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Abstract: In this paper, using the State Dependent Riccati Equation (SDRE) method, we 

propose a Robust Optimal Integral Sliding Mode Controller (ROISMC) to guarantee an 

optimal control law for a quadrotor which has become increasingly important by virtue of 

its high degrees of manoeuvres ability in presence of unknown time-varying external 

disturbances and actuator fault. The robustness of the controller is ensured by an Integral 

Sliding Mode Controller (ISMC). Subsequently, based on Luenberger linear state estimator, 

the control algorithm is reformed and the actuator’s faults are detected. Moreover, design of 

the controller is based on Lyapunov method which can provide the stability of all system 

states during the tracking of the desired trajectory. The stability of suggested algorithm is 

verified via the execution of sudden maneuvers subjected to forcible wind disturbance and 

actuator faults while performing accurate attitude and position tracking by running an 

extensive numerical simulation. It is comprehended that the proposed optimal robust 

method can achieve much better tracking capability compared with conventional sliding 

mode controller. 
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1 Introduction1 

N recent years, quadrotors as a type of Vertical Take-

Off and Landing (VTOL) and Unmanned Aerial 

Vehicles (UAVs) have attracted a lot of attention, and 

they are increasingly being used in different areas. As a 

matter of fact, their advantages such as good 

maneuverability and small dimensions make them 

unique among other UAVs. Many linear methods such 

as PI and PID controllers [1] and LQ approach [2] have 

been successfully applied on quadrotors for controlling 

and guiding purposes. As quadrotors are nonlinear 

systems, several nonlinear techniques have also been 

suggested to control UAVs. Backstepping and feedback 

linearization are among the earliest techniques proposed 

to design robust controllers for nonlinear systems [3-5]. 

   The quadrotor UAV is an under actuated nonlinear 
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system with complex dynamic interaction which has six 

Degree-Of Freedom (DOF) while has only four rotors 

that able to generate four independent thrust forces. It is 

not facile to control all six output with only four control 

inputs. This will be so tough, especially if the system is 

in a faulty condition or exposed to the external 

disturbances. In order to defeat this problem, it is 

needed to exert capable control strategy such as the 

hybrid nonlinear ones to access an effective robust 

optimal controller. Therefore, we should resort to 

applying the foremost prominent tools. Using optimal 

control theory, control system designers can employ 

modern techniques for designing a control procedure to 

meet required specifications, performance or 

administrative consideration. As a result, in this paper, 

we guarantee the robust optimal performance of a 

quadrotor while addressing the trajectory tracking 

problem under aggressive maneuvers and actuator fault 

subject to rapid convergence of the system state. To 

accomplish this strategy, an optimization method is 

employed for nonlinear control procedure. We propose 

exerting the State Dependent Riccati Equation (SDRE) 

method incorporated with Integral Sliding Mode 

Control (ISMC) technique, called a Robust Optimal 

I 

mailto:rose.babaie@gmail.com
mailto:f.ehyaei@eng.ikiu.ac.ir


Optimal Integral Sliding Mode Controller of a UAV With 

 
… R. Babaie and A. F. Ehyaei 

 

Iranian Journal of Electrical and Electronic Engineering, Vol. 15, No. 2, June 2019 244 

 

Integral Sliding Mode Control (ROISMC) strategy. In 

fact, the advantages of both methods are exploited. 

   The Sliding Mode Control method (SMC) is a well-

known robust design tool for nonlinear control systems. 

This technique ensures insensitivity to the model errors, 

disturbances, and it is capable of globally stabilizing the 

system. Therefore, due to its robustness, SMC has been 

extensively used to control a quadrotor [6-8, 28]. In 

usual, the full response of the sliding mode control 

includes in two phases: the reaching phase and sliding 

phase. Uncertainties and perturbations may deteriorate 

system performance due to its sensitivity in the reaching 

phase. In order to properly address this problem, 

Integral Sliding Mode offers a solution expected to be 

effective on nonlinear systems however it does not 

include a reaching phase [9, 17]. This control method 

has been anxiously investigated to raise robustness of 

closed-loop system and decrease the influence of faulty 

condition or external disturbance that have destructive 

effects on the system performance [21-23]. Also, the 

authors in [20] considered the ISMC approach which 

incorporate with a disturbance observer to major 

augment the ant disturbance ability of vector control of 

induction motor. In the present paper, we will propose a 

novel ROISMC for UAV helicopter systems in the 

presence of actuators’ fault and external disturbances by 

integral sliding mode controller and SDRE optimization 

approaches. We try to solve the optimal control problem 

of a UAV by applying the Riccati matrix equation 

method, so that the determined controller can stabilize 

the closed-loop system and minimize a given 

performance index. 

