang, “FPGA
implementation of FIR filter using M-bit parallel

distributed arithmetic,” in IEEE International

Symposium on Circuits and Systems (ISCAS), 2006.

[36] P. K. Meher, S. Chandrasekaran, and A. Amira,

“FPGA realization of FIR filters by efficient and

flexible systolization using distributed arithmetic,”

IEEE Transactions on Signal Processing, Vol. 56,

No. 7, pp. 3009–3017, 2008.

An Efficient LUT Design on FPGA for Memory-Based

… C. S. Vinitha and R. K. Sharma

Iranian Journal of Electrical and Electronic Engineering, Vol. 15, No. 4, December 2019 476

[37] J. P. Choi, S. C. Shin, and J. G. Chung, “Efficient
ROM size reduction for distributed arithmetic,” in

IEEE International Symposium on Circuits and

Systems. Emerging Technologies for the 21st

Century. Proceedings (IEEE Cat No. 00CH36353),

No. 2, pp. 61–64, 2000.

[38] P. K. Meher and S.Y. Park, “A novel DA-based

architecture for efficient computation of inner-

product of variable vectors,” in IEEE International

Symposium on Circuits and Systems (ISCAS),

pp. 369–372, 2014.

[39] Y. Pan and P. K. Meher, “Efficient coefficient

partitioning for decomposed DA-based inner-
product computation,” in IEEE International

Symposium on Circuits and Systems (ISCAS),

pp. 406–409, 2011.

[40] C. S. Vinitha and R. K. Sharma, “A Novel

Technique to optimize the LUT used in Memory

based filter,” in IEEE International Conference in

Electrical, Electronics, Computers, Communication,

Mechanical and Computing, 2018.

[41] C. S. Vinitha, R. K. Sharma, “New approach to

low-area, low-latency memory-based systolic

architecture for FIR filter,” Journal of Information
and Optimisation Sciences, Vol. 40, No. 2, pp. 247–

262, 2019.

[42] M. T. Khan and R. A. Shaik, “Optimal complexity

architecture for pipelined distributed arithmetic

based LMS adaptive filter,” IEEE Transactions on

Circuits and Systems I: Regular papers, Vol. 66,

No. 2, pp. 630–642, 2019.

[43] M.S. Prakash and R. A. Shaik, “Low area and high

throughput architecture for an adaptive filter using

distributed arithmetic,” IEEE Transactions on

Circuits and Systems II: Express Briefs, Vol. 60,

No. 11, pp. 781–785, 2013.

[44] R. Guo and L. S. Debrunner, “Two high

performance adaptive filter implementation scheme

using distributed arithmetic,” IEEE Transactions on

Circuits and Systems II: Express Briefs, Vol. 58,

No. 9, pp. 600–604, 2011.

[45] B. K. Mohanty and P. K. Mehar, “A high
performance enery-efficient architecture for FIR

adaptive filter based on new distributed arithmetic

formulation of block LMS algorithm,” IEEE

Transactions on Signal Processing, Vol. 61, No.4,

pp. 921–932, 2013.

[46] Sang Yoon Park and Pramod K. Mehar, “Low

power, high throughput and low area adaptive FIR

filter based on distributed arithmetic,” IEEE

Transactions on Circuits and Systems II: Express

Briefs, Vol. 60, No. 6, pp. 346–350, 2013.

[47] R. Kamal, P. Chandravanshi, N. Jain and R. Kumar,

“Efficient VLSI architecture for FIR filter using
DA-RNS,” in IEEE International conference on

Electronics, Communication and Computational

Engineering,(ICECCE), 2014.

[48] B. K. Mohanty, P. K. Mehar and S. K. Patel, “LUT

optimisation for distributed arithmetic based block

LMS adaptive filter,” IEEE Transactions on VLSI

Systems, Vol. 24, No. 5, pp. 1926–1935, 2016.

C. S. Vinitha did her B.Tech degree from
Bharathiar University, Coimbatore, India
and M.Tech from AIT, Indraprastha
University, Delhi, India. Presently she is
pursuing Ph.D. from IP University, Delhi.

She is working as Assistant Professor in
AIACT&R, Delhi. Her research interest
includes signal processing, digital System
design and VLSI design.

R. K. Sharma was born in Allahabad in
1964. He received his Diploma
(Electronics Engineering) in 1984, AMIE

(India) in 1989, M.E. (Control and
Instrumentation) in 1994 and Ph.D. from
University of Delhi in 2007. He has
served as Lecturer in Ambedkar
Polytechnic during 1997 to 2001, in
Netaji Subhas Institute of Technology

during 2001-2004, as Assistant Professor/Associate Professor
in Ambedkar Institute of Advanced Communication

Technologies and Research, Delhi during 2004-2013.
Currently he is serving in the same institute as Professor since
2013. Currently he is holding the chair of Principal, Ambedkar
Institute of Advanced Communication Technologies and
Research since December, 2018. His areas of research
interests are analog microelectronics and analog signal
processing, mixed signal circuit design, circuit theory, VLSI
design.

© 2019 by the authors. Licensee IUST, Tehran, Iran. This article is an open access article distributed under the
terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
license (https://creativecommons.org/licenses/by-nc/4.0/).

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

	1 Introduction
	2 Conventional Memory-based Multiplier
	3 Proposed LUT-based Multiplier for DSP Computation
	3.1 Proposed EMS-LUT based Multiplier for 4-bit and 8-bit Input.
	3.2 Proposed Modified OMS-based Multiplier for 4-bit and 8-bit Input
	3.3 LUT-based Multiplier for Higher Order Input Multiplicand
	3.4 Complexity Analysis of the Proposed LUT-based Multiplier
	3.5 Novelty and Comparison of the Proposed EMS and MOMS Multiplier with OMS Multiplier

	4 Memory-based FIR Filter Structure Using the Proposed EMS-based LUT Multiplier
	5 Conclusion
	References