   The SDRE approach was first introduced by Cloutier 

in 1997 and is mainly about providing an optimal 

solution for a nonlinear dynamic system. This approach 

has been used as a systematic way of designing a 

nonlinear controller [10]. The theory of SDRE control is 

studied in [11], and the application of SDRE in 

nonlinear control problems is presented. Simple 

implementation and high flexibility in SDRE parameter 

design are among the advantages of this method. Hence, 

the designer can customize the parameters according to 

the conditions imposed by the problem. SDRE strategy 

puts out a principled and beneficial design of nonlinear 

controllers in areas such as aerospace [12], robotics 

technique [13,], motors [14], magnitude torque attitude 

control of a satellite [15], flexible cable transporter 

system [16] and for position and altitude control of a 

quadcopter [24]. Also in [25], the authors with 

compilation of State Dependent Riccati Equation and 

sliding mode method, have provided a robust optimal 

attitude for a nonlinear system. 

   On the other hand, UAV controllers require to be 

designed to reach the desired proficiency subject to 

faulty conditions. Fault tolerant controllers for 

quadrotors are capable of withstanding defects 

automatically and maintain function in case of a failure 

in magnetic rotors [7, 8]. In [9] the authors described a 

nonlinear adaptive estimation strategy which able to 

detect the actuator fault in a rotorcraft by using adaptive 

thresholds. Also in [26] authors applied a fault tolerant 

adaptive controller based on ℒ1 control algorithm to the 

trajectory tracking for a rotorcraft UAV in faulty 

condition. In these papers, the durability and the 

efficiency of the faulty systems are maintained by 

reconfiguring the controllers to take into account the 

actuator faults. Note that, due to the existence of 

complexity in controller design for UAV systems, only 

few research papers have considered simultaneous 

actuator faults and exogenous disturbances such as wind 

field effect. Also, to the best of authors’ knowledge, no 

results have been reported for Integral Sliding Mode 

control of UAVs. Moreover, it has not been considered 

together with an optimal method such as SDRE in the 

presence of actuator fault. 

   In the present work, ROISMC controller is proposed 

to address the attitude and position control problem 

under aggressive maneuvers, and accurate tracking in 

the presence of actuator faults. It is noteworthy that 

there are various advantages to this method such as easy 

execution, smooth parameter learning to plan 

specification customization, principled choice of design 

matrices and solutions in the attendance of state's 

variables and control limitations. Furthermore, our 

control strategy in this paper is rather easy to be 

implemented in practical applications. Numerical 

simulations are provided to validate the performance of 

the proposed controller. The remainder of this paper is 

organized as follows. Section 2 introduces the dynamics 

of a quadrotor and its actuators based on some 

assumptions and simplifications. Section 3 is devoted to 

the problem formulation of control algorithm in two 

part. In the first part, the integral sliding mode control 

strategy is described for the stabilization of attitude and 

altitude and in the second part, the robust optimal 

controller design is presented based on SDRE method. 

In Section 4, the fault tolerant control technique is 

introduced. In Section 5, the results from numerical 

simulations are discussed and finally Section 6 

concludes the paper with certain future development 

directions. 

 

2 Mathematical Dynamic Model 

2.1 Nonlinear Model of Quadrotor [19] 

   As is shown in Fig. 1, two basic frame are supposed to 

analyze dynamic model: the quadrotors earth-frame, E = 

{Ex, Ey, Ez}, and the body-reference frame, B = {Bx, By, 

Bz}. The position and angle vector of the UAV are 

denoted by ξ = [x, y, z]T and η = [φ, θ, 𝜓]T in frame E, 

respectively. 

   The equation of rotational subsystem of quadrotor in 

body-fixed reference is defined as: 
 

 I I           (1) 
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Fig. 1 Configuration of a quadrotor. 

 

where, τ = [τφ τθ τ𝜓]T denotes the rotation torques of 

propellers, I = diag{Ix, Iy, Iz} is the diagonal inertia 

matrix respect to the E reference, ω = [p q r]T shows the 

angular velocity and δτ = [δφ, δθ, δ𝜓]T refers to the vector  

of  external disturbances. Also, the equation of 

rotational subsystem of quadrotor in body-fixed 

reference is described as: 
 

  FmV mV F       (2) 

 

where V = [Vx Vy Vz]T is the quadrotor linear velocity, F 

= [Fx Fy Fz]T denotes the thrust forces which produced 

by rotors, δF = [δx, δy, δz]T is the vector of external 

disturbances and m represents the mass of quadrotor. 

Using (1) and (2), the full quadrotor dynamic model is 

described as follows: 
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The input u1 denotes the total generated translational 

thrust forces; while the inputs u2, u3, and u4 are 

respected to the rotational thrust force of the quadrotor, 

jr describes the inertia of the Z axis and Ω expresses the 

overall residual propeller angular speed. where: 
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Also k and b represent the thrust and drag coefficient. 

The system (3) can be represented in a state-space form 

ẋ = f(x, U) by considering xi = [x1, …, x12], i ∈ (1, 12) 

which shows the state variables as follows: 

x1 = φ, x2 = ẋ1 =  , x3 = θ, x4 = ẋ3 =  , x5 = ψ, x6 = ẋ5 = 

 , x7 = x, x8 = ẋ7 = ẋ, x9 = y, x10 = ẋ9 = ẏ, x11 = z, x12 = 

ẋ11 = ż. 
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(5) 

a1 = (Iy–Iz)/Ix, a2 = –jr/Ix, a3 = (Iz–Ix)/Iy, a4 = jr/Iy, a5 

= (Ix–Iy)/Iz, b1 = l/Ix, b2 = l/Iy, b3 = l/Iz 
 

(6) 

 

2.2 Dynamics of Actuators 

   Each propeller of quadrotor generates a thrust force 

which can be modeled as a first order system; 
 

0

0

i i

w
F k u

s w



 (7) 

 

where, w0 shows the bandwidth of actuator and k is a 

positive and non-zero gain. The variable vi shows the 

dynamics of actuator, which is described as follows: 
 

0

0

i i

w
u

s w
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 (8) 

 

Assumption 1. It is assumed that the roll, pitch and yaw 

angle satisfy the conditions |φ(t)| < π/2, |θ(t)| < π/2, and 

|ψ| < π for t ≥ 0. 

Assumption 2. In general, the parameter disturbance δ 

= [δx, δy, δz, δφ, δθ, δψ]T is assumed bounded uncertainty, 

i.e. |δ| ≤ γ where γ is positive constant. This assumption 

is also authentic for matched and mismatched 

uncertainties when there is knowledge about the 

uncertain terms based on systems states. 
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3 Problem Formation of the Robust Optimal 

Controller Synthesis 

   In this section, our main purpose is to develop an 

optimal robust tracking controller for the system (3) 

based on Integral sliding mode technique (ISMC) and 

state-dependent Riccati equation (SDRE) theory. This 

controller can ensure the safety performance and the 

asymptotic stability of the translational and rotational 

motions of UAV system. For better illustrating of the 

proposed controller, we have done design procedure in 

three steps. In the first step, the integral sliding mode 

controller is introduced and subsequently the SDRE 

strategy will be presented in the second part. Finally, in 

the last part, control law of the algorithm can be 

extracted by combining the ISMC approach with SDRE 

strategy in order to generate a robust and optimal 

solution for this non-linear dynamic control scheme. 

One of the more prominent aspects of this control 

approach is its robustness against external disturbances 

and faulty condition. Due to absence of optimization in 

Integral sliding mode strategy, in this research, a robust 

and optimal method is described by introducing the 

SDRE in sliding surface design. Moreover, by 

compositing the SDRE theory in the design of sliding 

surface of ISMC, the suggested method is capable to 

access finite-time control conditions. Also, note that the 

same initial constraints are imposed to both of the 

designed controller and conventional SMC in order to 

obtain the effective comparability in simulations. 

 

3.1 Integral Sliding Mode Control 

   Sliding mode is a powerful controlling method used in 

design and implementation of different systems from 

several aspects. In this section, a sliding mode is 

designed via a nonlinear integral sliding surface to 

remove chattering and provide good speed response. 

The following system with uncertain nonlinear dynamic 

equation is considered: 
 

           , ,x t f x g x u t x t Y Cx t     (9) 

 

where u(t) ∈ Rm is the control vector, f(x) ∈ cq and g(x) 

∈ cq with q ≥ 1 represent nonlinear functions of x 

respectively. δ(x, t) is an indefinite function which 

describe existence of  external disturbance. The 

nonlinear integral sliding function is expressed as 

follows [13]: 
 

      
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(10) 

 

where Υ ∈ Rn×n is the matrix selected to be full rank, 

T ∈ Rn×m and N ∈ Rn×m are non-variable matrices. The 

matrix N is chosen such that the matrix f + gN is 

Hurwitz, and T is selected such that Tg = Im is 

nonsingular and can be proved that ||I–g(Tg)-1T|| ≥ 1 for 

any T. When σISMC(t) = 0 the stability result for 

uncertain switched system is given. It is evident from 

(10) that the sliding surface is designed in an integral 

form, and it depends on the initial condition xi(0). So the 

sliding function expressed in (10) can be chosen as 

follows [18]: 
 

1

dT CR    (11) 
 

where Rd ∈ Rn×m is a matrix with eigenvalues which are 

selected to be equal to the poles of close loop system. 

When xi erupts in the sliding surface, we have 

σISMC(t) = 0, and the time differentiating of the sliding 

function can be described as; 
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Also, the control function is represented as follows; 
 

  n lu t u u   (13) 

 

Then, using (12), the equivalent control uequ-ISMC can be 

earned by solving 
ISMC (t) = 0: 
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(14) 

 

The nonlinear sliding mode control law un is normally 

the equivalent control of system (9) expressed as: 
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(15) 

 

A necessary condition to be ensured of sliding action in 

finite time in the presence of ambiguity and external 

disturbances is described as [18,9]; 
 

        T

ISMC ISMC ISMCt t t     (16) 

 

where Λ demonstrates a positive scalar matrix. The 

Eq. (13) shows that Λ-reachability condition is satisfied, 

which ensures the existence of an sliding motion on the 

sliding surface σ(t). A Lyapunov function can be written 

as V = ∑½σTσ. So according to (16), the sufficient 

condition for the stability of the system is defined by; 
 

     2V t t V t     (17) 
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By integrating both sides of the Eq. (16) yields 
 

   2 2 0V t V t    (18) 

which denotes V(t) ≡ 0 in less than 
 2 0V


 units of 

time. 

 

3.2 SDRE Controller Structure Regulation 

   The SDRE feedback control exerts extended 

linearization strategy to the formulation of nonlinear 

optimal problem for the input-affine system (9) as a 

linear control combination approach (LQR).By 

considering system (9), let u = u(t) where u should be 

determined such that it minimizes the following 

performance index [19]: 
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T TJ x t Q x x t u R x u dt
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Q(x) ∈ cq, R(x) ∈ cq (for q > 1) are the weighting 

matrices which are related to the state variable x. Also, 

R(x) is respected to be a positive definite matrix, while 

Q(x) is a semi-positive definite matrix. The 

mathematical equation of the system (9) can be 

rewritten as follows to solve the problem by SDRE 

method, 
 

           ,x t f x x t g x u t x t    (20) 

 

   It is also assumed that ||δ(x, t)|| ≤ γ0 + γ1||x(t)||, for 

positive constants γ0 and γ1. The optimal state feedback 

control law can easily be proved to be as: 
 

         1 Tu x R x g x P x x t   (21) 

 

where P(x) is a positive, symmetric and unique matrix. 

In the next step by solving the algebraic Riccati 

equation, the control law can be determined as follows: 
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Then, by considering the uncertain system (20), the 

optimal sliding surface is selected as (23) to develop the 

optimal control law which is related to integral sliding 

mode: 
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where H(x) ∈ Rm×n and {H(x), g(x)} is nonsingular. 

Eq. (23) clearly indicates that σopt(0, x(0)) = 0 when 

t = 0; thus, the system always starts at the predefined 

sliding surface. Now, in case of 0opt  , equivalent 

control law is obtained as follows: 
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   The nominal equivalent control which is related to the 

linear part of control function, is gained by SDRE 

according to Eqs. (23) and (24) as follows: 
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(25) 

 

3.3 Robust Optimal Control Law 

   The control law based on (15) and (25) can be written 

as follows; 
 

           
     

           

1  1   1

1   11

0 1

1 , 0  

  sgn   

d i

d

opt

u g x f x CR x t x

CR N H x g x

k H x g x H x g x x



   

 

 

   

    

   
 

 

 

 
 

(26) 
 

In (26), k > 0 is an appropriate constant value, and 

sgn(σopt) = [sgn(σISMC,1), …, sgn(σISMC,m)]T. 
   An adequate condition for constancy of proposed 

control law is T 0opt optV    . However, with regard to 

the described Lyapunov function, we are able to prove 

the asymptotically stability of it: 
 

   

       

1

0 1 1

,

 

T

opt opt

opt

V k H x g x t

H x g x H x g x x

  

  

  

   
 

(27) 

 

Therefore: 
 

     0 11

1

opt opt

opt opt

V k H x g x x   

 

   

  
 

 

(28) 

 

where ||σopt||1 represents 1-norm, and as ||σopt||1 ≥ ||σopt|| 

the following result can be achieved; 
 

T 0      for  0opt opt opt optV k        (29) 

 

   Now, from (20), the optimized switching surface are 

chosen as: 
 

T

,1 , , ,opt ISMC ISMC m       (30) 

 

After choosing switching surface variables, to earn 

variable H(x), the following relations are expressed: 
 

 
T

1 2 12, , ,ME ME ME ME    
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             
T 1 T

0

0  

t

x t x f x x g x R g x P x x d        
 

(31) 

 

Finally the variable H(x) defined according to (32) 
 

 . optH x ME   (32) 

 

By considering (31), it is obvious that H(x) is not unique 

matrix and should be used to the non-singularity 

condition of {H(x), g(x)}. So H(x) is selected as follows: 
 

 H x 
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 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(33) 

 

where n1, …, n6 are arbitrary non zero constants. The 

f(x) and g(x) matrices, are regulated according to (34); 
 

 f x   

2 4 1

2 4 1

6 5

7

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0

a x a

a x a

x a

g

x

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 






, 

 

3

1

1

1

2

1 3

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0
1

0

1

b

b

b

cosx cosx

m

U
m

U
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 
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 
 

  
 
 
 
 
 
 
 
 
 
 
 

 

(34) 

 

Also, one of important parts in designing a SDRE 

controller is the selection of weighting matrices Q(x) 

and R(x) For better results, these matrices should be 

state-dependent. Therefore matrices Q(x) and R(x), are 

chosen as follows: 
 

 Q x 

7

9

11

1 0 0 0 0 0 0 0 0 0 0 0
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 
 
 
 
 
 
 
 
 

  

(35) 

 

4 Effects of Actuator Faults 

   In this section in order to show that the designed 

robust optimal controller is thoroughly impressive under 

destructive effects, in addition to the presence of 

external disturbances, the system is exposed to actuator 

restrictions. One of the most important sources of fault 

generation is actuator's faults which we discuss it on the 

performance of system. It is very possible that one or 

more rotors of UAV in a long time duty loses its 

efficiency. In fact, in this circumstances, the rotors are 

working, but cannot generate desired influence. It can 

be a proper strategy to estimate the output of rotors. 

   To this end, we use a linear estimation method called 

Luenberger linear state estimator that linearizes the 

quadrotor system around its equilibrium point, and 

finally estimates the faults of actuators in the system as 

the state variables of the system [27]. After estimating, 

the fault detection unit measures the amounts of 

difference between outputs of the rotors with nominal 

values to detect the faults have accrued in the UAV 

system. In this faulty condition, the control algorithm 

attempts to reform the system for fault tolerant control. 
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Therefore, in this step we define modification transform 

equation based on Eq. (4),in order to regulate trust 

forces Fi without any changing in control signal ui as 

follows: 
 

2

1 1 2 4

2

2 1 3 4

2

1 1 2 4

2

1 1 3 4

1 1 1

4 2 4

1 1 1

4 2 4

1 1 1

4 2 4

1 1 1

4 2 4

u u u
b bl d

u u u
b bl d

u u u
b bl d

u u u
b bl d


   

   


   


   


 (36) 

 

   According to (4), the fault in each rotor is modeled as 

a bias multiplied by the forces: 

If accrued fault is in Motor #1: 
 

1 4 3

2 2

3 2 3 4

4 2 3 4

 

 

 

u F F

u F

u F F F

u F F F

 


 


   
   

 (37) 

 

If accrued fault is in Motor #2: 
 

1 4 3

2 1

3 1 3 4

4 1 3 4

 

 

 

u F F
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u F F F

u F F F

 


 

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 (38) 

 

If accrued fault is in Motor #3: 
 

1 4

2 2 1

3 1 2 4

4 1 2 4

 

 

u F

u F F

u F F F

u F F F



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 (39) 

 

If accrued fault is in Motor #4: 
 

1 3

2 2 1

3 1 2 3

4 1 2 3

 

 

u F

u F F

u F F F

u F F F

 


 


  
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 (40) 

 

   The main aim of a fault tolerant controller is to land 

the quadrotor horizontally and safely when an actuator 

fault happens in each rotor. Another factor that makes 

the control algorithm different in the faulty mode and 

the normal mode is that when each motor of the 

quadrotor is faulty, it may not provide sufficient thrust 

for other control signals, so that the faulty rotor does not 

take part in the control of its angle or height. For 

example, according to (4), in the normal mode, signal u1 

which controls the roll angle is equal to the difference of 

trust forces of the motors 3 and 4. But note that if we 

consider failure as a reduction of the performance of 

motor 3, it is probable that it cannot provide sufficient 

trust for signal u1. To overcome this problem, we omit 

the effect of motor 3 in signal u1 and put out this signal 

only with the motor 4. Finally, the fault tolerant 

algorithm of controller reformation based on the relation 

between outputs of the rotors in (36) can be described 

as: 

If accrued fault is in Motor #1: 
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 (41) 

 

If accrued fault is in Motor #2: 
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If accrued fault is in Motor #3: 
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If accrued fault is in Motor #4: 
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   Finally, in simulation section we will demonstrate that 
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the designed controller in section.3 has achieved to 

accurate and acceptable results in spite of the 

occurrence of faults in the form of partial loss of rotor 

effectiveness. 

 

5 Simulation Results 

   To compare the effectiveness of proposed controller 

on system performance and the reduced tracking errors, 

three cases are considered. The first simulation is 

considered in order to point to point path planning from 

different initial conditions. In this case, the quadrotor is 

subjected to the unknown external wind disturbances 

with a fixed velocity. The second simulation considers 

aggressive maneuvers under unknown time-varying 

wind disturbances, to track a predefined sinusoidal 

trajectory. Finally, the third case is to carry out 

aggressive maneuver under time varying wind 

disturbances to track square waveform reference 

trajectories. The parameters for simulation of a sample 

quadrotor model are set as m = 1.77 kg, d = 0.225 m, Ix 

= 2.16×10-3 kg.m2, Iy = 2.16×10-3 kg.m2, Iz = 0.33×10-3 

kg.m2, g = 9.81 m/s2, Jr = 3.357×10-5 kg.m2, b = 

2.98×10-6, l = 0.42 m. Also the parameters of proposed 

controller are selected as follows; 
 

0.434   0.656   0.232  0.121  0.765  0.876

0.614   0.751   0.232     0.121  0.765  0.876 
T

    
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Also, the effect of unknown time varying wind 

disturbance, is considered as follows: 
 

 

 

 

 

   

   

   

1

2

3

2

,

20 20
0.5sin 0.02sin

10 5

30 30
0.5sin 0.02sin /

10 5

40 40
0.5sin 0.02sin

10 5

t

x t t

t

t t

t t
m s

t t



 



 

 

 

 
 

  
 
 

     
    

    
 

         
    
 
     

    
     

 

 

 

 
 

(45) 

 

   Note that, in all simulation cases, the faulty conditions 

are quite similar. The actuator fault scenario considered 

here assumes that the first rotor undergoes a 25% loss of 

its trust force at t = 1.8 s, and third rotor undergoes a 

35% loss of its trust force at t = 1.8 s, while the second 

and forth rotors produce 100% of maximum values of 

their trust forces. The Fig. 2 demonstrates the fault 

detection outputs. 

 

5.1 Point to Point Path Planning Under Wind Gusts 

With a Fixed Velocity 

   In this section, the quadrotor is subjected to the 

unknown external wind disturbances with a fixed 

velocity of 3.6 m/s. For the first simulation, the initial 

values for the rotational subsystem are chosen as [φ, θ, 

ψ] = [π/4, π/4, π/4]T, the desired  angles as [φ, θ, ψ] = [0, 

0, 0]T, the initial values for translational subsystem as 

[x, y, z] = [0.1, 0.01, 0.1]T and the desired position set as 

[x, y, z] = [2, 2, 2]T. The position and attitude angle 

response of the system in the presence of wind field and 

actuator fault are shown in Figs. 3 and 4. For the 

attitude angle the controller stabilized it at zero in a 

short period of time. Pitch angle θ is stabilized at 0.027 

rad, roll angle φ at 0.011 rad, and yaw angle ψ at 0.013 

rad. We can see that with the wind field effects, the 

oscillation of attitude angle and the settling time in 

ROISMC method are lower in comparison to SMC 

method. Using the ROISMC, a smooth reference 

tracking is performed. We observe that the quadrotor 

reaches to the position value rapidly. In fact, it is settled 

down at the desired value in less than 2 seconds. 

Although, in the beginning of the tracking where the 

vehicle is far from the trajectory there exists a 

significant error. This is due to the different actual 

position and reference position in the beginning of 

motion. Then, the controller tries to decrease the error 

of tracking in next times during the simulation. Fig. 5 

shows the stability of rotor speed of a quadrotor during 

hovering. One can see that the range of control input is 

greatly decreased which confirms the other advantage of 

the SDRE approach. Trajectory of the quadrotor in 3D 

space is also shown in Fig. 6. 

 

 

 
Fig. 2 The outputs of fault detection. 
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Fig. 3 Tracking results of position (x, y, z). 

 

 
Fig. 4 Tracking results of angle (𝜑, 𝜃, 𝜓). 

 

   Another finding is that, with the increase of wind 

speed, the oscillation of attitude angle and the time to 

settle the system down are become greater. A 

comparison of the mean square error (MSE) for both 

SMC and ROISMC control is being presented in Fig. 7. 

   In most cases, given the large sampling period 1/Ts = 

0.001 s, the ROISMC-controlled system has superior 

response, and still outperforms compared with the SMC 

control scheme when the sampling period decreases 

(1/Ts = 0.01 s). 

 

5.2 Aggressive Maneuvers in Predefined Sinusoidal 

Trajectory Tracking Under Time-Varying Wind 

Disturbances 

   In order to investigate the efficiency of the proposed  

 

 
Fig. 5 The output of the actuators. 

 

 
Fig. 6 Global trajectory of the quadrotor position. 

 

method, in this section a simulation is performed for a 

case that end-effector must track a predefined sinusoidal 

trajectory. The desired trajectory is a spiral which is 

described by a function of time. Thus, unlike the earlier 

part of the navigation path, the important thing for this 

simulation is to track the following trajectory by UAV 

sets: 
 

2 2 4
0.5sin ,  0.5sin  ,  0.4sin  

2 2 2
d d d

t t t
x y z

         
         

     
  

 

   In this section, the disturbances, including effects of 

unknown time varying wind disturbance, are considered 

in the close-loop system of the UAV according to (45). 

The position and attitude angle response of the system 

in the presence of wind field effect in predefined 

trajectory tracking are shown in Figs. 8 and 9. For the 

attitude angle the controller stabilized it at zero in a  
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(a) (b) 

Fig. 7 MSE quadrotor response comparison (SMC vs. ROISMC). 

 

  
(a) (a) 

  
(b) (b) 

  
(c) (c) 

Fig. 8 Tracking results of position (x, y, z). Fig. 9 Tracking results of angle (𝜑, 𝜃, 𝜓). 

 

short period of time. It can be seen that the control 

inputs are smooth and free of any chattering. The 

Convergence of position trajectories shown that even 

though the quadrotor position and attitude are affected 

by the abruptly changed reference positions and angles, 

the controller is able to drive all these state variables 

back to the new reference position and angle within 

seconds, as it can be seen in Fig. 8. They, exhibit the 

same behavior as the homologous positions and angles. 

Simultaneously, it is also shown that these state 

variables have coupling relationship, thus verifies the 

highly coupled characteristic of the dynamical model of 

the quadrotor. The controllers, displayed in Fig. 10, are 

continuous as desired and easily applied to a real-life 

model. It is noted that although the controllers reach 

their steady states several times during the flight 

process, the stability of them or the quadrotor does not 

appear affected. The control inputs are smooth and the 

chattering phenomena is decreased using the proposed 

controller. A comparison of the mean square error 

(MSE) for both SMC and ROISMC control is being 

presented in Fig. 11. Trajectory of a quadrotor in 3D 

space is also shown in Fig. 12. 

 

5.3 Aggressive Maneuvers in Predefined Square 

Waveform Trajectory Tracking Under Time-

Varying Wind Disturbances 

   In this experiment, the laboratory helicopter is 

required to achieve the position tracking for aggressive  
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Fig. 10 The output of the actuators. 

 

  
(a) (b) 

Fig. 11 MSE quadrotor response comparison (SMC vs. ROISMC). 

 

 
Fig. 12 Global trajectory of the quadrotor position. 

 

maneuvers under time-varying wind disturbances. The 

reference signals are given by 
 

     
1 1 1

  ,     ,     
0.5 1 2 1 0.3 1

d x d y d zx s y s z s
s s s

  
     

       
       

  

 

where   x s ,   y s  and   z s  are the square 

waveform references with period (40-60 s). 

   Amplitudes are 0.8 radian and 2 m for the references 

of the attitude angles and position, respectively. This 

function is widely used in industrial applications. The 

unknown time varying wind disturbance in this section 

described in (45). When the aggressive maneuvers are  



Optimal Integral Sliding Mode Controller of a UAV With 

 
… R. Babaie and A. F. Ehyaei 

 

Iranian Journal of Electrical and Electronic Engineering, Vol. 15, No. 2, June 2019 254 

 

  
(a) (a) 

  
(b) (b) 

  
(c) (c) 

Fig. 13 Tracking results of position (x, y, z). Fig. 14 Tracking results of angle (𝜑, 𝜃, 𝜓). 

 

  
(a) (b) 

  
(c) (d) 

Fig. 15 The output of the actuators. 

 

implemented, one can see that the travel and elevation 

channels are affected by the additional forces produced 

by the wind gusts. The position and attitude angle 

response of the system in the presence of wind field 

effect and actuator faults in predefined waveform 

trajectory tracking are shown in Fig. 13 and 14, 

respectively. For the attitude angle the controller 

stabilized it at zero rad in a short period of time. It can 

be seen that the control inputs are smooth and free of 

any chattering. The Convergence of position trajectories 

stands for the quadrotor, according to the task, as it can 

be seen in Fig. 13. It is shown that even though the 

Quad rotor’s position and attitude are affected by the 

abruptly changed reference positions and angles, the 

controller is able to drive all these state variables back 

to the new reference position and angle within seconds. 

It is obvious that the domain of effort control is 

significantly reduced which is the other benefit of the 

SDRE technique. The controllers, displayed in Fig. 15, 

are continuous as desired and easily applied to a real-

life model. A comparison of the mean square error 

(MSE) for both SMC and ROISMC control is being 

presented in Fig. 16. In cases, given the large sampling 

period 1/Ts = 0.001 s, the ROISMC-controlled system 

has superior response, and still outperforms in 

comparison with the SMC control scheme when the 

sampling period decreases (1/Ts = 0.1 s). 

   Those demonstrate the robustness of the designed  
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(a) (b) 
Fig. 16 MSE quadrotor response comparison (SMC vs. ROISMC). 

 
Table 1 Amount of cost function for two methods. 

 Cost Function 

Algorithm Set point Sinusoidal Square Wave Form 

SMC 334.34 428.36 412.75 

ROISMC 275.53 396.42 384.27 

 

controller and effectiveness of the proposed control 

scheme. Also, by comparing ROISMC method with the 

SMC approach, the optimality of the controller is 

checked in finding the best performance. The amounts 

of ROISMC and SMC cost function, for three cases are 

explained in Table 1. 

   It is obvious that the lowest amount of the cost 

function is for ROISMC method; therefore, the method 

suggested, has optimal performance rather than SMC 

approach. In summary, the results show that the 

proposed ROISMC controller accurately tracks the 

desired reference pulse, while providing fast and precise 

responses, and effectively attenuate the high speed 

wind. The small steady state error is being related to the 

wind’s blowing direction and speed. 

 

5 Conclusion 

   This paper presents a new technique developed based 

on SDRE and ISMC for UAV quadrotor systems. The 

optimal robust integral sliding mode control (ROISMC) 

was applied to address the position control for 

aggressive mission with actuators’ faults and in 

presence of wind field effects. We first extracted the 

dynamic model for quadrotor using Newton-Euler 

formulation. The sliding surface of the proposed 

controller ensured the system robustness against the 

influences of actuators’ faults. Then, the second method 

of Lyapunov theory was applied to guarantee the 

stability of the overall control system. An extensive 

numerical simulation was run to accredit the efficiency 

of proposed model and control scheme. Qualities of 

high accuracy, small position errors, optimal ranges of 

input control and minimum influence of the 

nonlinearities on the performance of UAV are other 

advantages of our proposed. Our future work focuses on 

developing more nonlinear control techniques (e.g. 

adaptive integral backstepping) with on-line fault 

detector in order to distinguish between external 

disturbance and actuator fault and finally fault tolerant 

control at the same time. 
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